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Using a large, consistent set of loci shared by descent (orthologous) to study relationships

among taxa would revolutionize among-lineage comparisons of divergence and speciation

processes. Ultraconserved elements (UCEs), highly conserved regions of the genome, offer

such genomic markers. The utility of UCEs for deep phylogenetics is clearly established

and there are mature analytical frameworks available, but fewer studies apply UCEs to

recent evolutionary events, creating a need for additional example datasets and analytical

approaches. We used UCEs to study population genomics in snow and McKay9s buntings

(Plectrophenax nivalis and P. hyperboreus). Prior work suggested divergence of these

sister species during the last glacial maximum (~18-74 Kya). With a sequencing depth of

~30× from four individuals of each species, we used a series of analysis tools to genotype

both alleles, obtaining a complete dataset of 2,635 variable loci (~3.6 single nucleotide

polymorphisms [SNPs]/locus) and 796 invariable loci. We found no fixed allelic differences

between the lineages, and few loci had large allele frequency differences. Nevertheless,

individuals were 100% diagnosable to species, and the two taxa were different genetically

(FST = 0.034; P = 0.03). The demographic model best fitting the data was one of

divergence with gene flow. Estimates of demographic parameters differed from published

mtDNA research, with UCE data suggesting lower effective population sizes (~92,500 -

240,500 individuals), a deeper divergence time (~241,000 yrs), and lower gene flow (2.8-

5.2 individuals per generation). Our methods provide a framework for future population

studies using UCEs, and our results provide additional evidence that UCEs are useful for

answering questions at shallow evolutionary depths.
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16 Using a large, consistent set of loci shared by descent (orthologous) to study relationships among 

17 taxa would revolutionize among-lineage comparisons of divergence and speciation processes. 

18 Ultraconserved elements (UCEs), highly conserved regions of the genome, offer such genomic 

19 markers. The utility of UCEs for deep phylogenetics is clearly established and there are mature 

20 analytical frameworks available, but fewer studies apply UCEs to recent evolutionary events, 

21 creating a need for additional example datasets and analytical approaches. We used UCEs to 

22 study population genomics in snow and McKay9s buntings (Plectrophenax nivalis and P. 

23 hyperboreus). Prior work suggested divergence of these sister species during the last glacial 

24 maximum (~18-74 Kya). With a sequencing depth of ~30× from four individuals of each species, 

25 we used a series of analysis tools to genotype both alleles, obtaining a complete dataset of 2,635 

26 variable loci (~3.6 single nucleotide polymorphisms [SNPs]/locus) and 796 invariable loci. We 

27 found no fixed allelic differences between the lineages, and few loci had large allele frequency 

28 differences. Nevertheless, individuals were 100% diagnosable to species, and the two taxa were 

29 different genetically (FST = 0.034; P = 0.03). The demographic model best fitting the data was 

30 one of divergence with gene flow. Estimates of demographic parameters differed from published 

31 mtDNA research, with UCE data suggesting lower effective population sizes (~92,500 - 240,500 

32 individuals), a deeper divergence time (~241,000 yrs), and lower gene flow (2.8-5.2 individuals 

33 per generation). Our methods provide a framework for future population studies using UCEs, 
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34 and our results provide additional evidence that UCEs are useful for answering questions at 

35 shallow evolutionary depths. 

36

37 Introduction

38 Among non-model organisms, population genetic studies have used a diverse set of 

39 markers, tending to concentrate on those with sufficiently high substitution rates to provide 

40 useful data at shallow levels of evolutionary divergence, e.g., from the populations-to-species 

41 levels (Avise 1994, Hillis et al. 1996, Pearse & Crandall 2003). This approach usually provides 

42 answers to the specific questions asked by researchers, but the historic focus on markers with 

43 high substitution rates has produced studies that include relatively few loci and often have little 

44 to no overlap with loci used for other taxa. This lack of consistency in the loci used across 

45 different studies compromises our ability to make direct comparisons of population genetic 

46 parameters among taxa (e.g., in divergence statistics and in estimates of gene flow and effective 

47 population sizes). Improvements in sequencing platforms and genomic data collection 

48 approaches are changing this general pattern by enabling us to efficiently collect much larger 

49 samples of the genome, up to and including whole-genome sequences (Ellegren 2014). However, 

50 the sheer quantity of data obtained from whole-genome sequencing can require excessively long 

51 computation times, and may be overkill for many questions. The parallel difficulties of collecting 

52 a moderate sample of the genome from identical loci across diverse species argue for a sequence 

53 data collection approach that a) subsamples the genome to b) obtain orthologous markers across 

54 a broad taxonomic scope. This type of approach would provide a tractable number of loci for 

55 analyses while improving among-study comparisons and larger-scale comparative meta-

56 analyses. Ultraconserved elements (UCEs) are one class of genome-wide marker that might 

57 provide a solution to these problems. 

