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Abstract 23 

Global plastics production has reached 380 million metric tons in 2015, with around 40% used for 24 

packaging. Plastic packaging is diverse and made of multiple polymers and numerous additives, along 25 

with other components, such as adhesives or coatings. Further, packaging can contain residues from 26 

substances used during manufacturing, such as solvents, along with non-intentionally added 27 

substances (NIAS), such as impurities, oligomers, or degradation products. To characterize risks from 28 

chemicals potentially released during manufacturing, use, disposal, and/or recycling of packaging, 29 

comprehensive information on all chemicals involved is needed. Here, we present a database of 30 

Chemicals associated with Plastic Packaging (CPPdb), which includes chemicals used during 31 

manufacturing and/or present in final packaging articles. The CPPdb lists 906 chemicals likely 32 

associated with plastic packaging and 3377 substances that are possibly associated. Of the 906 33 

chemicals likely associated with plastic packaging, 63 rank highest for human health hazards and 68 34 

for environmental hazards according to the harmonized hazard classifications assigned by the 35 

European Chemicals Agency within the Classification, Labeling and Packaging (CLP) regulation 36 

implementing the United Nations’ Globally Harmonized System (GHS). Further, 7 of the 906 37 

substances are classified in the European Union as persistent, bioaccumulative, and toxic (PBT), or 38 

very persistent, very bioaccumulative (vPvB), and 15 as endocrine disrupting chemicals (EDC). Thirty-39 

four of the 906 chemicals are also recognized as EDC or potential EDC in the recent EDC report by the 40 

United Nations Environment Programme. The identified hazardous chemicals are used in plastics as 41 

monomers, intermediates, solvents, surfactants, plasticizers, stabilizers, biocides, flame retardants, 42 

accelerators, and colorants, among other functions. Our work was challenged by a lack of 43 

transparency and incompleteness of publicly available information on both the use and toxicity of 44 

numerous substances. The most hazardous chemicals identified here should be assessed in detail as 45 

potential candidates for substitution.  46 
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1. Introduction 51 

The use of plastic packaging is on the rise (Smithers Pira, 2018; Van Eygen et al., 2017), 52 

explained by the need to reduce food waste or the increased demand due to population growth and 53 

market expansion (Andrady and Neal, 2009; Sohail et al., 2018; Thompson et al., 2009b). However, 54 

there are also increasing concerns about the harm caused to the environment (North and Halden, 55 

2013) and human health (Halden, 2010). These concerns include littering and accumulation of 56 

nondegradable plastics in the environment (Jambeck et al., 2015; Thompson et al., 2009a), 57 

generation of secondary microplastics and nanoplastics (Galloway, 2015; Galloway and Lewis, 2016; 58 

Revel et al., 2018; Wright and Kelly, 2017), and release of hazardous chemicals during manufacturing 59 

and use (Biryol et al., 2017; Caporossi and Papaleo, 2017; Dematteo et al., 2013), as well as following 60 

landfilling (Mavakala et al., 2016; Sarigiannis, 2017), incineration (Franchini et al., 2004), or improper 61 

disposal leading to pollution of the environment (Gallo et al., 2018; Hahladakis et al., 2018; Hammer 62 

et al., 2012; Hermabessiere et al., 2017). In 2015, production of plastics reached 380 million metric 63 

tons worldwide, and of these, around 40% were used for packaging (Geyer et al., 2017; 64 

PlasticsEurope, 2016). Around 60% of all plastic packaging is used for food and beverages, while the 65 

rest covers non-food applications, such as healthcare, cosmetics, consumer, household, apparel, and 66 

shipment packaging. To reduce environmental impacts, efforts to drastically increase recycling rates 67 

of packaging plastics are currently being undertaken (EU, 2018; European Commission, 2018; 68 

Hammer et al., 2012). 69 

Many chemicals used to make plastics, including packaging plastics, are highly hazardous 70 

(Lithner et al., 2011) and therefore of significant concern for occupational health (Fucic et al., 2018; 71 

Montano, 2014). Moreover, during the subsequent use, disposal, and recycling chemicals present in 72 

plastic packaging may transfer into products such as foods or cosmetics, or in the environment (Gallo 73 

et al., 2018; Hahladakis et al., 2018; Hermabessiere et al., 2017). With this, plastic packaging is likely 74 

to substantially contribute to chemical exposures of the human population and the environment 75 

(Biryol et al., 2017; Grob et al., 2006). Recycling can also result in accumulation of hazardous 76 

chemicals in secondary materials, negatively affecting their market value and restricting downstream 77 

applications (Geueke et al., 2018; Lahl and Zeschmar-Lahl, 2013; Ragossnig and Schneider, 2017). 78 

Therefore, a detailed assessment of plastic packaging-associated chemicals may be necessary 79 

(Bilitewski et al., 2012b; Bodar et al., 2018; Guzzonato et al., 2017).  80 

Several strategies for assessing and scoring hazardous chemicals in plastics have already been 81 

proposed (Lithner et al., 2011; Rossi and Blake, 2014). These studies have so far focused on 82 

monomers and a small number of additives used in high concentrations, such as phthalate 83 

plasticizers in flexible polyvinyl chloride (PVC). However, to comprehensively inform design, 84 

manufacturing, and policy decisions supporting benign alternatives to hazardous chemicals in plastic 85 
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packaging, the identity and amounts of all involved substances should be known. This applies to both 86 

the intentionally added substances (IAS), such as monomers used to make the polymer, additives 87 

added to the polymer to impart a desired property or function, and other chemicals intentionally 88 

used during manufacturing (e.g., solvents or processing aids), as well as the non-intentionally added 89 

substances (NIAS), such as impurities, reaction by-products, and breakdown products (Bradley and 90 

Coulier, 2007; Nerin et al., 2013). Unfortunately, achieving a comprehensive overview of all 91 

substances associated with plastic packaging is not a straightforward task. This is due to two main 92 

reasons: First, with regard to IAS, packaging plastics are made of multiple polymer types containing a 93 

large variety of chemical additives. Second, the chemical identity of many NIAS present in finished 94 

plastic packaging is seldom measured and often remains unknown.  95 

The five polymers most commonly applied in plastic packaging include polyethylene (PE), 96 

polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS), and PVC (PlasticsEurope, 97 

2016). Many other polymers, including, for example, polycarbonate (PC), polyamides (PA, nylon), 98 

acrylics, polylactic acid (PLA), polyurethanes (PU) and even more specialized polymer types, are also 99 

applied for specific packaging applications (PlasticsEurope, 2016; Selke and Culter, 2016). A recent 100 

study found that the less common polymers still account for over 10% of post-consumer plastic 101 

packaging waste collected for recycling (Brouwer et al., 2018). 102 

The major families of plastics additives (listed in order of decreasing total tonnage) are fillers, 103 

plasticizers, flame retardants, colorants, stabilizers, lubricants, foaming agents, and antistatic agents. 104 

Stabilizers can be further divided into several groups with more specific functions, including 105 

antioxidants, antiozonants, heat stabilizers, UV stabilizers, and biostabilizers (biocides) (Harper, 106 

2006). There are also many other types of additives used in lower amounts (Flick, 2002; Zweifel et al., 107 

2009). In addition to single-material based articles, multimaterial multilayers along with laminated 108 

structures are frequently used for packaging as well. In such systems, adhesives are often used to 109 

hold the construct together, adding another dimension of chemical diversity (Nerin et al., 2018). 110 

Currently, no publicly available information source exists that offers a one-stop, easily 111 

accessible overview of all chemicals associated with plastic packaging. The available information is 112 

incomplete and scattered across multiple sources. For example, Annex I of Commission Regulation 113 

(EU) No 10/2011 (EU, 2011), also called the Union list, is a positive list of monomers and additives 114 

authorized for use in plastic food contact materials (FCMs). The Union list is, however, not specific for 115 

plastic food packaging, since it covers all food contact plastics in general, i.e., it includes other food 116 

contact articles (FCAs) such as cooking utensils or conveyor belts. Moreover, this list is focused on 117 

the IAS only and consequently does not cover most NIAS. Importantly, the EU legislation requires 118 

that safety of NIAS should be covered by risk assessment of FCMs but does not provide detailed 119 
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guidance. Further, to the best of our knowledge, no lists comparable to the Union list exist for non-120 

food plastic packaging. 121 

 To address the current dearth of information, we compiled a list of chemicals associated with 122 

plastic packaging. For this, we relied primarily on the information available from publicly accessible 123 

sources, but also explored the suitability of several industry-maintained databases on plastics and 124 

plastics additives products for finding and extracting information on the exact chemical composition 125 

of materials used in plastic packaging. However, we did not include any commercial, paid-for data 126 

sources, in order to ensure that the resulting database of chemicals associated with plastic packaging 127 

could be made publicly available. Free access to such a resource is highly desirable, as it can inspire 128 

and enable further research, regulatory actions, and packaging design innovations, as well as guide 129 

citizen activities aimed to tackle the plastic pollution problem. Further, we preliminarily explored the 130 

environmental and human health hazards of these chemicals and identified over a hundred 131 

substances of high concern that may require further detailed assessment.  Numerous data gaps exist 132 

with regard to the use patterns and exposure, but also toxicity of plastic packaging-associated 133 

substances. These gaps need to be addressed in the future in order to properly evaluate the risks and 134 

explore substitution options. 135 

 136 

2. Materials and Methods 137 

2.1 Compilation of the database “Chemicals associated with plastic packaging” (CPPdb) 138 

An overview of information sources used to compile the database of chemicals associated with 139 

plastic packaging (CPPdb) is given in Figure 1 and the workflow is described below.  As a first 140 

information source we used the Chemicals and Product Categories database (CPCat; 141 

http://actor.epa.gov/cpcat) constructed by the U.S. Environmental Protection Agency (EPA) (Dionisio 142 

et al., 2015) (Fig. 1A). From this database, we extracted chemicals assigned to categories we deemed 143 

to be potentially plastics- and/or packaging-relevant, such as raw materials or monomers used to 144 

make plastics, or various types of additives and process regulators (Flick, 2002; Zweifel et al., 2009). 145 

