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Introduction:  Sleep scoring is an important step in the treatment of sleep disorders.

Manual annotation of sleep stages is time-consuming and experience-relevant and,

therefore, needs to be done using machine learning techniques.  methods:  Sleep-edf

polysomnography was used in this study as a dataset. Support Vector Machines and

Artificial Neural Network performance were compared in sleep scoring using wavelet tree

features and neighborhood component analysis.  Results:  Neighboring component

analysis as a combination of linear and non-linear feature selection method had a

substantial role in feature dimension reduction. Artificial neural network and support

vector machine achieved 90.30% and 89.93% accuracy respectively.  Discussion and

Conclusion:  Similar to the state of the art performance, introduced method in the

present study achieved an acceptable performance in sleep scoring. Furthermore, its

performance can be enhanced using a technique combined with other techniques in

feature generation and dimension reduction. It is hoped that, in the future, intelligent

techniques can be used in the process of diagnosing and treating sleep disorders.
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1 Title:

2 Performance comparison of machine learning techniques in sleep scoring based 

3 on wavelet features and neighborhood component analysis

4

5

6 Abstract

7 Introduction: 

8 Sleep scoring can be considered as an important step in the treatment of sleep 

9 disorders. However, annotating sleep stages manually is time-consuming and requires 

10 experience; therefore, it is preferable to perform it using machine learning techniques.

11 Methods:

12 A sleep-EDF polysomnography dataset was used in this study. The performances of 

13 support vector machine (SVM) and artificial neural network (ANN) in sleep scoring were 

14 compared using wavelet tree features and neighborhood component analysis. 

15 Results:

16 Neighboring component analysis as a combination of linear and nonlinear feature 

17 selection methods had substantially reduced the feature dimensions. ANN and SVM 

18 achieved 90.30% and 89.93% accuracy, respectively.

19 Discussion and Conclusion:

20 Similar to the state-of-the-art method, the method introduced in the present study 

21 achieved an acceptable performance in sleep scoring. Furthermore, its performance 

22 could be enhanced by combining it with other techniques for feature generation and 

23 dimension reduction. It is expected that in the future, intelligent techniques can be used 

24 for diagnosing and treating sleep disorders.

25 Lay Abstract

26 Because sleep scoring by manual method is time-consuming, it is preferable to use 

27 machine learning techniques. In this study, a comparison between artificial neural 

28 network and support vector machine, based on wavelet features, demonstrated 

29 acceptable accuracy in sleep scoring.

30
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31 Introduction

32 Sleep is a behavioral state characterized by the lack of interaction between an individual 

33 and the environment as well as a relative motor quiescence (1). It is worth mentioning 

34 that the undeniable impact that sleep has on various human physical and mental 

35 activities make it a significant factor in human health (235). Thus, it is clear that sleep 

36 disorders could lead to devastating effects on various aspects of human life (6).

37 Regarding the treatment of sleep disorders, polysomnography (PSG) can be considered 

38 as the main tool for collecting as well as measuring the electrophysiological signals to 

39 analyze body functions during sleep (7). Therefore, an important step here would be 

40 hypnogram analysis. A hypnogram is defined as a diagram for identifying the sleep 

41 transition between different stages. These stages can be determined based on 

42 Rachtschaffen and Kales as wake, sleep with rapid eye movement (REM), non-REM 

43 stage 1 (NREM1), stage 2 (NREM2), stage 3 (NREM3), and stage 4 (NREM4) (8). The 

44 hypnogram is generated from PSG signals in a period of 20 or 30 s epochs (9) as 

45 follows:

46 ÷ Wake, comprising over half of the epoch, consists of alpha waves or low voltage, 

47 mixed-frequency (237 Hz) activity.

48 ÷ Stage 1, comprising half of the epoch, consists of relatively low voltage, mixed-

49 frequency (237 Hz) activity. At this stage, < 50% of the epoch contains alpha 

50 activity. Slow rolling eye movements, lasting several seconds, can be often 

51 observed in early Stage 1.