58 UCEs are conserved sequences shared among divergent animal genomes (Bejerano et al. 

59 2004, Siepel et al. 2005, Stephen et al. 2008, Janes et al. 2011), and many UCE loci are likely to 

60 be involved in controlling gene expression (Marcovitz et al. 2016). UCEs in vertebrates show 

61 little overlap with most types of paralogous genes, and, as a marker class, UCE loci are broadly 

62 distributed across the genome and are typically transposon-free (Derti et al. 2006, Simons et al. 

63 2006, McCormack et al. 2011, Harvey et al. 2016). We focus on the set of UCEs previously 

64 defined for tetrapods and now in widespread use (McCormack et al. 2011, Faircloth et al. 2012). 
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65 Outside of their functional relevance, UCE loci have demonstrated utility for recovering deeper-

66 level phylogenetic relationships (McCormack et al. 2013, Faircloth et al. 2015, Gilbert et al. 

67 2015) and shallower-level genus and population relationships (Smith et al. 2014, Harvey & 

68 Brumfield 2015, Leaché et al. 2015, Harvey et al. 2016, Manthey et al. 2016, Oswald et al. 2016, 

69 Mason et al. 2018). Although UCEs are highly conserved at their core, which enables universal 

70 capture of loci across diverse groups of organisms (Faircloth et al. 2012, 2013, 2015; Starret et 

71 al. 2016), lower levels of purifying selection away from the core allow substitutions to 

72 accumulate in the flanking regions. Using human genome data, Faircloth et al. (2012) 

73 demonstrated that the increased variation in UCE flanking sequence might be adequate to make 

74 these loci useful for questions at shallow levels of divergence, and this hypothesis has been 

75 supported by subsequent empirical studies (Smith et al. 2014, Harvey & Brumfield 2015, Harvey 

76 et al. 2016, Oswald et al. 2016, Mason et al. 2018). However, the utility of UCE loci for studying 

77 population genetics, population divergence, and/or incipient speciation is only beginning to be 

78 tested, and both the value and challenges of using UCEs at these shallow levels remain 

79 underexplored.

80 Here, we examine the utility of UCEs for studying the population genomics of divergence 

81 between two bird species, McKay9s bunting (Plectrophenax hyperboreus) and snow bunting (P. 

82 nivalis). McKay9s buntings breed on remote islands in the Bering Sea (where our samples are 

83 from) and are the highest-latitude endemic songbirds; their range is restricted to the North Pacific 

84 region. Snow buntings breed throughout the rest of the high-latitude Holarctic (our samples are 

85 from the southern edge of the Being sea on the Alaska Peninsula and an Aleutian island; Table 

86 S1). McKay9s bunting is thought to have arisen ~18-74 Kya during the last glacial maximum 

87 (LGM) through divergence from snow buntings, and previous work suggests gene flow between 

88 the two may be ongoing (Maley & Winker 2010). These species are interesting to study using 

89 UCEs because prior work (Maley & Winker 2010) enables us to compare population genetic 

90 statistics derived from UCEs versus traditional population genetic markers (mtDNA sequence 

91 and amplified fragment length polymorphisms, AFLPs) and because these species allow us to 

92 test the utility of UCEs for studying very shallow divergences between sister lineages where 

93 gene flow may be ongoing.

94

95 Methods
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96 Laboratory.4We extracted DNA from muscle tissue of eight specimens (four of each 

97 species) studied by Maley & Winker (2010) using proteinase K digestion (100 mM Tris pH 8, 50 

98 mM EDTA, 0.5% SDS, 1 mg/mL proteinase K) followed by SPRI bead purification (Rohland & 

99 Reich 2012); Supplemental Information, Table S1). We chose this sample size (and our 

100 sequencing depth) to ensure that we could confidently call both alleles for each individual in 

101 each population to achieve eight sequences per population at each locus, which Felsenstein 

102 (2005) considered to be the optimum sample size for coalescent-based analyses. Following DNA 

103 extraction, we prepared dual-indexed DNA libraries for each sample using methods described in 