Thus, we extracted the CPCat categories such as “plastics,” “manufacturing packing plastics,” “food 146 

packaging” or “fillers,” but omitted the categories clearly irrelevant to plastic packaging, such as 147 

“building material plastics” or “wood preservatives.” The complete list of all CPCat categories 148 

extracted for this project is given in the Supplementary File 1. Since many chemicals can be used in 149 

multiple applications, most chemicals in the CPCat database are listed in multiple categories. 150 

Therefore, in the next step we fused all extracted categories for each extracted unique CAS number. 151 

The extracted chemicals were regarded as associated with plastics (“yes” in the respective column in 152 

the CPPdb) whenever the extracted categories contained the indication “plastics” or “manufacturing 153 
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plastics,” and as associated with “plastic packaging” (“yes” in the respective column in the CPPdb) 154 

whenever there were indications for both “plastics” and “packaging.”  155 

The second information source consulted for the CPPdb (Fig. 1A) was the “Plastics additives 156 

database” by Ernest Flick (2004), which lists around 7000 commercial products being marketed as 157 

plastics additives, sorted according to their function in plastics, e.g., stabilizer, antioxidant, filler, or 158 

plasticizer (Flick, 2004). Where available, the identity of chemicals associated with the listed products 159 

was recorded (withholding the brand name) and corresponding CAS numbers were searched and 160 

assigned manually where found. All chemicals referenced in this source were regarded as associated 161 

with plastics. The resulting list of chemicals was merged with the CPCat-derived list. For duplicate 162 

chemicals (matching by CAS), Flick-derived use/function information was added to CPCat-derived 163 

category descriptors and identification as being associated with plastics was assigned if not already 164 

given previously based on CPCat data. 165 

   166 
Figure 1. Overview of information sources (dashed-line boxes) and approaches/workflow (solid-line boxes) followed to (A) 167 
compile the database of chemicals associated with plastic packaging (CPPdb) and (B) split the full CPPdb into the two lists 168 
according to the assigned likely (CPPdb_ListA) or possible (CPPdb_ListB) association with plastic packaging. Abbreviations 169 
not explained on the figure: CLP, Classification, Labeling and Packaging; EDC, endocrine disrupting chemical; PBT, persistent, 170 
bioaccumulative, toxic; vPvB, very persistent, very bioaccumulative. 171 

 172 

Further information sources (see Fig. 1A, sources numbered 3 to 13) that we consulted and 173 

integrated into the CPPdb included: (3) the chemicals listed in the book on chemical analytics of 174 

plastics and polymers (Bolgar et al., 2016); (4) the list of plastic monomers and selected additives 175 

along with some other substances used in plastics manufacturing (Lithner et al., 2011); (5) the 176 

chemicals listed on the European Flavours, Additives, and food Contact materials Exposure Task 177 

(FACET) list for food contact materials (Oldring et al., 2014); (6-8) three reports on hazardous 178 

chemicals associated with plastics (Hansen et al., 2013; Klar et al., 2014; Stenmarck et al., 2017); (9) 179 

the list of 1009 food contact substances for which Biryol and colleagues provided high-throughput 180 

estimates of their initial concentration in food contact articles made of “plastics, coatings, or 181 
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silicones” (Biryol et al., 2017); (10) the chemicals discussed in two reviews on NIAS (Geueke, 2018; 182 

Nerin et al., 2013); (11) the list of extractables from pharmaceutical packaging and devices made of 183 

polyolefins, PET, PS, PVC, PA, ethylene-vinyl acetate (EVA), and PU (Jenke, 2009); (12) Annex I of 184 

Commission Regulation (EU) No 10/2011, listing plastics monomers and additives permitted for use 185 

in plastic food contact materials in the European Union (EU, 2011); and (13) EPA’s list of 16 priority 186 

polycyclic aromatic hydrocarbons (PAHs) (Keith and Telliard, 1979; Keith, 2015). The latter list was 187 

included because some PAHs have been detected as contaminants in plastic packaging made of PS (Li 188 

et al., 2017; Rochman et al., 2013). Apart from the chemicals’ identity extracted from these sources, 189 

we also recorded, as far as available, other relevant information, such as product or polymer types 190 

where a given substance has been used or found. The resulting lists of chemicals were merged with 191 

the list generated at the previous step. For CAS-matched chemicals, additional information was 192 

recorded and identification as being associated with plastics and/or plastic packaging was assigned 193 

where appropriate.  194 

The 14th and final information source consulted for the initial compilation of the CPPdb (Fig. 1A) 195 

was the SpecialChem website (“The Universal Selection Source of Chemical & Materials,” 196 

https://www.specialchem.com, accessed November 24, 2017). Some content on this website can be 197 

viewed for free upon registration; additional features are provided through paid upgrades, but this 198 

option was not used in our research. We performed a search in the subsection on plastics additives 199 

(https://polymer-additives.specialchem.com) with the filter “recommended for packaging 200 

applications.” For the products returned with this search, we extracted chemical identity and 201 

assigned CAS numbers manually, where found. The resulting list was fused with the list generated at 202 

the previous step. For CAS-matched chemicals, additional identification as being associated with 203 

plastics and/or plastic packaging was assigned if not given previously. 204 

All chemicals identified as likely or possibly associated with plastics were kept in the final CPPdb 205 

inventory, regardless of whether or not clear indications of their association with plastic packaging 206 

were available at this stage (Fig. 1A). This was done because we reasoned that all chemicals 207 

associated with plastics could potentially be associated with plastic packaging as well, and we lacked 208 

the information necessary to systematically exclude substances that might be applied only in plastics 209 

not used for packaging purposes. However, all chemicals for which we could not find at this stage any 210 

indication of their association with plastics or plastic packaging were removed from the final CPPdb 211 

inventory (Fig. 1A). All CPPdb chemicals were then taken further to the next stage of this project, that 212 

is, the exploration of human health and environmental hazards (see Subsection 2.2). For selected 213 

hazardous chemicals identified at this later stage, three additional books on chemicals’ use (Ash and 214 

Ash, 2008; Milne, 2005; Sheftel, 2000) were then consulted to obtain more information regarding 215 

their potential use in plastic packaging, and additional identification as being associated with plastic 216 
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packaging was then assigned where justified. After this, depending on a substance’s assigned 217 

association with plastic packaging, the full CPPdb was split into the CPPdb_ListA and CPPdb_ListB, 218 

containing lists of chemicals likely and possibly associated with plastic packaging, respectively (Fig. 219 

1B, see also Subsection 3.1). 220 

 221 

2.2 Exploration of CPPdb chemicals’ hazards 222 

To explore the environmental and human health hazards of the CPPdb chemicals, we applied, 223 

with some modifications, the methodology published by Lithner and colleagues (2011). This 224 

approach uses the harmonized hazard classifications assigned by the European Chemical Agency 225 

(ECHA) under the European Classification, Labeling and Packaging (CLP) legislation (EU, 2008). The 226 

CLP governs the EU implementation of the Globally Harmonized System of Classification and Labeling 227 

of Chemicals (GHS), adopted by the United Nations (UN) in 2002 (see 228 

http://www.unece.org/trans/danger/publi/ghs/ghs_welcome_e.html, accessed June 5, 2018). 229 

Harmonized CLP classifications (hazard category and class) were extracted from the ECHA-provided 230 

file “Annex VI to CLP_ATP10” (updated version of Table 3.1 of Annex VI to CLP, 10th Adaptation to 231 

Technical Progress (ATP10; in force from Dec 1, 2018), accessed at 232 

https://echa.europa.eu/information-on-chemicals/annex-vi-to-clp on Nov 2, 2017). These 233 

classifications were matched to the CPPdb chemicals by CAS numbers. Every classification was 234 

assigned a numerical hazard grade score according to the previously proposed gradation (Lithner et 235 

al., 2011). For example, Carcinogenicity 1A (Carc. 1A) and Carc. 1B received the highest hazard grade 236 

score of 10 000, while that of Carc. 2 was 100. Acute Toxicity 1 (Acute Tox. 1) and Acute Tox. 2 both 237 

received a hazard grade score of 1000, while grade scores of Acute Tox. 3 and 4 were 100 and 10, 238 

respectively. For aquatic toxicity, Aquatic Acute 1 (Aq. Acute 1) classification was assigned a hazard 239 

grade score of 100 and Aq. Chronic 1 received a hazard grade score of 1000. A table listing all CLP 240 

classifications with corresponding hazard grade scores as adopted in this work is given in the 241 

Supplementary File 2. Then, a sum hazard score was calculated for each chemical, separately for 242 

environmental and human health hazards. For the former, hazard grade scores assigned in Aq. Acute 243 

and Aq. Chronic categories were summed. For the latter, hazard grade scores assigned in all human 244 

health-related toxicity categories were summed. 245 

Since many chemicals in the CPPdb did not have any harmonized CLP classifications assigned by 246 

ECHA, we also extracted advisory CLP classifications for human health hazards as assigned by the 247 