52 ÷ Stage 2 occurs with the appearance of sleep spindles and/or K complexes. 

53 Moreover, < 20% of the epoch may contain high voltage (75 µV, < 2 Hz) activity. 

54 Each sleep spindle and K complex have to last > 0.5 s.

55 ÷ Stage 3, comprising 20%350% of the epoch, consists of high voltage (> 75 µV) 

56 and low-frequency (< 2 Hz) activity.

57 ÷ Stage 4, comprising over 50% of the epoch, consists of high voltage (> 75 µV, < 

58 2 Hz) and delta activity.

59 ÷  REM stage has a relatively low voltage that consists of mixed-frequency (237 

60 Hz) electroencephalographic (EEG) activity with episodic REMs and absent or 

61 reduced chin electromyographic (EMG) activity (10). 

62 However, the main challenge in hypnogram analysis is the recognition of sleep stages, 

63 which is very time-consuming and more importantly, depends on the analyst9s individual 

64 experience (12 ,11). Hence, computerization of this process would be extremely helpful 

65 in saving time and significantly enhancing the accuracy of sleep disorder diagnosis (13).

66  Many examples can be mentioned here regarding the application of intelligent 

67 techniques in medical diagnostic automation (14320) and EEG analysis (21335). In 
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68 2011, Kravoska et al. achieved 81% accuracy in sleep scoring using various features 

69 derived from PSG signals. In their work, they adopted a multidimensional analysis 

70 involving quadratic discriminant analysis. It was applied as a classifier using signal-

71 specific features in different frequency bands (36). Furthermore, in 2011, Kuo et al. 

72 used features based on multiscale permutation entropy in sleep scoring and achieved 

73 89.1% sensitivity and over 70% accuracy in sleep scoring (37). In another research by 

74 Yang et al. (38), multiple structures of artificial neural networks (ANNs) were applied 

75 based on energy-specific features from the signals. The obtained results indicated 

76 accuracies of 81.1%, 81.7%, and 87.2% for a feed-forward neural network, probabilistic 

77 neural network, and recurrent neural network, respectively. In 2016 (20), a combination 

78 of methods, based on complete ensemble empirical mode decomposition with adaptive 

79 noise (CEEMDAN) and bootstrap aggregating (bagging), was applied on PhysioNet 

80 data, which achieved 90.69% accuracy. In 2016, Hassan et al. worked on a single EEG 

81 for sleep scoring using normal inverse Gaussian parameters and achieved 90.01% 

82 accuracy (31). Their other remarkable accomplishment was the achievement of 93.69% 

83 accuracy, which was obtained by using a tunable Q-wavelet transform (32).

84 PSG analysis requires an optimal method for signal feature extraction. In this regard, 

85 wavelet tree decomposition can be particularly useful in extracting meaningful 

86 information from PSG signals for sleep scoring. Given the large amount of information 

87 generated by the wavelet tree analysis, it is necessary to reduce the dimension of data 

88 in a desirable way to make them usable for sleep scoring. In the present study, we 

89 introduced a step-by-step method for feature extraction using the wavelet tree analysis 

90 and dimensionality reduction using neighborhood component analysis (NCA). Moreover, 

91 we made a comparison between two well-known classifiers in sleep scoring, i.e., ANN 

92 and SVM. 

93
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94 Methods

95 In order to compare these two classifiers based on wavelet features in sleep scoring, a 

96 sequential method was proposed in which the following steps were performed: dataset 

97 generation, preprocessing, feature extraction, dimensionality reduction, and 

98 classification, as shown in Fig. 1. All the steps were implemented using MATLAB 

99 2016b.