104 Glenn et al. (2017). After library preparation, we quantified each library using a Qubit 

105 fluorimeter (Invitrogen, Inc.), and we combined eight libraries into equimolar pools of 500 ng 

106 each (62.5 ng/library). We enriched the pool of 8 samples for 5,060 UCE loci using the 

107 Tetrapods-UCE-5Kv1 kit from MYcroarray following version 1.5 of the UCE enrichment 

108 protocol and version 2.4 of the post-enrichment amplification protocol (ultraconserved.org) with 

109 HiFi HotStart polymerase (Kapa Biosystems) and 14 cycles of post-enrichment PCR. We then 

110 quantified the fragment size distribution of the enriched pool on a Bioanalyzer (Agilent, Inc.) and 

111 qPCR quantified the enriched pool using a commercial kit (Kapa Biosystems). We combined the 

112 enriched pool of eight bunting samples with enriched pools from other birds at equimolar ratios, 

113 and we sequenced the resulting pool using one lane of PE150 sequencing on an Illumina HiSeq 

114 2500 (UCLA Neuroscience Genomics Core).

115 Bioinformatics.4After sequencing, we demultiplexed the sequencing reads using 

116 bcl2fastq version 1.8.4 (Illumina, Inc.), and we trimmed the demultiplexed reads for adapter 

117 contamination and low-quality bases using a parallel wrapper (Faircloth 2013) around 

118 Trimmomatic (ver. 0.32 Bolger et al. 2014). We then combined singleton reads that lost their 

119 mate with read 1 files, combined all individual read 1 files (plus singletons) together and all 

120 individual read 2 files together, and assembled these two read 1 and read 2 files de novo using 

121 Trinity (ver. 2.0.6; Grabherr et al. 2011) on Galaxy (Afgan et al. 2016). After assembling this 

122 composite of data from all individuals, we used Phyluce (ver. 1.4.0; Faircloth 2016) to identify 

123 FASTA sequences from orthologous UCEs and remove FASTA sequences from non-UCE loci 

124 or potential paralogs. We called the resulting file our reference set of UCE loci, which we used 

125 as the reference sequence for calling individual variants. 
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126 Next, we used Phyluce and its program dependencies (BWA 0.7.7, Li & Durbin 2009; 

127 SAMtools 0.1.19, Li et al. 2009; Picard 1.106, http://broadinstitute.github.io/picard) to align 

128 unassembled, raw reads from individual buntings to the reference set of UCE loci. Specifically, 

129 this workflow aligned raw reads on a sample-by-sample basis against the composite reference 

130 using the bwa-mem algorithm (preferred for reads > 70 bp; Li 2013); added header information 

131 to identify alignments from individual samples; cleaned, validated, and marked duplicates in the 

132 resulting BAM (Binary Alignment/Map) file using Picard; and merged all individuals into a 

133 single BAM file using Picard. Following preparation of the merged BAM, we used GATK (ver. 

134 3.4-0; McKenna et al. 2010) to identify and realign indels, call and annotate single nucleotide 

135 polymorphisms (SNPs) and indels, and mask SNP calls around indels using a GATK workflow 

136 described as part of a population genomics pipeline for UCEs developed by Faircloth and 

137 Michael Harvey (https://github.com/mgharvey/seqcap_pop). This included restricting data to 

138 high-quality SNPs (Q30) and read-back phasing in GATK. After calling and annotating SNPs, 

139 we deviated from this workflow by using VCFtools (ver. 0.1.12b; Danacek et al. 2011) to filter 

140 the resulting variant call format (VCF) file with the --max-missing (1.0) and --minGQ (10.0) 

141 parameters, which created a complete data matrix with a minimum genotype quality (GQ) of 10. 

142 We validated that GQ10 data were present for all individuals at all loci by visually assessing 

143 alignment data at 17 SNPs among 10 loci using Tablet (ver. 1.15.09.01; Milne et al. 2013). We 

144 used GATK9s EMIT_ALL_CONFIDENT_SITES function to ensure that we only retained 

145 invariant loci with high quality (rather than missing) data. We then removed variable and 

146 invariable loci with incomplete data from downstream analyses, retaining only loci with 

147 complete data. This finalized our complete VCF file.

