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 31 
Abstract 32 
 33 
The success of intervention projects in ecological systems depends not only on the quality of a 34 
management strategy, but also how that strategy plays out among decision makers.  Impact 35 
network analysis (INA) is a framework for evaluating the likely regional success of interventions 36 
before, during, and after projects, for project implementers, policy makers, and funders.  INA 37 
integrates across three key system components: (a) the quality of a management strategy and the 38 
quality of information about it, (b) the socioeconomic networks through which managers learn 39 
about the management strategy and decide whether to use it, and (c) the biophysical network that 40 
results from those decisions.  A common example where INA can be useful is management of an 41 
invasive (or endangered) species or genotype.  A management strategy to reduce (or increase) 42 
the probability of establishment of a species may or may not be adopted by each land manager in 43 
a region, depending on the quality of the management strategy and the information they have 44 
available about it.  The resulting management landscape will determine whether the intervention 45 
project is successful, in terms of how much of the region the species can spread through and the 46 
resulting effects on the desired ecosystem services.  INA can be applied in general to evaluate 47 
the success of immediate intervention strategies, and to contribute to fundamental understanding 48 
about what makes interventions successful. 49 
 50 
Key words: adaptive management, agent-based models, complex adaptive systems, data science, 51 
decision making under uncertainty, ecosystem services, emerging pathogens, epidemics, 52 
intervention ecology, invasive species, meta-research, multilayer networks, non-indigenous 53 
species, One Health, operationalizing sustainability concepts, science of science, social capital, 54 
socio-environmental systems, translational science, value of information 55 
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Introduction 57 
 58 
Interventions in ecological systems have the potential to fail due to lack of consideration of the 59 
system components that are limiting factors for what would otherwise be a successful 60 
management strategy.  The success of interventions in ecological systems depends on both how 61 
effective the management methodologies are, and whether a critical mass of decision makers 62 
adopts the necessary types of management.  Because of the complexity of most ecological 63 
systems, scenario analysis platforms are needed for evaluating the likelihood of intervention 64 
success before, during, and after implementation.  Data limitations will always be a challenge, 65 
but uncertainty quantification methods can inform decisions about investments in interventions. 66 
 67 
A common challenge across applied ecology, agricultural development, and public health 68 
programs is to integrate across socioeconomic and biophysical processes to understand how 69 
research products can change systems on the ground.  Agricultural development often depends 70 
on technologies for managing the spread of pathogens and arthropod pests, and for supporting 71 
the spread of desirable crop genotypes.  Public health is supported by technologies for 72 
communicating about and using methods such as vaccination to slow the spread of disease.  73 
Understanding how to optimize the effects of research and data collection typically requires 74 
integration across three general types of system components: (a) the type and quality of 75 
management information and other technologies, (b) socioeconomic networks that determine 76 
communication and influence about management technology use, such as networks of land 77 
managers or farmers, and (c) biophysical networks where decisions about use of technologies 78 
determine ecological outcomes, such as networks of pathogen invasion or networks of 79 
endangered species dispersal.  Here, “impact networks” are defined as the linked socioeconomic 80 
and biophysical networks through which management may have a regional effect.  This paper 81 
introduces a framework for scenario analysis, impact network analysis (INA), to integrate these 82 
three components, and thus to evaluate the likelihood of success for interventions. 83 
 84 
The first component in this framework is an intervention technology, which might be, for 85 
example, a model describing a management effect on transmission probabilities, or another form 86 
of information about how to modify the system.  Information can be considered in the broad 87 
sense, such as genetic information in the form of selection of appropriate genetic material for 88 
agriculture or for ecological restoration projects.  These types of information will also have an 89 
associated uncertainty (Klerkx et al., 2010).  Analyses of the ‘value of information’ have been 90 
incorporated in, for example, medical decision making at multiple scales (Bartell et al., 2000; 91 
Claxton and Sculpher, 2006; Tappenden et al., 2004), decision making by foraging animals 92 
(Freidin and Kacelnik, 2011; McNamara and Dall, 2010), management of species (Canessa et al., 93 
2015; Tallis and Polasky, 2011; Wiles, 2004), and adaptive resource management (Williams et 94 
al., 2011).  Even neurological processing of the value of information has been characterized 95 
(Behrens et al., 2007).  As the reproducibility of science is critically evaluated in multiple 96 
disciplines, the quality of information is a focus (Ioannidis, 2005; Kenett and Shmueli, 2014; 97 
Leek and Peng, 2015).  And even if information and technologies are of very high quality, their 98 
influence on system-level outcomes will be minimal if decision-makers are unaware of them or 99 
are not persuaded that they are a good investment of resources.  Impact network analysis can be 100 
thought of as an evaluation of the regional value of information in landscapes. 101 
 102 
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The second component is the socioeconomic network, where nodes are key decision makers such 103 
as farmers, other land managers, or individuals managing their families’ health, or farmers 104 
(Rebaudo and Dangles, 2011; Rebaudo and Dangles, 2013) – and potentially also include other 105 