Danish Environmental Protection Agency (Danish EPA) in the online database at 248 

http://mst.dk/kemi/kemikalier/stoflister-og-databaser/vejledende-liste-til-selvklassificering-af-249 

farlige-stoffer/clp/, accessed March 28, 2018. Each advisory CLP classification was then assigned the 250 

same hazard grade score as that assigned to a matching harmonized CLP classification, and sum 251 
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hazard scores were calculated as described above for harmonized CLP classifications. We did not 252 

examine advisory CLP classifications for environmental hazards, because updated classifications for 253 

the Aq. Chronic category were not available at the time.  254 

In addition to the hazard categories currently covered by the CLP system, we also considered 255 

whether the substance is classified as persistent, bioaccumulative, and toxic (PBT), or very persistent, 256 

very bioaccumulative (vPvB), or endocrine disrupting chemical (EDC). This type of information was 257 

searched and added for the CPPdb chemicals by consulting sources such as PBT and vPvB status of a 258 

substance in the EU (https://echa.europa.eu/information-on-chemicals/pbt-vpvb-assessments-259 

under-the-previous-eu-chemicals-legislation, accessed December 7, 2017), EDC classifications 260 

assigned by December 2017 within the Registration, Evaluation, Authorization and restriction of 261 

Chemicals (REACH) regulation in the EU (EU, 2006), recognition as an EDC or a potential EDC listed in 262 

the recent report by the United Nations Environment Programme (UNEP) on EDCs (UNEP, 2018), the 263 

Substitute It Now! (SIN) list maintained by the non-governmental organization (NGO) International 264 

Chemical Secretariat (ChemSec; http://chemsec.org/business-tool/sin-list/, accessed November 24, 265 

2017) and ChemSec’s identification of REACH-relevant EDCs (ChemSec, 2015), and The Endocrine 266 

Disruption Exchange (TEDX) list of potential EDCs (https://endocrinedisruption.org/interactive-267 

tools/tedx-list-of-potential-endocrine-disruptors/, accessed November 24, 2017), maintained by the 268 

U.S. NGO TEDX. 269 

To complete the CPPdb with information which could be useful for further assessment, we also 270 

documented additional aspects, for example, a substance’s production tonnage band in the EU as 271 

documented in its REACH registration dossier (resource accessed September 11, 2017, database 272 

containing information from 62200 dossiers on 16402 unique substances), a substance’s presence in 273 

the U.S. Toxic Substances Control Act inventory (accessed January 16, 2018), or whether it is included 274 

in a biomonitoring program in the U.S. (Centers for Disease Control and Prevention (CDC), 2018), 275 

performed with the blood and urine samples collected within the National Health and Nutrition 276 

Examination Survey (NHANES) (Sobus et al., 2015), or similar programs in Canada, i.e., within Canada 277 

Health Measures Survey (Haines et al., 2017), or Germany (Kolossa-Gehring et al., 2017). With regard 278 

to the regulatory status, we recorded a substance’s inclusion on the Candidate, Authorization, or 279 

Restriction lists (status December 2017) within REACH (EU, 2006), on the California Proposition 65 list 280 

in the U.S. (http://oehha.ca.gov/proposition-65/proposition-65-list, accessed March 16, 2018, and in 281 

the Occupational Chemical Database maintained by the U.S. Occupational Safety and Health 282 

Administration (OSHA) (http://www.osha.ogv/chemicaldata/, accessed November 25, 2017. A 283 

detailed description of all information sources used for populating different columns in the CPPdb is 284 

given in the “READ ME” worksheet of the Supplementary File 3 presenting the CPPdb. 285 
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3. Results 286 

3.1 The CPPdb and its information content 287 

To populate the CPPdb we relied on 14 publicly available information sources and followed the 288 

strategy described in the subsection 2.1 and summarized in the Figure 1A. Based on this, we 289 

identified and included in the CPPdb 4283 substances that are likely or possibly associated with 290 

plastic packaging, both in terms of use during the manufacturing and/or presence in the final 291 

products. Additional 7510 substances, most of them originally retrieved from our first source, the 292 

CPCat database, were excluded from the CPPdb list at that stage, because the 14 initial information 293 

sources did not contain any indication of these substances’ use in plastics and/or plastic packaging 294 

(Fig. 1A).  295 

The 4283 substances included in the CPPdb cover raw materials and chemicals used in plastics 296 

manufacturing, such as monomers, polymerization aids, solvents or catalysts, along with additives 297 

such as pigments, fillers, antioxidants, stabilizers, plasticizers, antistatic agents, slip agents and others 298 

(Zweifel et al., 2009). We also added several well-known NIAS such as impurities or degradation 299 

products of some polymers and stabilizers (Nerin et al., 2013). However, the coverage of NIAS was 300 

knowingly incomplete. Many more substances have been reported to be present in different plastics 301 

(Bradley and Coulier, 2007), but data characterizing their complete chemical identity, hazard, and 302 

exposure are often lacking (Muncke et al., 2017).  303 

When compiling the CPPdb, we sought to determine the substance’s relevance specifically for 304 

plastic packaging, whenever any such indications could be found in the original 14 data sources. 305 

However, information on the substance’s association with plastic packaging was even scarcer than 306 

that on the substance’s association with plastics in general. For example, the CPCat database does 307 

contain a category “manufacturing packing plastics,” but this category includes only 79 substances, 308 

although many more chemicals are likely used (Biryol et al., 2017; EU, 2011; Muncke et al., 2017; 309 

Oldring et al., 2014). Most other data sources, while indicating that a given chemical is used in 310 

plastics in general, often did not further specify the types of polymers, products, or applications using 311 

this chemical. Thus, based on the 14 initial information sources, the likely association with plastic 312 

packaging could be assigned for only a few hundred CPPdb substances. Therefore, for a subset of 313 

substances we considered the most important, we consulted three additional literature sources on 314 

chemical uses (Ash and Ash, 2008; Milne, 2005; Sheftel, 2000) in order to further explore their 315 

potential association with plastic packaging. These substances were those identified to be of the 316 

highest environmental and/or human health hazard based on harmonized and/or advisory CLP 317 

classifications (see below), and/or classified in the EU as EDC, PBT, or vPvB substance, or included in 318 

biomonitoring programs in the U.S., Canada or Germany (Fig. 1B).  319 
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In the end, we were able to identify 906 substances to be likely associated with plastic packaging 320 

in terms of being used during the manufacture of plastic packaging or being present in the final 321 

packaging articles. These substances are listed on the CPPdb_ListA (Fig. 1B). All remaining substances 322 

(3377 chemicals), jointly considered as possibly associated with plastic packaging, are listed on the 323 

CPPdb_ListB (Fig. 1B). This list includes substances for which only ‘possible’ association with plastic 324 

packaging could be assigned, or no information regarding the association with plastic packaging was 325 

available in the information sources referenced above, with or without the three additional books on 326 

chemicals’ use. Since these three last sources were checked only for selected chemicals, it is possible 327 

that some of the chemicals on the CPPdb_ListB are in fact also ‘likely’ associated with plastic 328 

packaging, but this could not be assigned based on the information collected. Note, although a few 329 

substances on the CPPdb_ListB are currently banned in Europe or in the U.S., they have been kept on 330 

the list because their relevance to plastic packaging worldwide could not be excluded. The two 331 

CPPdb lists can be found in the Supplementary File 3 or accessed at the DOI 332 

10.5281/zenodo.1287773. Additionally, the CPPdb lists will be uploaded into the Chemical Hazard 333 

Data Commons resource, maintained by the non-governmental organization (NGO) Healthy Building 334 

Network (HBN) (https://commons.healthymaterials.net/home, accessed June 5, 2018). 335 

 336 

3.2 Exploration of CPPdb chemicals’ hazards, identification of the most hazardous substances 337 
To explore the hazards of the CPPdb chemicals with the goal to identify the most hazardous 338 

substances, we consulted both the harmonized CLP classifications (i.e. ECHA-assigned) and the 339 

advisory CLP classifications assigned by the Danish EPA based on in silico models. In addition, we 340 

considered EU-accepted classifications as an EDC, PBT, or vPvB substance, and recognition as an EDC 341 

or a potential EDC in the 2018 UNEP report on EDCs (UNEP, 2018). The UNEP report recognizes three 342 

stakeholders and consequently the EDC assessments that they performed as “robust,” namely the 343 

REACH EDC classifications, the ChemSec’s assessments for SIN list, and the assessments by the 344 

Danish Centre for Endocrine Disruptors. The “thorough scientific assessments” performed by these 345 

stakeholders were carried out based on the definition of an EDC or a potential EDC given by the 346 

World Health Organization (WHO)/International Program on Chemical Safety (IPCS) in 2002 347 

(WHO/IPCS, 2002). Further, the UNEP report differentiates between chemicals identified as EDCs or 348 

potential EDCs with the involvement of “multiple stakeholders” (this group includes REACH EDC 349 

classifications only) and “at least one stakeholder” (this group includes EDC identifications by 350 

ChemSec and/or Danish Centre for Endocrine Disruptors). For 60% of the 4283 CPPdb substances no 351 

hazard data were available in the sources we reviewed. A detailed breakdown of the number of 352 

chemicals having at least one of the reviewed hazard classifications is given in Table 1. To select the 353 

most hazardous substances as candidates for further assessment and potential substitution with 354 
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regard to their use in plastic packaging, we next focused on the substances identified as likely 355 

associated with plastic packaging (CPPdb_ListA), as discussed in the next subsections. 356 

Table 1. Availability of hazard information for CPPdb chemicals in the sources consulted 357 

Group 

CPPdb full, 

i.e.,  

ListA + ListB 

Association with plastic packaging 

Likely Possible 

CPPdb_ListA CPPdb_ListB 

Total 4283 906 3377 

Harmonized CLP for environmental hazards 332 (7.8%) 121 (13.4%) 211 (6.2%) 

sum 

hazard 

score 

1100 173 68 105 

200 1 1 0 

100 96 30 66 

10 62 22 40 

0, i.e., no classifications 3951 (92.2%) 785 (86.6%) 3166 (93.8%) 