148 Data analysis.4We calculated coverage depths, SNP positions within loci, and SNP-

149 specific and locus-specific FST values on the complete VCF file using VCFtools (ver. 0.1.12b; 

150 Danacek et al. 2011). After thinning the VCF file to 1 SNP/locus (which is required in 

151 demographic analyses when unlinked variation is important) and converting the VCF file to 

152 STRUCTURE format using PGDSpider (ver. 2.1.0.3; Lischer & Excoffier 2012), we performed 

153 tests of Hardy-Weinberg equilibrium and computed observed and expected heterozygosities, 

154 homogeneity of variance, population structure (population FST, including a 10,000-replicate G-

155 test; see Goudet et al. [1996]), and the probabilities of each individual9s assignment to a 

156 particular population using Discriminant Analysis of Principal Components (DAPC) in adegenet 
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157 (ver. 2.0.1; Jombart & Ahmed 2011). To calculate nucleotide diversity, we created a 

158 concatenated FASTA file of all individual sequences using catfasta2phyml by Johan Nylander 

159 (https://github.com/nylander/catfasta2phyml), and we analyzed this file in MEGA (ver. 6; 

160 Tamura et al. 2013) using the maximum composite likelihood method.

161 We used Diffusion Approximations for Demographic Inference (·a·i; ver. 1.7.0; 

162 Gutenkunst et al. 2009) to infer demographic parameters from the data under a variety of 

163 divergence scenarios (models) after excluding Z-linked loci (for ·a·i analyses only). Z-linked 

164 loci in birds are on the sex chromosome, have a different inheritance scalar from autosomal loci, 

165 and sample population sex ratios affect allele frequency estimates (e.g., Jorde et al. 2000, 

166 Garrigan et al. 2007). We identified Z-linked loci in our data using BLASTn (ver. 2.3.1; Zhang 

167 et al. 2000), by aligning the reference set of UCE loci against the zebra finch (Taeniopygia 

168 guttata) genome (NCBI Annotation Release 103). We excluded UCE loci that strongly matched 

169 (E-values ~0.0) the zebra finch Z chromosome. After removing Z-linked loci from our complete 

170 VCF file, we converted this reduced dataset to biallelic format (which dropped one locus with >2 

171 alleles at a SNP site) and thinned the data to one SNP per locus using VCFtools. Then we 

172 converted the resulting VCF file to the joint site frequency spectrum (SFS) format required by 

173 ·a·i using a PERL script by Kun Wang (https://groups.google.com/forum/#!msg/dadi-

174 user/p1WvTKRI9_0/1yQtcKqamPcJ). Because we lacked an outgroup, we used a folded SFS in 

175 our analyses (Gutenkunst et al. 2009), which lacks polarization of SNPs (Fig. S1). 

176 Because we had prior evidence that these species represent two genetic populations 

177 (based on taxonomy and results from Maley & Winker 2010), we used ·a·i to infer what general 

178 two-population divergence model best fit the data. We then used that model to estimate 

179 demographic parameters (i.e., effective population sizes, split time, and migration). We ran six 

180 different models spanning the standard possible demographic histories of two populations, five 

181 basic and one derivative: 1) neutral (no divergence, or still strongly mixing), 2) split with 

182 migration, 3) split with no migration, 4) isolation with bidirectional migration and population 

183 growth, 5) isolation with population growth and no migration , and 6) a custom split-

184 bidirectional-migration model (a simple derivative of split-migration; Fig. 1). The neutral, split-

185 with-migration, and isolation-with-migration-and-population-growth models are provided in the 

186 ·a·i file Demographics2D.py as snm, split_mig, and IM, respectively. The no-migration models 

187 (3 and 5 above) use the split_mig and IM models, respectively, with migration parameters set to 
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188 zero. The split-bidirectional-migration model (Supplemental Information) adds bidirectional 

189 migration to the split-migration model to examine potential asymmetry in gene flow. 

190 We performed a series of optimization runs (8-47 each) of each basic model, adjusting 

191 parameters (grid points, upper and lower bounds) to identify high log composite likelihoods. We 

192 then ran each model repeatedly, varying parameters within bounds that yielded the highest 

193 likelihood during optimization, until three runs yielded the highest observed likelihood value. 

194 Our reasoning was that this level of repeatability indicated a best-fit neighborhood for each 

195 model. We report this highest observed likelihood, except for poorer models, which yielded 

196 variable likelihoods, in which case we averaged and report the highest five values. After 

197 identifying the best-fit model based on likelihood values over successive runs, we ran the best-fit 

198 model ten times each with jackknifed datasets to estimate the 95% confidence interval (CI) for 

199 each parameter.