100  

101

102

103 Figure 1. Flowchart of the proposed method for sleep scoring

104
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105 Data

106 The full version of sleep-EDF from PhysioNet, which is a collection of PSG recordings 

107 along with their annotated hypnograms, was used in this study as the initial dataset. The 

108 collection of 61 whole-night polysomnographic sleep recordings contained EEG signals 

109 of the Fpz-Cz and Pz-Oz channels, electrooculography (EOG) (horizontal), and 

110 submental chin EMG signals (Fig. 2) (39). The EOG and EEG signals were sampled at 

111 100 Hz. The submental EMG signal was electronically high-pass filtered, rectified, and 

112 low-pass filtered. Then, it was expressed in uV root-mean-square (rms) and sampled at 

113 1 Hz (40). In this dataset, hypnograms were generated for every 30 s of EEG data in 

114 accordance with the R&K criteria by well-trained experts (28). 

115

116 Figure 2. Sample signals from sleep-EDF

117

118 A class-imbalanced dataset is one in which each class of the given dataset is not evenly 

119 distributed (41). Notably, an imbalanced dataset is a serious problem in machine 

120 learning and data mining (42). Because the number of sleep stages in the dataset was 

121 not equal (Table 1), 2000 epochs were randomly selected from each sleep stage 

122 (Wake, REM, NREM1, NREM2, NREM3, and NREM4) and a 10,000-sample dataset 

123 was generated. It was actually done for the purpose of overcoming the imbalanced 

124 situation in the sleep-EDF dataset and reducing the next step9s computations. Although 

125 balancing the data can make a slight difference between the actual dataset and the new 

126 version, it does not make much sense as the number of samples was relatively high. In 

127 addition, balancing the dataset was necessary for classifier training in order to avoid 

128 biased learning.

129

130 Table 1. Stage count in sleep-EDF dataset
131

132

133 Preprocessing

134 In order to remove the noises from the signals, standard deviation normalization was 

135 applied as in Eq. 1. Actually, owing to the use of wavelet analysis in the next steps of 

136 the study, only standard deviation normalization was used to eliminate the noise in the 

137 first step. Further analysis of the noise reduction would be performed later using the 

138 wavelet transform.

139 ÿÿÿý =
ÿýýý 2 ýÿÿÿÿýý.ýÿÿ

140 Eq. 1. Standard deviation normalization
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141

142 This stage of preprocessing was performed to normalize the signals. Most of the noises 

143 were eliminated by multistage wavelet breakdown, owing to the use of the wavelet 

144 transform in the next step to extract the features. 

145

146 Feature Extraction

147 Considering the advancement of the wavelet transformation in analyzing non-stationary signals 

148 such as EEG, EOG, and EMG, the wavelet tree analysis was used for feature extraction in this 

149 step. Various features were generated based on the wavelet tree analysis (43, 44), which were 

150 used as the base features for sleep scoring. According to the wavelet feature extraction and the 

151 activity bands of input signals, a tree of wavelet decomposition was applied on signals at each 

152 level, and a group of features was generated (Fig. 3). Because it works based on multiresolution 

153 approximation by decomposing the signal into a lower resolution space (Aj) and details (Dj), the 

154 approximation space (low-frequency band) and detail space (high-frequency band) were 

155 frequently decomposed from the previous levels. This recursive splitting of vector space is 

156 represented by an admissible wavelet packet tree (45). Energy was calculated using Eq. 2 for 

157 each subband of the signal.

158 log (ÿ(ý)) = log (
>3ÿ = 1

ÿý(ý,ÿ)
2ýý )

159 Wx is the wavelet packet transform of signal

160 l is the subband frequency index

161 Ni is the number of wavelet coefficients in the lth subband.

162

163 Eq. 2. Energy calculation of signals (46)

164

165

166 Figure 3. Wavelet packet feature extraction from input signal

167

168

169

170
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171

172 Feature Selection

173 Machine learning techniques require a suitable number of inputs to predict intended 

174 outputs in the most excellent way. Using a large number of inputs could affect the 

175 accuracy and lead to poor performance in many cases. This phenomenon is known as 

176 the curse of dimensionality, where increasing the number of features cannot guarantee 

177 performance improvement and may even lead to performance decay. Therefore, that 

178 phenomenon should be avoided as much as possible to maintain the classifier 

179 performance at a satisfactory level (47, 48). 