agents such as scientists (Ekboir, 2003), 106 
extension agents, policy makers, 107 
consumers, and related institutions.  108 
Links between nodes may indicate the 109 
spread of ideas, influence, and/or money.  110 
Within businesses, networks for the 111 
spread of information may be designed to 112 
try to achieve economic goals (Allee, 113 
2002).  In many scenarios, networks of 114 
communication and influence form 115 
haphazardly.  Individual decision-making 116 
about whether to adopt new technologies 117 
plays out in the context of the 118 
information available through 119 
individuals’ networks (Garrett, 2012; 120 
Rogers, 2003).  Agricultural management 121 
is often limited by lack of information 122 
(Parsa et al., 2014).  Even if the current 123 
standard of information is available to 124 
most agents (nodes), the information may 125 
be of low quality, and heuristics for 126 
decision-making may or may not be well-127 
developed (Ascough et al., 2008; 128 
Gigerenzer and Gaissmaier, 2011).  The 129 
effects of decision-making by agents in 130 
the socioeconomic network, with or 131 
without full information about options, 132 
creates a “management landscape” that 133 
influences the success or failure of 134 
species in the biophysical network. 135 
 136 
The third component is the biophysical 137 
network, where nodes indicate the 138 
entities or geographical locations where 139 
success or failure occurs.  Nodes might 140 
be groups of people (as hosts to human 141 
pathogens), farms, or other land 142 
management units.  Links between nodes 143 
indicate the potential for the spread of 144 
undesirable species or genotypes, such as 145 
antibiotic resistant human or agricultural 146 
pathogens (Epanchin-Niell et al., 2010; 147 
Margosian et al., 2009; Sutrave et al., 148 

 

 
Figure 1. An impact network analysis can be 
applied to evaluate how likely an intervention is 
to be successful.  A common type of intervention 
is an attempt at regional management of an 
invasive (or endangered) species.  An 
intervention would often be based on an attempt 
to make effective management of the species 
more widespread.  Adoption of the management 
may prevent or disrupt spread of an invasive 
species, as illustrated here.  Links represent 
potential spread of information about the 
management option in the top layer, and potential 
spread of the species in the bottom layer.  Links 
between layers indicate a manager in the top layer 
linked to a land unit in the bottom layer, where 
the managers’ decisions will change the 
management landscape. 