200 We estimated recombination using the four-gametes test as implemented in IMgc 

201 (Woerner et al. 2007), which also produces sequence datasets from which the effects of 

202 recombination have been removed. Resulting sequences were used for IMa2p (ver. 1.0, 

203 Sethuraman and Hey 2015) analyses to attempt to estimate demographic parameters, but those 

204 analyses did not converge under a variety of full- and sub-sampling schemes and are not 

205 reported. We nevertheless include the results of IMgc because accounting for recombination is a 

206 critical part of workflows using full sequences (i.e., not just SNPs), and these results provide 

207 needed insight into the levels of recombination found in UCE loci for studies of this type.

208 We estimated the average per-site substitution rate by BLASTing the FASTA file 

209 containing all confidently scored loci (those meeting our quality filters as described in the 

210 Bioinformatics section, above) for all individuals (3,431 loci) against the budgerigar 

211 (Melopsittacus undulatus) genome (NCBI release 102) and the rifleman (Acanthisitta chloris) 

212 genome (NCBI release 100), using time to most recent common ancestor (TMRCA) date 

213 estimates of 60.5 Ma (budgerigar) and 53 Ma (rifleman) (Claramunt & Cracraft 2015). These 

214 taxa were chosen as the nearest relatives with complete genomes and fossil-dated nodes 

215 available. We imported BLAST results (hit table, csv) into a spreadsheet, removed duplicate 

216 lower-affinity hits, then summed total length of base pairs, total substitutions, and calculated 

217 substitutions per site. This value (substitutions per site) was annualized by multiplying it by 2 

218 TMRCA (e.g., 121 Ma for the total time along the branches of divergence between buntings and 
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219 budgerigars). To account for the uncertainty associated with using divergence time estimates 

220 from distant relatives, we averaged the resulting substitutions per site per year rates (6.83 × 10-10 

221 and 6.67 × 10-10, respectively), and we used the average rate (6.75 × 10-10) to convert parameter 

222 estimates obtained from ·a·i analyses into biologically relevant estimates of effective population 

223 size(s) and split time(s). We converted substitution rates to substitutions/site/generation using a 

224 generation time of 2.7 yr for snow buntings. We estimated generation time using survival and 

225 breeding data from Smith (1994) and the method of Saether et al. (2005), in which generation 

226 time (G) is calculated as G = ³ + (s/(1-s)), where ³ is age of first breeding (1 yr) and s is annual 

227 adult survival.

228

229 Results

230 Assembly produced 632,401 contigs (min = 224 bp, max = 17,453 bp) with a mean 

231 length of 396.6 bp (+ 0.27 bp 95% CI) for a total of 250,802,355 bp. Fully 9,194 contigs were 

232 over 1 Kb in length. After identifying UCE loci and removing potential paralogs, we recovered 

233 4,018 UCE loci. After filtering UCE loci for quality, calling SNPs, phasing (reconstructing 

234 haplotypes), and applying additional quality filters, we identified 2,635 loci that contained data 

235 for all individuals and were variable. This complete matrix of variable loci included a total of 

236 9,449 SNPs (averaging 3.6 sites per locus). Per-site sequencing depth for these SNPs averaged 

237 26.3 reads (+ 16.9 SD). An additional 587 loci exhibited variation but the data were not of 

238 sufficient quality (i.e., GQ < 10) among all individuals to confidently call both alleles. There 

239 were 796 high-quality invariant loci (loci with invariant data, rather than an absence of data), 

240 providing a full dataset of 3,431 loci with mean length of 1,153.6 bp (+ 4.95 bp 95% CI). The 

241 shortest locus was 228 bp, the longest 2,543 bp, and 2,482 loci were longer than 1 Kb (Fig. S2). 

242 The total length of these loci was 3,957,876 bp. The distribution of SNP variation among loci 

243 confidently called for all individuals is given in Fig. 2. Nucleotide diversity (Ã) was 0.000519 

244 overall, 0.000523 for snow buntings, and 0.000493 for McKay9s buntings. 

245 No alleles showed fixed differences (FST = 1.0) between the two populations, and few 

246 alleles showed strong segregation. No variable sites had an FST value above 0.9, and there were 

247 only three each at 0.86 and 0.72 (Fig. S3; two of these sites were on the same locus). One of the 

248 five loci with the highest FST values was Z-linked; all of the others were on different 

249 chromosomes (Supplemental Information). There were 128 Z-linked loci among the 2,635 
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250 variable loci. As noted, only one showed high FST between the two species. The two populations 

251 had an overall FST = 0.034, which was significant (P = 0.03). Discriminant Analysis of Principal 

252 Components (DAPC in adegenet) assigned all individuals to their correct taxon of origin, with 

253 100% probabilities for each, indicating a high level of genomic diagnosability (Fig. S4).