180 In the present study, NCA was conducted to avoid the curse of dimensionality. In this 

181 technique, the importance of each input is calculated in the output prediction. Then, the 

182 important inputs are preserved for the next steps such as classification, fitting, and time 

183 series analysis. NCA learns a feature weighting vector by maximizing the expected 

184 leave-one-out (LOO) classification accuracy. NCA is a non-parametric method for 

185 selecting features with the goal of maximizing the prediction accuracy of the regression 

186 and classification algorithms (49). Ideally, this algorithm aims to optimize the classifier 

187 performance in the future test data. However, because the real data distribution is not 

188 known, the algorithm attempts to optimize the performance based on the training data 

189 using the LOO mechanism. The algorithm is restricted to learning Mahalanobis 

190 (quadratic) distance metrics. It can always be represented by symmetric positive semi-

191 definite matrices and it can estimate such metrics through its inverse square roots by 

192 learning a linear transform of the input space. If it is denoted by a transformation matrix 

193 A, a metric is effectively learned as Q = A > A in Eq. 3.

194 ý(ý, ÿ) =  (ý 2  ÿ) > ý(ý 2  ÿ) =  (ýý 2  ýÿ) > (ýý 2  ýÿ)

195 Eq. 3. Q matrix calculation in NCA algorithm

196

197 The goal of this algorithm is to maximize f(A), which is defined by Eq. 4, using a 

198 gradient-based optimizer such as delta-bar-delta or conjugate gradients.

199

200 ÿ(ý) = 3ÿ 3ÿ * ÿÿýÿÿ = 3ÿ ýÿ
201 Eq. 4. f(A): class separability as NCA maximization goal

202

203 Because the cost function is not convex, some caution must be taken to avoid local 

204 maxima during training. Given the fact that its projection is linear, using a nonlinear 
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205 classification is recommended in the core of the algorithm to avoid getting stuck in local 

206 maxima. This can be attained by using ANN and SVM, which are two well-known 

207 classifiers in machine learning techniques.

208

209 Classification

210 A review of the literature shows that ANN and SVM have been used in other 

211 applications demonstrating the general acceptance of these techniques in different 

212 applications of classification tasks (50, 51). Therefore, in the present study, ANN and 

213 SVM, as the most popular and successful (52) methods of machine learning, were also 

214 selected for sleep scoring. 

215

216 Artificial Neural Network

217 ANN, as a simple simulation of the human brain, tries to imitate the brain learning 

218 process using layers of processing units called perceptrons (54 ,53). A single 

219 perceptron, as the simplest feed-forward ANN unit, is only capable of learning a linear 

220 bi-class separation problem (55-57). However, when a number of perceptrons are 

221 combined with each other in the layered structure, they emerge as a powerful 

222 mechanism with nonlinear separability, called multilayer perceptron, which is the most 

223 famous form of ANNs (Fig. 4). In this regard, ANN is considered as a logical structure 

224 with multiprocessing elements, which are connected through interlayer weights. The 

225 knowledge of ANN is presented through the weights adjusted during the learning steps. 

226 ANN is particularly valuable in processing situations where there is no linear or simple 

227 relation between inputs and outputs (58) and in handling unstructured problems with 

228 data having no specific distribution models (59).

229

230

231 Figure 4. Sample of ANN with one input layer, two hidden layers, and one output layer

232

233

234

235 The main goal of ANN training is to reduce the error (E) of the classification as Eq. 5:

236
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237 ý =
1

2

m3
i = 1

n3
j = 1

(yij 2 yij
7 )2

238 Eq. 5. Error in ANN training phase

239 In Eq. 5, yij and yij* are the actual and network outputs of the jth output from ith input 

240 vector respectively. In order to train and test the ANN structures, ANN models are 

241 implemented using the settings in Table 2. 