Time 1

Time 2

Time 3

Socioeconomic network
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Management adoption
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PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27037v1 | CC BY 4.0 Open Access | rec: 16 Jul 2018, publ: 16 Jul 2018



 5 
 

2012), or of desirable species or genotypes, such as endangered species or improved crop 149 
varieties.  In some cases, the same type of biophysical network model may usefully be applied to 150 
related processes, such as the spread of pollutants, soil erosion, and provisioning of fresh water 151 
(Baron et al., 2002).  Nodes in the biophysical network are linked to the corresponding decision-152 
makers in the socioeconomic network layer, such that the probability of successful management 153 
at a biophysical node is modified by the corresponding decisions about management.  Successful 154 
management also depends on the quality of information or other technologies that may be 155 
applied at a given biophysical node. 156 
 157 
Combining these three components provides a systems perspective that can be used in scenario 158 
analyses to evaluate potential outcomes from research investments, before, during, or after 159 
projects begin.  It can also be used to evaluate the likely degree of success of adaptation 160 
strategies to pulse (intermittant) or press (continual) system stressors, such as the introduction of 161 
a new pathogen or climate change, to evaluate system sustainability, resilience, or economic 162 
viability.  Some of these system components have been considered together more or less 163 
explicitly in disease ecology (Funk et al., 2009; Funk et al., 2010; Garrett, 2012; Harwood et al., 164 
2009; Manfredi and d'Onofrio, 2013; Sahneh et al., 2012) and natural resource management 165 
(Bodin and Prell, 2011; Epanchin-Niell and Hastings, 2010; Hernandez Nopsa et al., 2015; Mills 166 
et al., 2011; Rebaudo and Dangles, 2011).  Combining the components also provides a new 167 
perspective on the science of science policy (Fealing et al., 2011) by directly evaluating 168 
interactions among agents engaged in developing scientific results and in implementing the new 169 
results. 170 
 171 
The overall goal of impact network analysis is to provide a common framework that integrates 172 
across all these types of applications, to enhance opportunities for lessons learned across systems 173 
and scientific disciplines, and to create a general platform for analysis of sustainability, 174 
resilience, and economic viability. Applying network analyses, as compared to more aggregated 175 
models, allows consideration of the role of geographic and social structures on the likelihood of 176 
success of technological innovations.  The specific objective of this paper is to introduce the 177 
impact network analysis framework for evaluating the degree of success of a project in 178 
intervention ecology, using an example of model structure for management of an invasive or 179 
endangered species. 180 
 181 
 182 
Methods 183 
 184 
The model presented here is a simpler version of the range of potential impact network analyses 185 
that could be considered.  For example, this simple model addresses a single “unit” of 186 
management information that is generated by an agent such as a research team, while more 187 
elaborate models might address “big data” in the form of information that is generated 188 
throughout a network, as well as spread throughout that network.  The simpler model is 189 
introduced here, for the most part using a standard format for describing agent-based models 190 
(Grimm et al., 2010). 191 
 192 
 193 
 194 
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Purpose 195 
 196 
The purpose of this model is to understand the likelihood of success of an intervention in an 197 
ecological system, before the intervention and with iterative adjustments as more information 198 
about the system become available.  It evaluates the outcomes of information and technology 199 
impacts on linked socioeconomic and biophysical networks.  These system components tend to 200 
be studied separately in traditional disciplinary models, but the way they are integrated 201 
influences system sustainability.  The broader goal is a new impact network modeling framework 202 
that can be applied across a broad range of system contexts and questions, providing research 203 
spill-over and cross-disciplinary lessons learned.  The impact of information related to 204 