254 Fully 2,510 loci were in Hardy-Weinberg equilibrium; 124 were not (one was triallelic). 

255 McKay9s buntings had fewer unique alleles (4,238) than snow buntings (4,389), concordant with 

256 the  smaller population size of McKay9s buntings. Bartlett9s test rejected homogeneity of 

257 variance between observed heterozygosity (Ho = 0.18, 0.19) and expected heterozygosity (He = 

258 0.20, 0.22), but Ho did not differ from He (t = -3.1653, df = 2633, P = 1.0).

259 The four-gametes test suggested that recombination occurred in hundreds of loci. For 405 

260 loci, locus lengths were shortened by IMgc to meet the four-gametes test, and for 252 loci one or 

261 more individuals were removed to meet the same criteria (a few of these loci had both done; 

262 IMgc automatically performs one or the other or both operations to obtain non-recombinant 

263 sequence data). There were thus 15.4% to 24.9% of variable loci exhibiting patterns indicative of 

264 recombination. As noted in the Methods, these sequence data, together with all other unchanged 

265 sequences, were not used further; we used only SNP data for further analyses.

266 In testing our six, two-population models with ·a·i, the highest maximum log composite 

267 likelihood values were obtained for the split-with-migration model (-112.76), which made it the 

268 best-fitting model for these data (model 2 in Fig. 1). We obtained successively lower likelihood 

269 values for the neutral (-588.45), isolation with bidirectional migration and population growth (-

270 803.30), and isolation with population growth and no migration (-2,026.93) models. The final 

271 model tested, split-bidirectional-migration, had an intermediate likelihood of -286.49. The split-

272 with-no-migration model was unstable under all conditions tried, and we could not get it to run 

273 to convergence. We provide jackknifed estimates and confidence intervals for the best-fitting, 

274 split-with-migration model in Table 1.

275

276 Discussion

277 Our data provided sufficient variation to answer fundamental questions about these two 

278 recently diverged taxa, despite a lack of fixed genetic differences and evidence for moderate 

279 levels of gene flow. Thus, our study adds to evidence showing the utility of UCEs for 

280 illuminating key evolutionary attributes among populations with shallow levels of divergence 
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281 (e.g., Table 2). These data also provide a direct comparison to markers previously used to 

282 investigate recent divergence (i.e., mtDNA, AFLPs) for these same taxa (see below). As UCEs 

283 are used more frequently for population genomics, in addition to systematics, new actions 

284 become desirable (Table 2). Some of the key approaches are: sequencing at increased depth, 

285 genotyping individuals (determining both alleles of a locus), implementing genotype quality 

286 filters, accounting for recombination, improving mutation rate estimates, and implementing 

287 population genomics analytical pipelines rather than those oriented more typically toward 

288 systematics. Questions often differ at population levels, but researchers are successfully applying 

289 a variety of approaches that demonstrate the utility of UCEs in population genomics (Table 2). 

290 In considering UCEs as a class of markers that subsamples the genome, it is useful to 

291 note that our estimated substitution rates (mean of 6.75 × 10-10 substitutions per site per year) are 

292 roughly an order of magnitude slower than the mutation rate estimated across the entire genome 

293 of three generations of Ficedula flycatchers (Smeds et al. 2016). This is perhaps not surprising 

294 given the conserved nature of these loci. Using a very different method to estimate substitution 

295 rates (scaling UCE results to an mtDNA molecular clock), Harvey et al. (2016) estimated rates of 

296 1.74 × 10-12 to 2.32 × 10-11 substitutions per site per year for UCE loci, one to two orders of 

297 magnitude slower than comparable RAD-seq data from the same animals and also slower than 

298 the rates we estimated here for buntings. In addition to differences in methodology, Harvey et al. 

299 (2016) had shorter loci on average (mean locus length 604 bp) than loci in our study. 

300 Nevertheless, more study of substitution rates in loci with UCEs is warranted because these 

301 estimates are important when converting modeled demographic parameters into biological units. 

302 The effect of our estimated substitution rates on our demographic estimates (if, for example, our 

303 substitution rate estimates are wrong) is that for some, they are positively correlated; lower 

304 substitution rates would drive effective population sizes and split times lower (Ne: nu1, nu2, and 

305 Nref and T in Table 1). Migration rate (m) estimates in Table 1 are unaffected by substitution 

306 rates.