242

243 Table 2. ANN model setting in Matlab

244

245 Support Vector Machine

246 SVM has become popular owing to its significantly better empirical performance 

247 compared with other techniques (60). SVM, with a strong mathematical basis, is closely 

248 related to some well-established theories in statistics and is capable of nonlinear 

249 separation using the hyperplane idea. It tries not only to correctly classify the training 

250 data, but also to maximize the margin for better generalization of the forthcoming data 

251 (61). Its formulation leads to a separating hyperplane that depends only on the small 

252 fraction of data points lying on the classification margins, called support vectors (bold 

253 texts in Fig. 5). 

254

255

256 Figure 5. Support vector in SVM

257
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259 In SVM training phase, tuning of the parameters involves choosing the kernel function 

260 and the box constraint (C). The box constraint is a tradeoff parameter between 

261 regularization and accuracy, which influences the behavior of support vector selection 

262 (62). The kernel, as a key part of the SVM, is a function for transmitting information from 

263 the current space to a new hyperspace (63). Because the Gaussian radial-basis 

264 function (RBF) kernel is popular, and RBF kernels are shown to perform better than 

265 linear or polynomial kernels (64), the RBF function was selected in this study as the 

266 kernel for the SVM classifier. The RBF kernel is defined as Eq. 6, where Ã is the most 

267 important factor to control the RBF kernel in transmitting data to a new hyperspace.

268 ÿ(ý,ý') = exp ( 2 6ý 2 ý'62

2ÿ2 )
269 Eq. 6. RBF kernel

270 As mentioned earlier, to achieve the optimal performance, two parameters of SVM (box 

271 constraint (C) and RBF sigma (S)) are important and should be tuned as correctly as 

272 possible. To tune these parameters, two cycles are defined in terms of accuracy for 

273 exploring the values (Table 3) and choosing the best model with the highest accuracy.

274 Table 3. Parameter tuning
275

276 Validation of Models

277  Validation of the results was performed in a different mode for each model. Intermittent 

278 88validation= was performed for ANN during training to avoid over-training problems. In 

279 this type of validation, the network is periodically validated with a different dataset. This 

280 process is repeated until the validation error begins to increase. At this point, ANN 

281 training is terminated, and the ANN is then tested with a third dataset to evaluate how 

282 effectively it has learned the generalized behavior (65). In this method, while training the 

283 network, as previously mentioned, 70% of the data were used to train the ANN whereas 

284 15% were used for testing and 15% for validation purposes. 

285 For the support vector, the cross-validation method was used to validate the modeling 

286 and testing. Cross-validation is a statistical method for evaluating and comparing 

287 learning algorithms. It is performed by dividing the data into two segments: one for 

288 learning or training the model and the other for validating the model. In a typical cross-

289 validation, the training and validation sets must cross over in the successive rounds 

290 such that each data point has a chance of being validated. The basic form of cross-

291 validation is K-fold cross-validation (66), which randomly divides the original sample 

292 into K subsamples. Then, a single subsample is selected as the validation data for 

293 testing the model, and the remaining K-1 subsamples are used as the training data. 
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294 This process is repeated K times, and each K subsample is used exactly once as the 

295 validation data. The K results from the folds can then be averaged (or otherwise 

296 combined) to produce a single estimation (67). This strategy was used for SVM 

297 validation using K = 10 and the mean accuracy was considered as the final accuracy for 

298 SVM.

299  

300 Result

301

302 Based on the activity bands of the input signals, six levels of wavelet tree feature 

303 extraction were used and a total number of approximately 3500 features were 

304 generated for PSG signals in each epoch. As the large number of features can greatly 

305 increase the risk of the curse of dimensionality, the NCA algorithm was used for feature 

306 selection (to avoid the mentioned risk). 

307 To reduce the dimensions of the data using the NCA algorithm and to select the 

308 features, a threshold level of 0.1 was determined for weight screening. This value was 

309 selected by examining the appropriate number of output parameters based on threshold 

310 levels, where the goal of this step was to reduce the number of dimensions to 37. Figure 

311 6 shows the NCA value (y-axis) for the selected features (x-axis) in a descending order.