Harmonized CLP for human health hazards 718 (16.8%) 245 (27.0%) 473 (14.0%) 

sum 

hazard 

score 

10 000 – 32 100 (34 210)* 205 63 142 

1000 – 3210 200 67 133 

100 – 400 182 70 112 

10 – 50 131 45 86 

0, i.e., no classifications 3565 (83.2%) 661 (73.0%) 2904 (86.0%) 

Advisory CLP for human health hazards 950 (22.2%) 202 (22.3%) 748 (22.1%) 

sum 

hazard 

score 

1000 – 2110 (2220) 304 102 202 

100 – 300 (200) 264 59 205 

10 – 20 382 41 341 

0, i.e., no classifications 3333 (77.8%) 704 (77.7%) 2629 (77.9%) 

EDC classification, REACH 17 (0.4%) 15 (1.7%) 2 (0.06%) 

EDC identification, UNEP report, ‘multiple’ 16 (0.4%) 14 (1.5%) 2 (0.06%) 

EDC identification, UNEP report, ‘at least one’ 25 (0.6%) 20 (2.2%) 5 (0.15%) 

PBT and/or vPvB classification, EU 31 (0.7%) 7 (0.8%) 24 (0.7%) 

None of the above classifications 2568 (60.0%) 433 (47.6%) 2135 (63.2%) 

*The number in brackets shows the upper border value for this range on the CPPdb_ListB, if different from CPPdb_ListA. 358 

 359 

3.2.1 Identification of the most hazardous substances based on harmonized CLP and EU classifications 360 
The sum hazard scores derived based on harmonized CLP classifications for environmental or 361 

human health hazards were used to sort the lists of chemicals from highest to lowest sum hazard 362 

scores, corresponding to higher and lower hazards, respectively. In addition to harmonized CLP-363 

based ranking, substances classified within the EU as EDC, PBT, or vPvB, and recognized as EDCs or 364 

potential EDCs in the UNEP report (2018) were also considered to be highly hazardous for human 365 

health and/or the environment. A detailed breakdown of the number of substances with each 366 

classification and within several sum hazard score ranges is given in Table 1. Based on these sources, 367 
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we identified 148 substances as the most hazardous ones among the 906 substances on the 368 

CPPdb_ListA, i.e., likely associated with plastic packaging; 24 of these substances had more than one 369 

of the reviewed hazard classifications in the chosen ‘most hazardous’ range (Fig. 2). These 148 370 

substances are listed in the Supplementary File 4. Among the 3377 substances on the CPPdb_ListB, 371 

i.e., possibly associated with plastic packaging, 214 substances were identified as the most hazardous 372 

based on the same criteria, with 57 substances showing an overlap between different classifications 373 

in the ‘most hazardous’ range.  374 

 375 

Figure 2. Overlap between the groups of the most hazardous substances likely associated with plastic packaging (i.e., 376 
on the CPPdb_ListA), identified according to (i) environmental (ENV) hazards based on harmonized Classification, Labeling 377 
and Packaging (CLP) classifications (green circle, list “ENV, harmonized CLP,” 68 substances in total); (ii) human health (HH) 378 
hazards based on harmonized CLP classifications (red circle, list “HH, harmonized CLP,” 63 substances in total); (iii) 379 
classification in the European Union (EU) as a substance with persistent, bioaccumulative, and toxic (PBT) properties and/or 380 
very persistent, very bioaccumulative (vPvB) properties (gray circle, list “PBT and/or vPvB, EU,” 7 substances in total); (iv) 381 
classification as an endocrine disrupting chemical (EDC) within Registration, Evaluation, Authorization and restriction of 382 
CHemicals (REACH) legislation in the EU [font color blue] or recognition in the 2018 United Nations Environment 383 
Programme (UNEP) report as an EDC or a potential EDC identified by at least one robust stakeholder following a thorough 384 
scientific assessment based on a definition of an EDC or a potential EDC postulated by the World Health Organization 385 
(WHO)/International Program on Chemical Safety (IPCS) in 2002 [font color purple] (blue circle, list “EDC, REACH + UNEP ‘at 386 
least one’,” 35 substances in total; n.b., all but one REACH-classified EDC is also recognized in the UNEP report as an EDC or 387 
a potential EDC identified with involvement of multiple stakeholders); and (v) HH hazards based on advisory CLP 388 
classifications (yellow circle, list “HH, advisory CLP,” 102 substances in total). The red frame encloses the substances 389 
included in the final list of 148 most hazardous chemicals likely associated with plastic packaging. The 98 substances 390 
identified as ‘most hazardous’ for HH based only on advisory CLP classifications are not included in this final list. Sizes of the 391 
circles are not exactly to scale. 392 

 393 

For environmental hazards, there were only 4 different sum hazard score values (Table 1), 394 

because only two relevant categories, Aq. Acute and Aq. Chronic, were available to calculate this 395 

score. Sixty-eight substances on the CPPdb_ListA had the highest sum hazard score for 396 

environmental hazards (1100) and were thus considered to be of the highest environmental hazard 397 

based on harmonized CLP classifications. 398 
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For human health hazards, there were 80 different sum hazard score values based on harmonized 399 

CLP classifications (ranging from 32 100 to 10) within the CPPdb_ListA (Table 1). Here, 63 substances 400 

on the CPPdb_ListA with sum hazard scores equal to or higher than 10 000 were considered to have 401 

the highest human health hazard based on harmonized CLP classifications (Table 1). This range was 402 

chosen because the substances that would be included within it are certain to have at least one 403 

classification with the highest hazard grade score of 10 000, given to the most severe CLP 404 

classifications only, namely the 1A and 1B hazard classes in the carcinogenicity (Carc.), mutagenicity 405 

(Muta.), and reproductive toxicity (Repr.) categories, reflective of the so-called CMR properties 406 

(Lithner et al., 2011). 407 

Fifteen CPPdb_ListA substances have been identified as substances of very high concern (SVHC) 408 

within REACH for their endocrine disrupting properties with regard to human health and/or the 409 

environment, either as an individual substance or belonging to a group of related substances. 410 

Fourteen of these 15 substances are also listed in the UNEP report (2018) as EDCs or potential EDCs 411 

identified after a thorough scientific assessment with involvement of multiple stakeholders (with the 412 

exception of BPA, see above). The fifteenth chemical, not inventoried by the UNEP report but 413 

classified as an EDC within REACH, is bisphenol A (BPA, CAS 80-05-7). This chemical was not included 414 

in the UNEP report because it was officially classified as an EDCs only after the final drafting of the 415 

UNEP report in July 2017. Twenty additional substances on the CPPdb_ListA are listed in the UNEP 416 

report (2018) as EDCs or potential EDCs identified after a thorough scientific assessment by at least 417 

one robust stakeholder. Further 7 substances on the CPPdb_ListA have been classified as having PBT 418 

and/or vPvB properties in Europe. Among the two latter categories, three substances have both PBT 419 

and vPvB classifications. 420 

 421 

3.2.2 Identification of the substances most hazardous for human health based on advisory CLP 422 
classifications 423 

Similar to the approach taken with harmonized CLP classifications, the sum hazard scores derived 424 

based on advisory CLP classifications were used to sort the chemical lists from the highest to the 425 

lowest hazard. Based on this ranking, 102 CPPdb_ListA substances having sum hazard score values 426 

equal to or higher than 1000 were considered to exhibit the highest human health hazard. This 427 

cut-off was chosen because it covered all CMR-classified substances along with a Skin Sensitization 1 428 

classification, also regarded as a crucial human health-related hazard (Lithner et al., 2011). Overall, 429 

CPPdb_ListA chemicals had 15 sum hazard score values calculated based on advisory CLP 430 

classifications for human health hazards, ranging from 2110 to 10 (Table 1). Thus, the maximal sum 431 

hazard scores in this case were much lower than those calculated based on the harmonized CLP 432 

classifications. This is because the most severe hazard classifications—those reflective of the CMR 433 

properties—are never assigned when only in silico estimations of toxicity are considered. Therefore, 434 
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modeling-based advisory CLP classifications by default cannot rise above “possible” or “predicted” 435 

status. Among the 102 most hazardous substances identified based on advisory CLP classifications, 4 436 

chemicals have been identified as EDCs by REACH and/or UNEP report (2018) (Fig. 2). 437 

 438 

3.2.3 Distribution of CLP hazard categories among the most hazardous substances 439 
The 68 CPPdb_ListA substances identified as the most hazardous for the environment according 440 

to harmonized CLP data are assigned in the highest hazard class for both acute and chronic aquatic 441 

toxicity (Aq. Acute 1 and Aq.  Chronic 1). Among the 63 most hazardous CPPdb_ListA substances 442 

identified based on harmonized CLP classifications for human health hazards, CMR properties were 443 

represented most often, followed by acute toxicity after oral intake or inhalation, specific target 444 

organ toxicity after a single or repeated exposure (STOT SE and STOT RE categories), and skin 445 

sensitization (Fig. 3A). Other hazard categories, such as acute toxicity after dermal exposure, skin 446 

irritation or corrosion, eye damage or irritation, were also assigned often, but these have much less 447 

weight (lower numerical hazard grade score) and therefore contributed the least to the overall sum 448 

hazard score for human health hazards. On the contrary, among the most hazardous chemicals 449 

identified based on the advisory CLP classifications for human health hazards, classifications in the 450 