307 The nucleotide diversity levels that we observed are approximately an order of magnitude 

308 lower than typical levels across the avian genome (0.0011-~0.005; Ellegren 2013). This is likely 

309 the result of purifying selection acting on UCE loci, effecting an apparent lower substitution rate. 

310 Our values are more similar to the values for Z-linked loci in other bird species (e.g., 

311 Balakrishnan & Edwards 2009, Huynh et al. 2010, Lavretsky et al. 2015).
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312 When applied to this relatively recently derived pair of taxa, UCE results raise the 

313 question of whether McKay9s bunting is a full biological species. Although McKay9s bunting is 

314 taxonomically recognized as a species, this dataset shows substantial levels of gene flow (see 

315 Wright 1943, Cabe and Alstad 1994, Winker 2010), and the lack of fixed alleles is surprising 

316 given that we sampled thousands of loci and four individuals from each of two putative species; 

317 we would expect several fixed differences to occur by chance through neutral processes. There 

318 are some noted plumage differences between the two taxa (Maley & Winker 2007), but while our 

319 results enabled 100% diagnosability (which might decline with broader sampling), they also 

320 suggest widespread genomic similarity between McKay9s and snow buntings (e.g., relatively low 

321 FST). Given phenotypic differences between the taxa, it seems likely that there are fixed allelic 

322 differences in portions of the genome not included in our data that could be detected by more 

323 extensive surveys of each species9 genome. The status of the taxa as biological species, however, 

324 is more likely to hinge on gene flow (i.e., the geographic partitioning of traits that may be 

325 responding to adaptation is not equivalent to speciation). 

326 There are reports of male McKay9s buntings present outside their breeding range and 

327 possible hybridization between McKay9s and snow buntings (Sealy 1967, 1969). Snow buntings 

328 are also common on the breeding range of McKay9s buntings at St. Matthew Island prior to and 

329 during early portions of the breeding season, although most individuals leave before fledging 

330 (Winker et al. 2002). Just one pair of snow buntings has been recorded on the island during 

331 fledging (Winker et al. 2002). Observations thus suggest the possibility of hybridization; our data 

332 provide a confirmation and a quantification of it. The levels of gene flow that we found, 2.8 3 5.2 

333 individuals per generation (Table 1), seem rather high for two putative biological species (Rice 

334 & Hostert 1993, Hostert 1997, Winker 2010). Further study will be needed to determine species 

335 limits between these taxa, including larger sample sizes, broader genomic coverage, and proper 

336 caution for interpreting genomic results in terms of species delimitation (Robinson et al. 2013, 

337 Sukumaran & Knowles 2017). 

338 In comparing UCE-based estimates of demographic parameters with those based on 

339 mtDNA sequence (Maley & Winker 2010), we find little overlap (Table 3), and our UCE-based 

340 split-time estimate is an order of magnitude earlier. Although effective population size estimates 

341 for McKay9s buntings are close (though non-overlapping), those for snow buntings are one-to-

342 two orders of magnitude smaller, a difference that is only partially explained by differences in 
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343 effective population size for autosomal and mtDNA estimates. These differences may also be 

344 driven by the different selection regimes operating on the two marker classes. For example, 

345 purifying selection on UCEs will result in background selection on linked variation in flanking 

346 regions, reducing (through hitchhiking) the effective population size (Charlesworth & 

347 Charlesworth 2016). Previously, mtDNA results suggested that gene flow was highly 

348 asymmetric (Maley & Winker 2010), concordant with what was likely a post-glacial 

349 introgression of McKay9s buntings into snow buntings during a snow bunting range expansion 

350 into Beringia. Our UCE-based estimates have much narrower confidence limits (and without the 

351 strong asymmetry found in mtDNA; Table 3), but they do suggest moderate levels of gene flow 

352 between the two species.

353

354 Conclusions

355 Although more work is needed to understand demographic estimates made using UCEs 

356 relative to those obtained using other markers, UCEs provide rich, high-quality data for 

357 population genomic studies (Table 4). They are thus an important new class of genomic marker 

358 that should provide broad comparative value among diverse population genomics studies, with 

359 ever-increasing value as additional studies using UCEs (or whole genomes from which UCEs 

360 can be obtained) are conducted.