312

313

314 Figure 6. NCA output values for 37 selected features from wavelet tree analysis

315

316 As a rule of thumb, in the classification phase, all architectures with one or two hidden 

317 layers were investigated to achieve the best architecture in the ANN design. In each 

318 layer, as many neurons as one to three times the number of inputs were explored (Fig. 

319 7). 

320

321

322

323 Figure 7. Results of different ANN structures

324 Figure 7 shows the accuracy values for different layering modes of the ANN, where the 

325 horizontal axis is the number of neurons in the first hidden layer and the vertical one is 

326 the number of neurons in the second hidden layer. Based on the results, an architecture 
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327 with one input layer (37 neurons = number of selected features), two hidden layers (75 

328 neurons, 76 neurons), and one output layer (with 5 neurons = the number of sleep 

329 stages) was considered as the optimal architecture (Fig. 8).

330

331

332 Figure 8. ANN architecture for sleep scoring

333

334 According to the information theory, if the target and predicted outputs of the ANN 

335 represent two probable distributions, their cross-entropy is a natural measure of their 

336 difference (68). It should be noted that cross-entropy is an appropriate criterion for 

337 assessing the training and controlling the ANN, if necessary. Figure 9 shows the cross-

338 entropy values over epochs for network training.

339

340

341

342 Figure 9. Network training cross-entropy

343

344 For the five-class sleep scoring, ANN achieved a 90.3% accuracy, which is near the 

345 performance of the state-of-the-art method. As another assessment, the receiver 

346 operating characteristic (ROC) can be used as a statistic for the predictive test in a 

347 binary classification task. The ROC curve is a graphic representation of the sensitivity 

348 and specificity of the test across the entire range of the possible classification cut-offs. A 

349 0.50 area under the ROC curve indicates a random test performance, whereas 1.00 is 

350 considered as perfect (69). Actually, these charts demonstrate the classifier9s ability to 

351 separate each class from the others. Converting the five-class classification problem 

352 into five binary classifications (each class versus the other classes) provides a 

353 benchmark for analyzing the classifier9s performance. Figure 10 shows the network 

354 performance on the test data section in the ROC curve.

355

356 Figure 10. ANN ROC

357

358 In SVM training, various values were generated and tested as SVM parameters (box 

359 constraint and RBF sigma), and the accuracy was evaluated in each situation. The 
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360 result of this step led to the creation of a chart of accuracy based on the parameters 

361 (Fig. 11).

362

363

364 Figure 4. SVM accuracy based on various box constraints and RBF sigma

365

366 Based on the optimal parameters, the SVM model was created using the training 

367 samples, and a test was carried out based on the test samples. The SVM performance 

368 was evaluated as 89.93% in mean accuracy. Figure 12 shows the ROC diagram for 

369 SVM in a five-class sleep scoring with Area under the curve (AUC) = 0.91.

370

371

372 Figure 12. SVM ROC

373 Furthermore, Fig. 13 shows a comparison of the performance of both ANN and SVM 

374 versus the state-of-the-art methods. As shown in the figure, the method introduced in 

375 this study achieved almost the same performance as that of the state of the art.

376

377 Figure 5. Accuracy comparison

378

379 As stated in (70), applying some primary criteria is important for evaluating the 

380 algorithms based on the validity of the reports. In the present study, the mentioned 

381 criteria were used as widely as possible in data preparation, data splitting, training the 

382 model, and reporting; however, each study, based on its intended purpose, examines a 

383 certain aspect of efficiency. Regarding the classification of sleep stages, choosing the 

384 accuracy as the main parameter of performance evaluation is an appropriate choice and 

385 has been considered in most sleep scoring studies. It should be noted that the cost of 

386 achieving the optimal performance was also examined for both ANN and SVM 

387 techniques. Given the different layers and nodes, the ANN training took a total of 

388 approximately 8 h on Intel Core i7 3 GHz laptop with 8 GB RAM, whereas checking 

389 different parameters of SVM took approximately 1 h on the same device.