CMR-related categories were assigned relatively rarely, while classifications for skin sensitization 451 

were the most frequent (Fig. 3B). 452 

    453 

Figure 3. Distribution of hazard categories among the most hazardous substances identified based on harmonized 454 
classification, labeling and packaging (CLP) classifications for human health hazards (A, 63 substances in total) or advisory 455 
CLP classifications for human health hazards (B, 102 substances in total). Hazard categories given without numbers include 456 
all classes within the given category. Hazard categories given with numbers include on the respective class. Abbreviations: 457 
Carc.: Carcinogenicity, Muta.: Mutagenicity, Repr.: Reproductive Toxicity, Lact.: Lactation toxicity, Acute Tox., inhal.: Acute 458 
Toxicity, inhalation; Acute Tox., oral: Acute Toxicity, oral; Acute Tox., skin: Acute Toxicity, dermal; Asp. Tox.: Aspiration 459 
Toxicity; STOT SE: Specific Target Organ Toxicity Single Exposure; STOT RE: Specific Target Organ Toxicity Repeated 460 
Exposure; Skin Corr.: Skin Corrosion; Skin Irrit.: Skin Irritation; Eye Dam.: Eye Damage; Eye Irrit.: Eye Irritation; Resp. Sens.: 461 
Respiratory Sensitization; Skin Sens.: Skin Sensitization. 462 
 463 
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3.2.4 Distribution of functions among the most hazardous substances 464 
Table 2 presents an overview of the main functions performed in plastics by the most hazardous 465 

chemicals likely associated with plastic packaging, identified as described in the subsection 3.2.1, 466 

along with the specific hazards and sum hazard scores calculated for each substance. This table also 467 

shows the specific hazards and sum hazard scores calculated for each substance. The functions 468 

represented most often were (in the order of decreasing number of substances in a group): 469 

Monomers and intermediates, solvents, surfactants and their degradants, stabilizers, plasticizers, 470 

biocides, fire retardants, accelerators, and colorants (Table 2). 471 

The overview in Table 2 is intended to be illustrative only and is by no means comprehensive. For 472 

clarity, we chose to show only one, presumably main, function for each chemical, although some 473 

substances could perform several different functions in plastics. Further, to avoid overcrowding, we 474 

excluded the 22 substances containing one or more of the 4 heavy metals considered most 475 

hazardous according to the European Directive 94/62/EC on packaging and packaging waste (EU, 476 

1994), i.e., cadmium, lead, mercury, and hexavalent chromium. Therefore, only 126 out of the 148 477 

most hazardous substances identified in 3.2.1 are listed in Table 2. Among the 22 excluded metal-478 

containing substances, all except one (cadmium sulfide, CAS 1306-23-6) are classified into the top 479 

category for environmental hazards (sum hazard score 1100), and some are also highly hazardous to 480 

human health due to CMR properties (see Supplementary File 4).  481 

 482 

Table 2. Main performance functions and chemical groups represented among the 111 most hazardous chemicals likely 483 
associated with plastic packaging (CPPdb_ListA), identified based on selected harmonized hazard data(*).  484 

function chemical 
group 

CAS name Sum hazard scores, 
harmonized CLP(**) 

EDC, PBT/vPvB(***) 

ENV HH 
accelerat
ors 
 

dithiocar
bamate 

14324-55-1 zinc bis(diethyldithiocarbamate) 1100 1040 - 
136-23-2 zinc bis(dibutyldithiocarbamate) 1100 1030 - 

thiazole 
and 
thiuram 

97-77-8 disulfiram 1100 1110 - 
120-78-5 di(benzothiazol-2-yl) disulphide 1100 1000 - 
149-30-4 2-mercaptobenzothiazole 1100 1000 - 

biocides carbamat
e 

137-30-4 ziram 1100 2220 EDC (UNEP) 
55406-53-6 3-iodo-2-propynyl-N-butyl carbamate 1100 2210 - 
137-26-8 thiram 1100 1140 EDC (UNEP) 

phenolics 3380-34-5 triclosan 1100 20 EDC (UNEP) 
97-23-4 dichlorophen 1100 20 - 

organo 
metallic 

76-87-9 fentin hydroxide 1100 2520 - 
900-95-8 fentin acetate 1100 2520 - 
1338-02-9 naphthenic acids, copper salts 1100 10  
155925-27-2 silver sodium hydrogen zirconium phosphate 1100 -  

parabens 99-76-3 methyl 4-hydroxybenzoate - - EDC (UNEP) 
120-47-8 ethyl 4-hydroxybenzoate - - EDC (UNEP) 
94-13-3 propyl 4-hydroxybenzoate - - EDC (UNEP) 

colorants dye, azo 
 

101-77-9 4,4-methylenedianiline 100 13100 - 
95-80-7 4-methyl-m-phenylenediamine 100 12310 - 
1937-37-7 disodium 4-amino-3-[[4-[(2,4-

diaminophenyl)azo][1,1-biphenyl]-4-yl]azo]-5-
hydroxy-6-(phenylazo)naphthalene-2,7-
disulphonate 

- 10100 - 
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573-58-0 disodium 3,3-[[1,1-biphenyl]-4,4-
diylbis(azo)]bis(4-aminonaphthalene-1-
sulphonate) 

- 10100 - 

pigment, 
Co 

71-48-7 cobalt(II) diacetate 1100 23000 - 

fire 
retardant
s 

boron 10043-35-3 boric acid - 10000 - 
12179-04-3 sodium tetraborate, pentahydrate - 10000 - 
1303-96-4 sodium borate, decahydrate - 10000 - 
1330-43-4 sodium tetraborate, anhydrous - 10000 - 

organo 
phosphat
e 

115-96-8 tris(2-chloroethyl) phosphate 100 10110 - 
115-86-6 triphenyl phosphate - - EDC (UNEP) 
25155-23-1 trixylyl phosphate - 10000 - 

other 117-08-8 tetrachlorophthalic anhydride 1100 2100 - 
79-94-7 2,2',6,6'-tetrabromobisphenol A 1100 - - 

foaming 
agents 

simple 
hydrocar
bon 

75-28-5 isobutane - 20000 - 

monome
rs and 
intermed
iates 

acrylic 29590-42-9 isooctyl acrylate 1100 30 - 
107-13-1 acrylonitrile 100 11420 - 
106-91-2 glycidyl methacrylate - 23320 - 
79-06-1 acrylamide - 22240 - 

amine 108-45-2 m-phenylenediamine 1100 2310 - 
151-56-4 aziridine 100 23100 - 
111-41-1 2-((2-aminoethyl)amino)ethanol - 11100 - 

bispheno
l 

80-05-7 bisphenol A - 11110 EDC ENV, EDC HH 
(REACH) 

620-92-8 bisphenol F - - EDC (UNEP) 
80-09-1 bisphenol S - - EDC (UNEP) 

other 
hydrocar
bons 

91-20-3 naphthalene 1100 110 - 
92-52-4 biphenyl 1100 30 - 
75-56-9 propylene oxide - 20230 - 
96-18-4 1,2,3-trichloropropane - 20030 - 
106-97-8 butane - 20000 - 
106-99-0 1,3-butadiene - 20000 - 
50-00-0 formaldehyde - 12400 - 
106-89-8 epichlorohydrin - 11400 - 
126-99-8 2-chlorobuta-1,3-diene - 10150 - 
96-09-3 (epoxyethyl)benzene - 10020 - 
75-01-4 chloroethylene - 10000 - 

zinc 7646-85-7 zinc chloride 1100 110 - 
7733-02-0 zinc sulphate 1100 110 - 
7440-66-6 zinc 1100 - - 
7779-90-0 trizinc bis(orthophosphate) 1100 - - 

plasticize
rs 

chlorinat
ed 
paraffin 

85535-84-8 alkanes, C10-13, chloro 1100 100 PBT, vPvB 
85535-85-9 medium-chain chlorinated paraffins, >17 

carbon atoms 
1100 100 - 

phthalate 85-68-7 benzyl butyl phthalate 1100 10000 EDC HH (REACH); 
EDC (UNEP) 

131-17-9 diallyl phthalate 1100 10 - 
84-74-2 dibutyl phthalate 100 10000 EDC HH (REACH); 

EDC (UNEP) 
117-81-7 bis(2-ethylhexyl) phthalate - 10000 EDC ENV, EDC HH 

(REACH); EDC 
(UNEP) 

84-69-5 diisobutyl phthalate - 10000 EDC HH (REACH); 
EDC (UNEP) 

117-82-8 dimethoxyethyl phthalate - 10000 - 
68515-42-4 1,2-Benzenedicarboxylic acid, di-C7-11-

branched and linear alkyl esters 
- 10000 - 

71888-89-6 diisoheptyl phthalate - 10000 - 
84-61-7 dicyclohexyl phthalate - 11000 EDC (UNEP) 
84-75-3 dihexyl phthalate - 10000 EDC (UNEP) 
84-66-2 diethyl phthalate - - EDC (UNEP) 
117-84-0 dioctyl phthalate - - EDC (UNEP) 
3648-40-0 diundecyl phthalate - - EDC (UNEP) 
26761-40-0 di-isodecyl phthalate - - EDC (UNEP) 

solvents limonene 138-86-3 dipentene 1100 1010 - 
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5989-27-5 (R)-p-mentha-1,8-diene 1100 1010 - 
naphtha-
related 

8052-41-3 stoddard solvent - 21100 - 
64741-65-7 naphtha (petroleum), heavy alkylate - 20100 - 
64741-66-8 naphtha (petroleum), light alkylate - 20100 - 
64742-49-0 naphtha (petroleum), hydrotreated light - 20100 - 
64742-95-6 solvent naphtha (petroleum), light arom. - 20100 - 
8030-30-6 naphtha - 20100 - 
64742-46-7 distillates (petroleum), hydrotreated middle - 10000 - 
64742-52-5 distillates (petroleum), hydrotreated heavy 

naphthenic 
- 10000 - 

64742-54-7 distillates (petroleum), hydrotreated heavy 
paraffinic 

- 10000 - 

8009-03-8 petrolatum - 10000 - 
pure 
hydrocar
bons 

110-82-7 cyclohexane 1100 120 - 
142-82-5 heptane 1100 120 - 
79-01-6 trichloroethylene 10 11030 - 
71-43-2 benzene - 21120 - 
109-86-4 2-methoxyethanol - 10030 - 
68-12-2 dimethylformamide - 10030 - 

stabilizer
s 

tin 683-18-1 dibutyltin dichloride 1100 13210 - 
77-58-7 dibutyltin dilaurate - 12000 - 
15571-58-1 2-ethylhexyl 10-ethyl-4,4-dioctyl-7-oxo-8-oxa-