management of an invasive or endangered species is considered. 205 
 206 
State variables and scales 207 
 208 
The model describes the effects of a management strategy (information or other types of 209 
technologies), socioeconomic networks that influence management decision-making, and 210 
biophysical networks that influence species dispersal and establishment, in the case of the 211 
application to invasive or endangered species. 212 
 213 
Ecological information or other technology, and the management effect size 214 
The state variable describing information is the researchers' estimate of the management effect 215 
size, in terms of the percentage change in the probability of species establishment, with the goal 216 
of stopping invasive species establishment, or supporting endangered species establishment.  217 
(The actual effect size is a model parameter.)   218 
 219 
The generation of an estimate is based on two parameters, the mean effect size and the standard 220 
error of the mean (which is implicitly a function of both variance in effect size and the 221 
experimental sampling effort).  The estimated management effect size must be greater than a 222 
threshold value in order to trigger communication about the management. 223 
 224 
Communication network  225 
 226 
The nodes of the communication network, which determines how information (or other types of 227 
technology) may be propagated, are individual people or institutions (land managers, policy 228 
makers, information brokers, researchers).  The link weights indicate the probability of sharing 229 
information between two nodes.  The state of each node at a given time step is presence or 230 
absence of the information.  The time step (temporal resolution) is related to logical time units 231 
for the linked ecological network, such as the generation time for the species being managed.   232 
 233 
The probability of information sharing between a given pair of nodes is constant throughout a 234 
simulation, where sharing of information at a particular time step is determined based on that 235 
probability. 236 
 237 
The higher-level measures of the status of the communication network include the number of 238 
nodes where information is present and the network properties associated with the 239 
communication network.    240 
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Decision-making at a node 241 
 242 
Whether or not land managers who have information about a new management technology will 243 
choose to use the new management is determined by factors such as the distribution of early and 244 
late adopters.  In this model, each land manager node has associated with it both the information 245 
status described above and a decision status.  If the information has not reached a land manager 246 
node, the decision will be ‘do not adopt’ by default.  If the information has reached a land 247 
manager node, the decision may be ‘adopt’ or ‘do not adopt’. 248 
 249 
Each land manager node has an assigned likelihood of adoption during a time step, where a 250 
given land manager node retains its probability of adoption throughout a simulation.  Whether 251 
management is used is determined at each time step. 252 
 253 
The higher-level measures of the status of the network of land managers will include the number 254 
of nodes where the outcome is ‘adoption’ and the network properties associated with those 255 
nodes. 256 
 257 
Ecological network and establishment 258 
 259 
The nodes of the ecological network are units of land managed by a particular land manager, 260 
such that the land manager node and the corresponding land node are connected.  For the 261 
invasive or endangered species example, the links between land nodes indicate the probability of 262 
movement of the species between the pair of land nodes.  Whether or not movement occurs is 263 
determined at each time step based on that probability.  The probability of successful 264 
establishment at that land node is a function of whether or not management has been adopted.  265 
The state of each land node for the species movement case is ‘species established or ‘species not 266 
established'.   267 
 268 
The higher-level measures of the status of the network of land units will include the number of 269 
nodes where the outcome is ‘species established'. 270 
 271 
Process overview and scheduling 272 
 273 
The processes in the model for an invasive or endangered species are as follows for a single 274 
realization, in discrete time. 275 