361  
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Figure 1(on next page)

Population divergence models tested using ·a·i

Population divergence models tested using ·a·i, varying from 1) neutral (no divergence), to

a series of different two-population models with an ancestral population diverging into two

populations (at time T): 2) split with migration (gene flow), 3) split with no migration, 4)

isolation with bidirectional migration and population growth, 5) isolation with population

growth and no migration, and 6) a derivative of model 2 with bidirectional migration.
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Figure 2(on next page)

Distribution of single nucleotide polymorphisms (SNPs) per locus

Distribution of single nucleotide polymorphisms (SNPs) per locus among 3,431 confidently called loci.
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Table 1(on next page)

Demographic model parameters

Demographic model parameters from the ·a·i split-migration model (variables in first

column) and estimates in biological units (defined in final column), with 95% CIs determined

by jackknifed datasets. The two migration rates use the two different effective population

sizes in their calculation.
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1 Table 1. Demographic model parameters from the ·a·i split-migration model (variables in first 

2 column) and estimates in biological units (defined in final column), with 95% CIs determined by 

3 jackknifed datasets. The two migration rates use the two different effective population sizes in 

4 their calculation.

5

Model parameters

Parameter (+ 

95% CI)

Estimates (+ 95% 

CI)

Lower-upper 

bounds Biological units

nu1 (pop size 

McKay's) 3.52 (+ 0.54)

109,330 (+ 

16,790) 92,540 - 126,120 individuals McKay's

nu2 (pop size 

snow) 5.95 (+ 1.79)

184,991 (+ 

55,523) 129,467 - 240,514 individuals snow

T (split time) 1.44 (+ 0.37)

241,491 (+ 

62,429) 179,061 - 303,920 years

m1 (migration) 1.65 (+ 0.39) 2.90 (+ 0.10) 2.8 - 3.0 individuals using nu1

m2 (migration) 1.65 (+ 0.39) 4.90 (+ 0.35) 4.6 - 5.2 individuals using nu2

theta

249.97 (+ 

32.71)a 31,072 (+ 4,066)a 27,006 - 35,138

ancestral population 

individuals

a - Nref

6
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Table 2(on next page)

Some bioinformatic and analytical attributes typical of population genomics studies

using UCEs.

Some bioinformatic and analytical attributes typical of population genomics studies and

some of the variation among researchers in applying them to different questions using UCE

data.
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1 Table 2. Some bioinformatic and analytical attributes typical of population genomics studies 

2 and some of the variation among researchers in applying them to different questions using UCE 

3 data.

4

5

Popgen attribute

Smith et al. 

2014

Harvey et al. 

2016

Zarza et al. 

2016

Oswald et al. 

2016

this 

study

Genotyping no yes yes yes yes

GQ filters no yes yes ? yes

recombination no no no no yes

substitution rates yes yes no yes yes

population 

differentiation yes yes yes yes yes

gene flow rates yes no no yes yes

effective pop. 

sizes yes yes no yes yes

heterozygosity no yes no no yes

6

7

8

9

10  
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Table 3(on next page)

Comparing UCE and mtDNA demographic estimates

Comparing bunting UCE results of demographic estimates with those obtained using mtDNA

by Maley & Winker (2010).
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1 Table 3. Comparing bunting UCE results of demographic estimates with those obtained using 

2 mtDNA by Maley & Winker (2010). 

3

Parameter UCEs mtDNA

split time 179-304 Kyr 18-74 Kyr

Ne McKay's 93-126 K 170-680 K

Ne snow 0.13-0.24 million 6-24 million

m 2.8-5.2 0.05-753

4

5

6  
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Table 4(on next page)

Comparing avian UCE population genomic characteristics.
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1 Table 4. Comparing avian UCE population genomic characteristics. 

2

Species # loci

% 

polymorphic

Nucleotide 

diversity Heterozygosity Source

Tringa semipalmata 4635 94 n.a. n.a. Oswald et al. 2016

Cymbilaimus lineatus 776 53 0.0019 n.a. Smith et al. 2014

Xenops minutus 1368 73 0.0019 n.a. Smith et al. 2014

Schiffornis turdina 851 77 0.0003 n.a. Smith et al. 2014

Querula purpurata 1516 58 0.0013 n.a. Smith et al. 2014

Microcerculus marginatus 1077 60 0.0015 n.a. Smith et al. 2014

Plectrophenax spp. (2) 3431 77 0.0005 0.20-0.22 this study

average of 40 Amazonian 

species 2416 varied 0.0011 ~0.44 (1 sp.) Harvey et al. 2016

3
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