3,5-dithia-4-stannatetradecanoate 
- 10000 - 

organic 
phosphit
e 

26523-78-4 tris(nonylphenyl) phosphite 1100 1000 - 
101-02-0 triphenyl phosphite 1100 20 - 

hindered 
phenol 

128-37-0 butylated hydroxytoluene (BHT) - - EDC (UNEP) 
25013-16-5 butylated hydroxyanisole (BHA) - - EDC (UNEP) 

benzoph
enone 

131-56-6 2,4-dihydroxybenzophenone - - EDC (UNEP) 
131-55-5 2,2’,4,4’-tetrahydroxybenzophenone - - EDC (UNEP) 
131-57-7 2-hydroxy-4-methoxybenzophenone - - EDC (UNEP) 

benzotria
zol 

36437-37-3 2-(2H-benzotriazol-2-yl)-4-(tert-butyl)-6-(sec-
butyl)phenol 

- - vPvB 

3864-99-1 Phenol, 2-(5-chloro-2H-benzotriazol-2-yl)-4,6-
bis(1,1,-dimethylethyl)- 

- - vPvB 

25973-55-1 2-(2'-hydroxy-3,5'-di-t-
amylphenyl)benzotriazole 

- - PBT, vPvB 

3846-71-7 2-benzotriazol-2-yl-4,6-di-tert-butylphenol - - PBT, vPvB 
other 2451-62-9 1,3,5-tris(oxiranylmethyl)-1,3,5-triazine-

2,4,6(1H,3H,5H)-trione 
10 11400 - 

122-39-4 diphenylamine 1100 400 - 
1314-13-2 zinc oxide 1100 - - 

surfactan
ts and 
their 
degradati
on 
products 

NP, OP, 
and NP-
related 

84852-15-3 phenol, 4-nonyl-, branched 1100 210 EDC ENV (REACH); 
EDC (UNEP) 

25154-52-3 nonylphenol 1100 210 Same as above 
140-66-9 4-tert-Octylphenol 1100 110 Same as above 
104-40-5 p-nonylphenol - - Same as above 
127087-87-0 4-nonylphenol, branched, ethoxylated - - Same as above 
26027-38-3 nonoxynol-1 - - Same as above 
37205-87-1 Isononylphenol ethoxylate - - Same as above 
7311-27-5 2-[2-[2-[2-(4-

nonylphenoxy)ethoxy]ethoxy]ethoxy]ethanol 
- - Same as above 

68412-54-4 nonylphenol, branched, ethoxylated - - Same as above 
9016-45-9 nonylphenol, ethoxylated - - Same as above 

amine 
and N-
containin
g 

61788-46-3 amines, coco alkyl 1100 320 - 
112-90-3 (Z)-octadec-9-enylamine 1100 320 - 
61788-45-2 amines, hydrogenated tallow alkyl 1100 310 - 
61790-33-8 amines, tallow alkyl 1100 310 - 
2687-96-9 N-dodecyl-2-pyrrolidone 1100 1100 - 
107-64-2 dimethyldioctadecylammonium chloride 1100 100 - 

PFAS 335-67-1 perfluorooctanoic acid 100 11320 PBT 
3825-26-1 ammonium pentadecafluorooctanoate 100 11320 PBT 

 485 
(*) Harmonized hazard data reviewed included: (i) harmonized classification, labeling and packaging (CLP) classifications for environmental 486 
hazards (ENV) and human health (HH) hazards; (ii) classification as endocrine disrupting chemical (EDC) for ENV or HH effects within 487 
Registration, Evaluation, Authorization and restriction of Chemicals (REACH) legislation or recognition in the 2018 report by the United 488 
Nations Environment Programme (UNEP) as EDC or potential EDC identified with involvement of multiple stakeholders (corresponds to all 489 
but one REACH-identified EDCs) or at least one robust stakeholder following a thorough scientific assessment based on a definition of an 490 
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EDC or a potential EDC postulated by the World Health Organization (WHO)/International Program on Chemical Safety (IPCS) in 2002; and 491 
(iii) classification in the European Union (EU) as a substance with persistent, bioaccumulative, and toxic (PBT) and/or very persistent, very 492 
bioaccumulative (vPvB) properties.  493 

(**) Red background highlights properties exhibited by the most hazardous substances selected according to (sum hazard score ENV)=1100 494 
and/or (sum hazard score HH)≥10,000; yellow background highlights ranges 100≤(sum hazard score ENV)<1000 and 495 
1000≤(sum hazard score HH)<10,000; blue background highlights ranges (sum hazard score ENV)<100 and (sum hazard score HH)<1000; 496 
gray background: no classifications found. 497 

(***) Red background identifies the most hazardous substances selected based on the classification/identification as EDC, PBT, or vPvB 498 
substance; gray background: no classifications/identifications found. 499 

 500 

4. Discussion 501 

This study aimed to (i) compile a comprehensive and publicly accessible database of chemicals 502 

used or found in plastic packaging, (ii) provide hazard information for these chemicals with regard to 503 

human health and the environment, and (iii) identify the most hazardous substances in need of 504 

further assessment as potential candidates for substitution. Achieving the study’s aims was 505 

significantly hindered by substantial information and data gaps on chemical use, levels of chemicals 506 

in finished plastic packaging products, and hazards of chemicals associated with plastic packaging.  507 

 508 
4.1 Challenges and information requirements 509 
Two major challenges hamper the identification of chemicals associated with plastic packaging: 510 

(i) The lack of publicly accessible comprehensive registries for chemicals used in plastic packaging,  511 

and (ii) use restrictions for commercial data sources. This also impacted on the verification of a 512 

substance’s current use in plastic packaging. Multiple commerce-oriented online-accessible 513 

inventories exist, such as global product databases or smaller repositories maintained by individual 514 

companies producing plastics and plastics additives. However, such sources usually give little 515 

information on the chemical composition of formulated products, concentrating almost exclusively 516 

on physical properties such as material performance or compatibility of different products. 517 

Furthermore, industry sources tend to limit their users in accessing and retrieving chemicals-related 518 

information (whichever is available) for multiple products or product categories simultaneously. 519 

Instead, users can view or extract information for only a few products at a time. In addition, users are 520 

often requested to demonstrate a commercial interest in order to be allowed to retrieve detailed 521 

chemical information or continue any data-mining on the website. Thus, even though commercial 522 

websites and companies clearly could be or are in possession of potentially detailed chemicals-523 

related information, they strongly limit access to this information for non-commercial, academic 524 

research purposes. On the other hand, information contained in publicly accessible sources that offer 525 

a comparatively easy retrieval of data, such as the CPCat database (Dionisio et al., 2015), is often 526 

incomplete or insufficiently detailed. Filling the data gaps by collecting and recording information 527 

scattered across multiple literature sources such as research manuscripts, books, or reports is highly 528 
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time-consuming and not achievable within the scope of one project. Furthermore, information 529 

collected from such sources could still prove to be incomplete, incorrect, or outdated. For example, 530 

several publications summarizing marketing information for plastics additives do provide some use 531 

statistics, but only for groups of additives and not for individual chemicals or specific applications 532 

(Levy et al., 2001; PlasticsEurope, 2016). 533 

Consequently, in the course of this study we were able to assign with some certainty the likely 534 

association with plastic packaging to less than a quarter (906 substances) of the 4283 chemicals 535 

included in the CPPdb. For the remaining 3377 CPPdb substances, no final conclusions regarding their 536 

association with plastic packaging could be drawn. Moreover, when compiling the CPPdb, we 537 

excluded 7510 more substances originally retrieved from the CPCat database, because no indication 538 

of their use in plastics was found in the 14 initial information sources we have consulted (Fig. 1A). 539 

However, some of these chemicals could still prove to be used in plastic packaging upon closer 540 

examination. Adhesives, coatings, and inks represent product categories exhibiting particularly 541 

severe information gaps with regard to their constituent chemicals’ use in plastic packaging.  542 

In agreement with earlier studies (Bilitewski et al., 2012a; Rossi and Blake, 2014), our work 543 

demonstrated a significant lack of detailed information concerning use of chemicals in plastics 544 

manufacturing and the chemicals’ presence in final products, especially for some additives and the 545 

often unpredictable NIAS (Nerin et al., 2013; van Oers et al., 2011). This lack of publicly accessible 546 

information is prominent even for those products that are in direct contact with foods and therefore 547 

can be assumed to directly contribute to population-wide human exposure (Muncke et al., 2017). 548 

More transparency regarding the exact chemical composition of marketed products might improve 549 

the situation in the future, but currently the ability to perform accurate risk assessment, i.e., 550 

incorporating an exposure component, is rather limited. Therefore, hazard-based assessment 551 

remains the approach of choice when dealing with large numbers of chemicals potentially present in 552 

consumer products. 553 

Significant data gaps also exist for hazard information.  For example, less than a third of the 554 

chemicals likely associated with plastic packaging had harmonized hazard classifications in the 555 

consulted sources (see Table 1). However, over two hundred plastic packaging-associated chemicals 556 

lacking a harmonized CLP classification had advisory CLP classifications assigned by the Danish EPA 557 

based on quantitative structure-activity relationship (QSAR) models. Thus, these chemicals might be 558 

hazardous as well, but are not yet officially classified as such, possibly due to the fact that confirming 559 

the predicted hazardous properties requires experimental toxicity testing data which are usually 560 

lacking. This example shows that a comprehensive hazard assessment should include data sources 561 

other than the harmonized hazard classifications.  562 
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For instance, hazard or risk assessments, conducted based on peer-reviewed literature and then 563 

made publicly available, could serve to inform and guide substitution efforts. An example of such an 564 

initiative is the SIN list (http://chemsec.org/sin-list/) maintained by the NGO ChemSec. However, 565 

there are significant obstacles to such an approach, such as funding limitations, or issues related to 566 

primary research communication and study quality (Agerstrand et al., 2017), but also integration and 567 

regulatory acceptance of alternative toxicity assessment methods, such as in silico predictions or in 568 

vitro tests (Piersma et al., 2018). Furthermore, peer-reviewed literature also tends to be biased 569 

towards the better-known substances, and switching the academic attention to the next group of 570 