1. An estimate of the management effect is generated once. 276 
2. A round of communication occurs, such that some land manager nodes may change status 277 

from ‘absence of information’ to ‘presence of information’. 278 
3. A round of decision making occurs, such that some land manager nodes may change 279 

status from ‘non-adoption’ to ‘adoption’, thus changing the management status of the 280 
corresponding land nodes. 281 

4. A round of dispersal occurs, such that some land nodes may change status from ‘species 282 
absent’ to ‘species present’ because of movement.   283 

5. For species presence to be maintained, the species must also become established, where 284 
the probability of establishment is conditional on whether the management is adopted at a 285 
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land node.  Some land nodes where the species was previously established may change 286 
status from ‘species present’ to ‘species absent’ as a result of management.  287 

6. Steps 2 through 5 are repeated for as many time steps as are being considered. 288 
 289 
Design concepts 290 
 291 
Emergence: System-level traits that “emerge” from individual traits include the spatial 292 
distributions and frequency distributions of (a) land manager nodes with information present, (b) 293 
land manager nodes with adoption (and corresponding land nodes with management), and (c) 294 
land nodes where the species is established.   295 
 296 
Sensing: In this simple version of an impact network, land managers become aware of 297 
information only through their links to other people aware of the information.  The threshold for 298 
the effect size estimate determines whether there is any communication about the management, 299 
and can completely restrict land managers’ ability to learn information.  Adaptation and fitness-300 
seeking are not modeled explicitly in this simple version, but are implicit in information sharing 301 
and decision-making about adoption. 302 
 303 
Stochasticity: To understand the general effects, and the upper and lower percentiles of 304 
outcomes, network structures are generated anew for each simulation.  The probability of 305 
movement of information and species is fixed for each pair of nodes within a single simulation, 306 
and whether or not movement occurs in each time step is determined independently based on this 307 
probability.  The probability of establishment at a given node is modified by whether the 308 
management has been adopted at the corresponding manager node. 309 
 310 
Collectives: Interactions among land managers are modeled by the network of communication. 311 
 312 
Observation: At the end of step 5 (in the process overview above), the species is established in a 313 
set of land units for that time step. The status of information and adoption at each socioeconomic 314 
node, and species establishment in each biophysical (land) node, is collected for analysis. 315 
 316 
Initialization 317 
 318 
In the network of land managers, those who initially have the information about management are 319 
those conceptualized as having access to the information from researchers and/or information 320 
brokers such as journalists and extension agents.  Each land manager has a probability of initially 321 
having this information in each simulation.  A proportion of land nodes initially have the species 322 
present, and are randomly selected along one edge of the map or randomly in each simulation.  323 
 324 
Input data 325 
 326 
Input data are simulated in these examples, but could come from observed environmental 327 
variables.  The environmental input in this simple version of an INA is defined in terms of 328 
environmental conduciveness to species establishment or persistence.  For simplicity, underlying 329 
environmental conduciveness is considered to be the same at all nodes for a given time step, so 330 
that the probability of establishment is the same at each land unit node.  Three types of scenarios 331 
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are considered for conduciveness.  In the ‘constant’ scenario, conduciveness does not change.  In 332 
the ‘sustainability test’ scenario, conduciveness increases slowly and steadily over time.  In the 333 
‘resilience test’ scenario, conduciveness increases suddenly for a limited period of time.   334 
 335 
Next steps 336 
 337 
This introduction to INA will be updated with a more detailed example 338 
 339 
Comments 340 
 341 
When evaluating the likely success of interventions that are under immediate consideration, 342 

analyses will generally try to achieve the greatest 343 
level of precision possible given the data 344 
available.  When considering the potential for 345 
different types of future interventions, or the 346 
theory of effective interventions, other priorities 347 
may be at least as important.  There are often 348 
trade-offs in the ability of a model to achieve 349 
precision, realism, and generality (Gross, 2013; 350 
Levins, 1966).  Other applications of impact 351 
network analysis could focus on developing 352 
general theories for the development of future 353 
intervention strategies (Fig. 2).  Uncertainty 354 
quantification frameworks can incorporate 355 
multiple types of objectives in impact network 356 
analysis. 357 
 358 
 359 

Seed systems are an important example of multilayer networks in agriculture.  Layers include the 360 
network of seed movement in formal and informal systems, the network of pathogen or pest 361 
movement through seed, and the network of information and influence related to integrated seed 362 
health strategies (Thomas-Sharma et al., 2016; Thomas-Sharma et al., 2017).  Successful seed 363 
systems will optimize the maintenance and spread of desirable crop varieties (Labeyrie et al., 364 
2016; Pautasso, 2015; Pautasso et al., 2013) while minimizing the spread of pathogens through 365 
seed or grain movement (Andersen et al., 2017; Buddenhagen et al., 2017; Hernandez Nopsa et 366 
al., 2015).  Additional linked networks include the global network of crop breeders who 367 
exchange genetic material (Garrett et al., 2017). 368 
 369 
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Figure 2. Three potential priorities in 
impact network analysis, and examples of 
the types of questions that might be asked 
in each context 

Realism Questions like:
How do changes in network traits, such as 
changes in mechanisms for interpersonal 
influence, affect system outcomes?

Precision Questions like:
Which particular communication or 
land nodes are key control points for 
transmission through the landscape?

Generality Questions like:
How can a change in impact network 
components compensate for increased 
risk to maintain system sustainability?
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