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Abstract

Along with recent developments in high-throughput sequencing (HTS) technologies and thus fast
accumulation of HTS data, there has been a growing need and interest for developing tools for
HTS data processing and communication. In particular, a number of bioinformatics tools have
been designed for analysing metabarcoding data, each with specific features, assumptions and
outputs. To evaluate the potential effect of the application of different bioinformatics workflow
on the results, we compared the performance of different analysis platforms on two contrasting
high-throughput sequencing data sets. Our analysis revealed that the computation time, quality of
error filtering and hence output of specific bioinformatics process largely depends on the
platform used. Our results show that none of the bioinformatics workflows appear to perfectly
filter out the accumulated errors and generate Operational Taxonomic Units, although PipeCratft,

LotuS and PIPITS perform better than QIIME2 and Galaxy for the tested fungal amplicon data
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set. We conclude that the output of each platform require manual validation of the OTUs by

examining the taxonomy assignment values.

Key words: Microbial communities, microbiome, mycobiome, fungal biodiversity,

metagenomics, amplicon sequencing.

Introduction
Fungi are major ecological and functional players in terrestrial ecosystems. The full diversity of
fungi remains largely uncharted due to their largely unculturable nature, the lack of tangible
morphological manifestations and shortcomings of the mycological community to sample
beyond traditional habitats and substrates (Grossart et al. 2016; Hibbett et al. 2017; Liicking et al.
2018). As a result, identification of fungi has come to rely mainly on direct DNA sequencing of
material containing fungal hyphae or spores. In this regard, several DNA barcoding regions have
been evaluated, and the current consensus is that the nuclear ribosomal internal transcribed
spacer (ITS) region is the best region for delimiting fungal taxa at the species level across a
variety of fungal groups (Schoch et al. 2012). Recent advances in high-throughput sequencing
(HTS) have made it possible to sequence millions of reads and identify thousands of fungal taxa
from a single sample. Handling this enormous amount of data is often complicated and requires
extensive bioinformatics expertise.

Multiple analysis platforms have been introduced to facilitate bioinformatics treatment of
HTS data. However, most of these software suites were developed for the prokaryotic 16S rRNA
gene and may therefore perform poorly with other markers and other organisms, in particular
ITS sequences due to their length variation and unalignability across taxonomic expanses. To
accommodate for this, several tailored platforms have recently been developed to specifically
address fungal ITS datasets (Anslan et al. 2017; Gweon et al. 2015; Hildebrand et al. 2014;
Vetrovsky et al. 2018). These platforms cover multiple steps of the analysis procedure, including
quality control, clustering, taxonomic assignment and generating Operational Taxonomic Unit
(OTU) abundance tables. Many of these platforms cover all these analysis steps, whereas others
do not.

The application of different bioinformatics workflows may introduce variation in the data

quality and output OTU table (Majaneva et al. 2015; Sinha et al. 2017). However, to date there
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are no data on the relative performance of the available tools for fungal HTS data analysis. In
this study, we report on the relative performance of the most popular software pipelines on two

contrasting HTS datasets.

Methods

Sequence data and general workflow

We compared the performance of bioinformatics analysis platforms on two fungal ITS data sets.
Tested data sets include Illumina MiSeq paired-end ITS2 amplicons from arthropod substrates
(Anslan et al. 2018), and full ITS circular consensus sequences from Pacific Biosciences
(PacBio) Sequel machine, amplified from soil samples. PacBio data set is available through
PlutoF database (Abarenkov et al. 2010b),
https://plutof.ut.ee/#/datacite/10.15156%2FBIO%2F781236). For bioinformatics analyses, we
used multiple platforms that support all steps in the analysis of HTS-based metabarcoding
datasets: QIIME2 (v2018.2; Caporaso et al. 2010), LotuS (v1.59; Hildebrand et al. 2014), Galaxy
(v.2.1.1; Afgan et al. 2016), PipeCraft (v1.0; Anslan et al. 2017), and PIPITS (v2.0; Gweon et al.
2015) (Table 1; Figure 1). Depending on analysis platform, quality filtering was performed using
either VSEARCH (Rognes et al. 2016), trimmomatic (Bolger et al. 2014), DADA2 (Callahan et
al. 2016), sdm (Hildebrand et al. 2014) or fastx (http://hannonlab.cshl.edu/fastx_toolkit). Quality

filtered sequences were passed through chimeric reads removal algorithms as implemented in
USEARCH (Edgar 2013; Edgar et al. 2011) or VSEARCH. Using PipeCraft, LotuS and PIPITS,
reads were also subjected to ITS extraction using ITSx (Bengtsson-Palme et al. 2013) to remove
conservative flanking genes of the ITS region. OTU formation (clustering) was performed using
USEARCH or VSEARCH as outlined below (Platform specific options). For each platform, we
relied on de-novo single linkage clustering, which is the most popular approach in fungal
community studies, knowing that reference based clustering methods can provide similar results
(Cline et al. 2017). Taxonomic affiliations were assigned to OTUs using DP Naive Bayesian
rRNA Classifier (RDP classifier v2.11; Wang et al. 2007) with the Warcup Fungal ITS trainset 2
(confidence threshold: 80%; Deshpande et al. 2016) as well as BLAST+ (Camacho et al. 2009)
search (e-value = 0.001, word size = 7, reward = 1, penalty = -1, gap open = 1, gap extend = 2)

against the UNITE v7.2 reference database (Abarenkov et al. 2010a).
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94 Platform specific options