‘emerging’ substances tends to have a lengthy lag period (Bao et al., 2015; Li et al., 2018). Despite 571 

these challenges, peer-reviewed literature deserves to be given proper consideration in hazard 572 

assessment and prioritization studies (Kaltenhäuser et al., 2017; Myers et al., 2010). Increasingly, this 573 

is being done using a systematic review methodology, originally developed in the medical field, and 574 

now being gradually implemented for toxicological assessments as well (Birnbaum et al., 2013; 575 

Hoffmann et al., 2017; Morgan et al., 2016; Vandenberg et al., 2016). 576 

Efficient communication and collaboration are also of crucial importance for ensuring the 577 

success of current efforts aimed at identification of hazardous chemicals and promoting their 578 

substitution with safer alternatives. One resource developed to facilitate the exchange of 579 

information on the use patterns and hazards of chemicals is the Chemical Hazards Data Commons 580 

(https://healthybuilding.net/content/data-commons/). This resource brings together the information 581 

from multiple lists and resources on hazardous chemicals and provides features supporting 582 

communication between different stakeholders. The CPPdb lists will be uploaded to this resource to 583 

enable collaborations and open dialogue to support further refinement of the inventory of plastic 584 

packaging-associated chemicals, as well as understanding the associated hazards and supporting the 585 

search for safer alternatives. 586 

With regard to the generation of new data on the health hazards of plastic packaging-associated 587 

chemicals, the focus of toxicity testing may need to shift from assessing individual substances 588 

towards looking at the mixtures of chemicals present in a finished packaging article (Muncke, 2014). 589 

The advantage would be the ability to evaluate the effects of unknown NIAS, and account for mixture 590 

toxicity of multiple substances. Thus, the overall chemical extracts or migrates from a given 591 

packaging article could be tested for multiple types of toxicity using cell-based in vitro systems (Groh 592 

and Muncke, 2017; Severin et al., 2017). Besides the ability to increase the testing throughput, use of 593 

in vitro systems also allows achieving insights into additional effects and toxicity mechanisms not yet 594 

accounted for by the hazard categories covered in the harmonized hazard classification systems and 595 

traditional toxicity tests, such as neurobehavioral disorders (Maffini and Neltner, 2014), gut-related 596 
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ailments (Groh et al., 2017), metabolic disruption (Heindel et al., 2017), and endocrine disruption 597 

(Wagner, 2016). 598 

 599 

4.2 Overview of the most hazardous chemicals associated with plastic packaging 600 
The discussion below will focus on the most hazardous chemicals identified based on the 601 

harmonized CLP classifications for environmental and human health hazards, as well as EU-accepted 602 

EDC and PBT/vPvB classifications, and recognition as an EDC or potential EDC in the UNEP report on 603 

EDCs (2018). One major limitation of this study is its reliance on harmonized hazard data which was 604 

available for less than a half of all substances included in the CPPdb. Consequently, the performed 605 

ranking could identify only the already known hazardous chemicals, while other chemicals with equal 606 

or more severe hazard properties may be overlooked due to the absence of harmonized hazard data.  607 

Over 20 chemicals used as monomers and intermediates in plastics production, and roughly the 608 

same number of substances likely used as solvents, were among the most hazardous plastic 609 

packaging-associated substances identified in this work. Environmental and human health hazards of 610 

plastics monomers and solvents frequently used in plastics manufacturing have been addressed 611 

before (Lithner et al., 2011). When judged based on their monomers, some polymers used in 612 

packaging, including PS, PVC, PC, and PU (the latter used often in adhesives), are regarded as highly 613 

hazardous, while polyolefins and PLA are considered to be of lower hazard (Rossi and Blake, 2014). 614 

However, uncompounded polymers are rarely used in final applications, as various additives are 615 

usually added to modify polymer properties. If hazardous, these substances can lend hazard 616 

properties to even a seemingly safe polymeric material. Indeed, we observed that the majority of 617 

plastic packaging-associated substances identified as the most hazardous for environmental and 618 

human health were in fact plastics additives representing diverse chemical groups used for a variety 619 

of functions. 620 

A particularly prominent group of hazardous additives consisted of substances containing metals, 621 

including cadmium, chromium, lead, mercury, cobalt, tin, and zinc. Apart from frequent 622 

classifications for aquatic toxicity, some of these chemicals also ranked high with regard to human 623 

health hazards, mostly because of CMR properties. Cadmium- and zinc-containing substances have 624 

been used as stabilizers in PVC and some other plastics (zinc is safer but less efficient than cadmium), 625 

while mercury-containing chemicals can be applied as catalysts in the production of some plastics 626 

and rubbers. Many metal-containing substances are also used as colorants, and some as 627 

antimicrobials and accelerators (Zweifel et al., 2009). The use and presence of the four most 628 

hazardous metals—cadmium, hexavalent chromium, lead, and mercury—in packaging is regulated in 629 

the EU (EU, 1994) and 19 U.S. states. However, despite the regulations, toxic metals, especially 630 

cadmium, have been detected at levels exceeding the regulatory limits in some PVC packaging 631 
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samples obtained from U.S. retailers (Toxics in Packaging Clearinghouse, 2017; van Putten, 2011). 632 

Notably, most of the non-compliant packaging items identified in the U.S. appeared to be imported, 633 

often from China. Indeed, in other parts of the world, especially in developing countries, the use and 634 

presence of heavy metals in plastic packaging is either not regulated, or regulated insufficiently, or 635 

regulations are not properly enforced. For example, PE bags in Uganda contain cadmium, chromium, 636 

cobalt, and lead, found to contaminate food cooked in these bags (Musoke et al., 2015), while in 637 

Brazil lead was detected in some HDPE packaging samples (Kiyataka et al., 2014). Plastics beached on 638 

the shores of a fresh water lake in Europe (Filella and Turner, 2018) or the Pacific ocean (Munier and 639 

Bendell, 2018), most often composed of PVC, polyolefins, and PS, were also found to contain 640 

multiple heavy metals, including cadmium, mercury, and lead. Although plastics fragments are 641 

known to absorb metals present in the environment (Munier and Bendell, 2018), it was also 642 

suggested that some of the detected metals could in fact be “legacy” chemicals contained in the non-643 

degraded plastics originating from the times before regulatory restrictions (Filella and Turner, 2018). 644 

Surfactants and their degradation products form another large group of highly hazardous 645 

substances likely associated with plastic packaging. Surfactants are used in a variety of applications in 646 

plastics, for example, as wetting or antistatic agents. Some surfactants can also be used as dispersion 647 

agents in biocidal or colorant formulations. Both biocidal and coloring chemicals are also well 648 

represented among the hazardous substances likely associated with plastic packaging. Most biocides 649 

are classified as environmental hazards, but also have some classifications for human health hazards. 650 

Commodity plastics used in packaging applications are usually based on polymers that are not 651 

biodegradable and therefore resistant to the attack by microorganisms. Biocides added to such 652 

plastics, if any, are intended to prevent microbial degradation of some of the additives, thus their 653 

amounts are usually small. However, in PVC plastics, which can contain close to 50% by weight of 654 

phthalate plasticizers (Freire et al., 2006; Kawakami et al., 2011), known to be susceptible to 655 

microbial attack (Latorre et al., 2012), application of biocides can also be more significant. In 656 

addition, biocides are intentionally used to impart antimicrobial properties in the products belonging 657 

to a growing family of functional, smart, or active, packaging (Larson and Klibanov, 2013; Malhotra et 658 

al., 2015; Nguyen Van Long et al., 2016). Furthermore, biocides can be added to biodegradable 659 

plastics to protect the product from premature degradation (Fink, 2014), however, information on 660 

the types and amounts of biocides used in biodegradable plastics is rather scarce (Harrison et al., 661 

2018; Lambert and Wagner, 2017). This area requires more research. 662 

Apart from the substances showing a high hazard score based on the harmonized CLP 663 

classifications, substances possessing endocrine disrupting, PBT, or vPvB properties are also 664 

considered hazardous and therefore of immediate concern (Halden, 2010; Muncke et al., 2014; 665 

North and Halden, 2013). To identify the EDCs among the chemicals associated with plastic 666 
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packaging, we relied on the substance’s identification as an EDC within the REACH legislation (EU, 667 

2008) along with a recognition as an EDC or potential EDC in the UNEP report on EDCs (2018). Based 668 

on the REACH EDC classification source (also recognized in the UNEP report as EDCs assessed with 669 

involvement of multiple stakeholders), 15 substances likely associated with plastic packaging were 670 

identified as EDCs. Only 8 of these substances also had a high CLP-based sum hazard score for 671 

environmental or human health hazards. Thus, without an additional consideration of endocrine 672 

disrupting properties, 7 of these 15 chemicals would not have been ranked as hazardous. Similarly, of 673 

the 20 additional chemicals recognized in the UNEP report (2018) as EDCs or potential EDCs 674 

identified by at least one robust stakeholder, 15 chemicals would not have been ranked as hazardous 675 

if the endocrine disrupting properties were not considered. In this regard, it is important to point out 676 

that some chemicals that have been suggested as substitutes for the recognized hazardous 677 

substances happen to be structurally similar to the original offenders, suggesting that they could 678 

have similar hazardous properties. This notion proved to be particularly true with regard to 679 

endocrine disruption. For example, BPA, a monomer in some PC plastics and epoxy coatings, has 680 

recently been classified as an EDC under REACH, in addition to several harmonized CLP classifications 681 

for human health hazards this chemical already had. To replace BPA in some applications, other 682 

bisphenols are now used as alternatives, for example, bisphenol S (BPS, CAS 80-09-1) and bisphenol F 683 