390

391 Discussion and Conclusion
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392 The analysis of the studies on automatic sleep scoring reveals that the number of these 

393 studies is increasing in recent years (28335). Moreover, the comparison of previous 

394 methods of sleep scoring with the introduced method in the present study showed some 

395 interesting points. In general, it can be concluded that the three phases including 

396 feature extraction, selection, and classification have been used in most of the studies. 

397 In terms of features extracted from signals in the previous methods of sleep scoring, 

398 there were various techniques including spectral measures (32), nonlinear measures 

399 (71), multiscale entropy (72), energy features from frequency bands (38), and empirical 

400 mode decompositions (20). Moreover, features from dual tree complex wavelet 

401 transform, tunable Q-factor wavelet transform (32), normal inverse Gaussian pdf 

402 modeling (31), and statistical moments (35) were used in the feature extraction phase.

403 The common property of these methods is the analysis of signal information at different 

404 times and frequency resolutions, which provide a detailed information of the signal at 

405 different levels.

406 Of course, the nature of biological signals, particularly those related to the brain 

407 function, show non-stationary properties and therefore, requires a combined time-

408 frequency analysis simultaneously. It should be noted that, the advantage of the method 

409 used in this study is the capability to perform simultaneous time-frequency analysis of 

410 the signals with high precision, and to finally present them in the form of energy 

411 parameters. 

412 Energy extraction with the help of the multispectral analysis is valuable in the analysis of 

413 PSG signals. However, the volume of generated information is very high and each 

414 epoch of the PSG signals is mapped to a new sample in a space with a very high 

415 dimensionality. Therefore, it is necessary to control the huge amount of generated 

416 information to prevent the curse of dimensionality risk in the sleep scoring process.

417 In this regard, various methods have been used to reduce the dimension including 

418 manual selection of features, using transforms such as Quadratic and Linear 

419 discriminant analysis, and statistical analysis. In the present study, NCA, which 

420 combines linear and nonlinear analysis simultaneously, was used to reduce the number 

421 of dimensions. It decreases the dimensions based on a combination of linear and 

422 nonlinear operations in a mixed mode. According to the results from NCA, this method 

423 reduced the initial number of features generated by the wavelet tree analysis to 37 with 

424 a compression rate of approximately 0.01. In addition to the quantitative power of the 

425 method in compressing the feature dimensions, the selected features had also a good 

426 quality when they were used at the next stage as the input of the classifiers, leading to 

427 an acceptable performance.

428 Surveying studies have applied various classifier techniques such as QDA, LDA, ANNs, 

429 boosted decision tree, random forest, bagging (ANN), and adaptive boosting in sleep 
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430 scoring. In this study, ANN and SVM were used for testing sleep scoring based on the 

431 features generated by the wavelet tree analysis. The features were then compressed 

432 using the NCA algorithm. One of the most successful studies in automatic sleep scoring 

433 applied CEEMDAN with bootstrap aggregating (bagging with a decision tree core) and 

434 achieved a 90.69% accuracy in sleep scoring (28). Another study applied tunable Q-

435 wavelet transform features with various spectral features and achieved an overall 

436 accuracy of 91.50% for a five-class sleep scoring (32). Moreover, another study 

437 achieved 93.69% accuracy using a decomposed two-subband tunable Q wavelet 

438 transform and four statistical moments extracted for each subband (35). In terms of 

439 overall accuracy (five-class separation), applying our methods on the sleep-EDF 

440 dataset achieved 90.33% and 89.93% accuracies for ANN and SVM respectively, which 

441 are close to the performance of the state of the art (see Table 4 to Table 7).