(BPF, CAS 620-92-8). However, since the endocrine activities displayed by these (and other) 684 

bisphenols are similar to those of BPA (Goldringer et al., 2015; Rochester and Bolden, 2015), the 685 

safety of such substitutions may be questioned (Rosenmai et al., 2014). Indeed, these substances are 686 

already recognized in the UNEP report (2018) as EDCs or potential EDCs identified by at least one 687 

robust stakeholder, however, the REACH classification is apparently lagging behind. Similar 688 

considerations concern the ortho-phthalate group, as some phthalates are classified as EDCs within 689 

REACH, while others, many of them recognized in the UNEP report (2018), lack such a classification 690 

to date.  691 

Several other groups of plastic packaging-associated chemicals that have not yet been 692 

identified as EDCs within the REACH regulation, but are recognized in the UNEP report (2018), 693 

include parabens used as preservatives (Berger et al., 2015), benzophenones used as UV stabilizers 694 

(Cwiek-Ludwicka and Ludwicki, 2014; Simon et al., 2016), and two hindered phenols used as 695 

antioxidants, butylated hydroxytoluene (BHT, CAS 128-37-0) and butylated hydroxyanisole (BHA, CAS 696 

25013-16-5). Among these groups, the two latter substances are used most extensively in high 697 

production volume commodity plastics such as polyolefins (Tolinski, 2009).  Both BHT and BHA are 698 

estrogenic in vitro (Miller et al., 2001; Pop et al., 2018), and several other endocrine-related effects 699 

have been observed as well (Rajamani et al., 2017). In vivo, variable alterations have been reported, 700 

requiring further research to better understand their significance (Pop et al., 2013).  701 
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The PBT and/or vPvB substances associated with plastic packaging include the group of four 702 

benzotriazole stabilizers, two of them classified as PBT and two as vPvB substances. These chemicals 703 

were shown to accumulate in fish and birds, with patterns of bioaccumulation suggested to depend 704 

on food sources and the presence of different plastics within those food sources (Lu et al., 2018). The 705 

two other PBT-classified chemicals belong to the family of per-and polyfluoroalkyl substances (PFAS). 706 

Many other PFAS show capacity for persistence, and possibly bioaccumulation and toxicity as well 707 

(Blum et al., 2015; Cousins et al., 2016; Scheringer et al., 2014; Wang et al., 2015), however, not all of 708 

them have been classified or identified as SVHCs in the EU for these properties yet (Brendel et al., 709 

2018). Similarly, chlorinated paraffins with the carbon chain length of 10-13 (short-chain) have a PBT 710 

classification, but not the same type of chemicals with longer carbon chains (Glüge et al., 2018). 711 

These examples and those discussed above for groups of structurally similar chemicals showing 712 

comparable endocrine disrupting properties underscore the importance of assessing and classifying 713 

substances by looking at the groups formed according to structural and/or functional similarity and 714 

not only one-by-one at individual substances (Blum, 2016). Currently, tools are being developed 715 

allowing to weed-out structurally similar chemicals with likely similar toxicity when searching for 716 

alternatives, for example, the SINimilarity tool developed by ChemSec 717 

(http://sinimilarity.chemsec.org). Regulatory agencies are also increasingly applying grouping-based 718 

approaches (OECD, 2014; Schultz et al., 2015) to perform hazard and risk assessments for certain 719 

types of chemicals, for example, pesticides (Boobis et al., 2008; EFSA, 2014) and food flavorings 720 

(Schrankel, 2004), and there are plans to extend the application of this approach to cover more 721 

chemicals in the future (ECHA, 2018; Kienzler et al., 2016; Swedish Chemicals Agency (KEMI), 2015). 722 

Apart from intentionally used substances and well characterized break-down products of 723 

plastics additives, important environmental or human health hazards may also be associated with 724 

(other) NIAS. These include a multitude of substances not yet completely identified (Bradley and 725 

Coulier, 2007; Paseiro-Cerrato et al., 2016; Vera et al., 2018), but also some better known chemicals 726 

that may nonetheless be difficult to manage, such as impurities and contaminants. For example, 727 

PAHs are often found in the PS polymer or in some additives, e.g., carbon black (Li et al., 2017), and 728 

‘legacy’ chemicals such as flame retardants have been detected in recycled plastics (Andra et al., 729 

2012; Filella and Turner, 2018; Leslie et al., 2016; Pivnenko et al., 2017; Rani et al., 2014; Samsonek 730 

and Puype, 2013). Many of these chemicals are classified as carcinogenic or have other highly 731 

hazardous properties, while others have never been tested. Though it can be difficult to control 732 

these impurities in the first place, their presence in plastics should not be simply disregarded but 733 

rather seen as an additional aspect to be considered when making decisions on the (future) use of a 734 

particular polymer for a specific application. Paying attention to impurities and contaminants is also 735 

important when evaluating the potential health effects of increasing levels of recycled content in 736 
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products (Geueke et al., 2018). Awareness of  contamination may incentivize modification of the 737 

manufacturing or recycling processes, substitution of hazardous additives, or even reconsideration of 738 

the likely contaminated plastics types for use in packaging applications as a whole. 739 

Some of the substances highlighted above are already regulated to some extent in the EU or 740 

U.S., but regulations worldwide may vary widely. For substances regulated within REACH, use in 741 

Europe may be on the decline. However, REACH only partially regulates food packaging products in 742 

the EU, as these are covered instead by a separate food contact legislation (EU, 2004, 2011). 743 

Consequently, such products are not subject to some of the regulations enacted within REACH. For 744 

example, some phthalates restricted within REACH are still authorized for use in food contact and 745 

thus could still be used in food packaging (an ongoing EFSA-led assessment of several phthalates has 746 

not been concluded yet). Many more chemicals are pending REACH classification or have not yet 747 

been evaluated under REACH. Furthermore, REACH regulation only applies to products marketed in 748 

the EU, but plastic packaging is produced and consumed globally, and distribution of environmental 749 

pollutants does not observe country borders (Gallo et al., 2018). Therefore, sharing information on 750 

(hazardous) chemicals in these products is highly relevant worldwide, and concerted actions are 751 

needed to tackle the associated health problems. We expect that the publication of the CPPdb on 752 

Chemical Hazards Data Commons resource will enable continuation of the work initiated here. 753 

Urgent collaborative efforts, ideally involving many different stakeholders including industry, are 754 

required to decrease the uncertainty with regard to chemical composition of packaging plastics, and 755 

the chemical industry has already signaled its intent for information sharing across sectors (Stringer, 756 

2018). This will enable improved understanding, assessment, and management of the environmental 757 

and human health risks posed by plastic packaging-associated chemicals. 758 

 759 

5. Conclusions 760 
In this study we compiled a database, the CPPdb, listing hundreds of substances that are likely or 761 

possibly associated with plastic packaging. The CPPdb contains substances used in manufacturing 762 

and/or present in final plastic packaging articles, including selected NIAS. Some of the substances in 763 

the CPPdb are known to be hazardous for environmental and/or human health, with harmonized 764 

hazard classification data available. For some of the key hazardous chemicals identified in this study, 765 

more detailed analyses should be performed in the future, including an assessment of the availability 766 

of alternatives. However, we faced numerous data gaps that hinder a comprehensive hazard and risk 767 

assessment of chemicals in plastic packaging. First, there is a substantial shortage of, or lack of access 768 

to, information on how specific chemicals are used, or which chemicals are used in what application 769 

and in what quantities, and at which levels they are present in finished plastic packaging. Insufficient 770 

information on chemicals’ use patterns prevents any scientific, exposure-based assessments, since 771 
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filling these data gaps using a systematic, scientific approach is nearly impossible for anyone outside 772 

industry. However, chemical risk assessments are essential for assessing impacts on human health 773 

and the environment. Reliable risk assessments should be based on actual data and not on estimates 774 

or assumptions. Therefore, there is an urgent need for publicly available information on the use of 775 

chemicals in plastics, and the exact chemical composition of finished plastics articles. Second, 776 

harmonized toxicological information, such as CLP hazard classifications, is currently not available for 777 

many chemicals that are associated with plastic packaging, even for substances for which hazards 778 

have been identified and characterized in academic studies. The incompleteness of harmonized CLP 779 

classifications for many chemicals affects the hazard ranking performed in this study, as such 780 

substances are excluded. The peer-reviewed literature and in silico predictions can provide hazard 781 

information for additional substances and should therefore be integrated into comprehensive hazard 782 

assessments. Third, many of the substances that are likely or possibly associated with plastic 783 

packaging lack any publicly available hazard data at all. Fourth, the chemical inventory-based 784 

approach taken in this study does not comprehensively address the issue of NIAS, since many of 785 

them remain unidentified and therefore cannot be risk-assessed as individual substances. Novel 786 

approaches, such as toxicity testing for the overall migrate from finished plastic packaging, address 787 

the issue of unidentified NIAS, and in addition deal with the challenge of mixture toxicity. In the 788 

future, in vitro toxicity assays could be used to test the safety of finished packaging articles. 789 

Therefore, broader application and further development of such effect-based testing approaches is 790 

desirable to guide the substitution efforts and ensure the toxicological safety of plastic packaging in 791 

the circular economy. 792 
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