442 Table 4. ANN confusion matrix

443

444 Table 5. ANN evaluation metrics

445

446 Table 6. SVM confusion matrix

447

448 Table 7. SVM evaluation metrics

449

450 In the end, the following are the points worth mentioning. In the present study, the 

451 wavelet tree analysis was used for feature extraction from biological signals both in the 

452 time and frequency domains, because of its ability to mine very precise information 

453 about the signal energy. Notably, the wavelet tree produced high-dimensional features, 

454 which should be handled using a suitable method. In this regard, the NCA, as a 

455 combination of linear and nonlinear methods, was used to compress the information in 

456 an excellent way, both quantitatively and qualitatively. Thus, the advantage of this study 

457 was the use of the NCA method in reducing the dimensions of features appropriately by 

458 the simultaneous analysis of both linear and nonlinear features (although some similar 

459 studies had also achieved a good performance using some other classifiers). Given the 

460 modular capability of the method presented in this study, it is possible to replace any of 

461 its elements in the feature extraction, feature compression, and classification. 

462 Therefore, future studies can be directed toward changing each element to achieve 

463 better performance. 

464
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465 Limitations 

466 This study was limited to the acquisition of local sleep EEG datasets. Accessing such 

467 dataset could help validate its results more accurately.

468
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Figure 1

The flowchart of the proposed method for sleep scoring
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Figure 2

PolySomnoGraphy signal values
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Figure 3

Wavelet packet feature extraction from input signal
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Figure 4

A sample of ANN with one input layer, two hidden layers and one output layer
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Figure 5

Support vector in SVM

Each point shows a sample of data.
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Figure 6

NCA output values
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Figure 7

ANN Accuracy values
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Figure 8

Artificial Neural Network Architecture for sleep scoring
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Figure 9

Network training cross entropy

The lines show the network performance: B: Train G: Validation R: Test.
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Figure 10

ANN ROC

ROC for 5 classes: Blue: Wake Dark Green: N1 Light Green: N2 Red: N3 Purple: REM.
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Figure 11

SVM Accuracy values
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Figure 12

SVM ROC
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Figure 13

Accuracy comparison
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Table 1(on next page)

Stages count in sleep- edf
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1 Table1.Stages count in sleep-edf

Stage Count

Wake 77327

N1 4664

N2 26560

N3 9049

REM 11618

2
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Table 2(on next page)

ANNs model setting in Matlab
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1

2 Table2. ANNs model setting in Matlab

Setting Value

Activation function Tangent sigmoid

preprocess function Remove constant rows

Data partitioning mode random

Network performance 
evaluation

Cross entropy

Iteration 1000

3
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Table 3(on next page)

parameters tuning
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1

2 Table3. parameters tuning
parameters Setting

Gamma range Outer product of log space (-1,.1,10) and 

np.array([1,10]))

Box Constraint range Outer product of log space (-1, .1, 10) and 

np.array([1,10])

3
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Table 4(on next page)

ANN Confusion matrix

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27020v1 | CC BY 4.0 Open Access | rec: 3 Jul 2018, publ: 3 Jul 2018



1 Table4. ANN Confusion matrix

Target

Out

Wake N1 N2 N3 Rem

Wake 305 3 0 1 1

N1 5 256 6 0 8

N2 0 11 252 7 43

N3 0 1 6 277 0

Rem 5 22 6 20 265

2
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Table 5(on next page)

ANN Evaluation metrics
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1 Table5. ANN Evaluation metrics

Metrics Values

Accuracy 0.9033

Error 0.0967

Sensitivity 0.9057

Specificity 0.9758

Precision 0.9039

False Positive Rate 0.0242

F1_score 0.9034

Matthews Correlation Coefficient 0.8803

Kappa 0.6979

2
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Table 6(on next page)

SVM Confusion matrix
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1 Table6. SVM Confusion matrix

Target

Out

Wake N1 N2 N3 Rem

Wake 292 5 0 0 1

N1 2 232 19 3 44

N2 0 5 275 10 7

N3 1 2 8 288 1

Rem 1 32 10 0 262

2
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Table 7(on next page)

SVM Evaluation metrics
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1 Table7. SVM Evaluation metrics

Metrics Values

Accuracy 0.8993

Error 0.1007

Sensitivity 0.8996

Specificity 0.9748

Precision 0.8994

False Positive Rate 0.0252

F1_score 0.8991

Matthews Correlation Coefficient 0.8743

Kappa 0.6854

2
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