95  Using QIIME2, reads were assembled (Illumina data) and quality filtered using DADA2
96  (Callahan et al. 2016) with default options, except --p-trunc-len = 0, --p-max-ee = 1 and --p-
97  chimera-method = none (with chimera-method = consensus, QIIME2 reported error for our
98  data). Clustering was performed with VSEARCH cluster-features-de-novo (--p-perc-identity
99 0.97).

100 In LotuS pipline, data was assembled (Illumina data), quality filtered (minimum length =
101 170, minAvgQuality = 27, TruncateSequenceLength = 170, maxAccumulatedError = 0.75) and
102 demultiplexed with sdm (pdiffs = 1, bdiffs = 1). Chimera filtering was done using USEARCH de
103 novo chimera filtering (abundance annotation = 0.97, abskew = 2), and USEARCH reference-
104  based chimera filtering using UNITE v7.2 as reference database. Flanking genes of the ITS
105 region were discarded using ITSx (v1.0.11; default options). ITS reads were clustered to OTUs
106  with USEARCH/UPARSE algorithm (-id = 3, -minsize = 2).

107 Using web-based Galaxy pipeline, [llumina data was assembled with Fastq joiner
108 (Galaxy Version 2.0.1.1; Blankenberg et al. 2010) with default options. Quality filtering was
109  performed with Trimmomatic (Galaxy Version 0.36.3) — SLIDINGWINDOW; number of bases
110  to average across = 15, average quality required = 30, minimum length of kept reads = 45. Fastq
111 files were converted to FASTA files using FASTQ to FASTA converter (Galaxy Version 1.0.0).
112 Fasta files were demultiplexed using mothur (Galaxy Version 1.39.5.0; Schloss et al. 2009) —
113 pdiffs = 2, bdiffs = 1. Because sequences were of mixed orientation in the files (5’-3” and 3°-5°),
114  demultiplexing step was repeated for reverse oriented sequences (reads were reversed using
115 mothur reverse.seqs). Chimera filtering was done using VSEARCH chimera detection (Galaxy
116  Version 1.9.7.0) with default settings (abundance annotation = 97% similarity threshold) and
117 using the UNITE v7.2 database as reference. Clustering was performed using VSEARCH (--
118 cluster-fast, --id 0.97, --iddef 1).

119 In PipeCraft platform reads were assembled (Illumina data) and quality filtered using
120 VSEARCH (minimum overlap = 15, minimum length = 100, E max = 1, max ambiguous = 0,
121 allowstagger = T). Demultiplexing was done using mothur (pdiffs = 2, bdiffs = 1). In this step
122 sequences are also reoriented into the 5°-3” orientation based on primers (2 mismatches allowed).
123 Chimeric sequences were removed using VSEARCH de novo (abundance annotation = 0.97,

124  abskew = 2) and reference-based (UNITE v7.2 as reference) chimera filtering algorithms. In
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125 chimera filtering step, PipeCraft supported option for “primer artefact” removal was also used
126 (sequences where primer strings were found in the middle of the sequence were removed). ITS
127 reads were extracted using ITSx (default options). Clustering was done using
128  USEARCH/UPARSE algorithm (id = 3, minsize = 2).

129 Using PIPITS, sequences were assembled with VSEARCH and quality-filtering was done
130 with fastx through the PIPITS command pispino_createreadpairslist. The ITSx was executed
131 through the PIPITS command pipits funits. Chimera filtering and clustering was done using
132 VSEARCH through the PIPITS command pipits_process.

133

134 Additional filtering

135 The additional manual OTU table filtering was based on the BLAST similarity scores when run
136 against UNITE (v7.2) reference database. Any OTUs that had no BLAST hit or that were not
137 classified to the kingdom Fungi were discarded from the OTU table. Remaining OTUs were
138 filtered based on BLAST e-value and query coverage. OTUs with higher e-value than 1¢* and
139 query coverage less than 70% were excluded from the dataset (as putative artefacts or non-fungal
140  OTUs). Additionally, OTUs with low numbers of sequences per sample were removed (less than
141 10 sequences per sample; Brown et al. (2015)). Finally, the LULU (Freslev et al. 2017)
142 algorithm was applied (minimum ratio type = "min", minimum match = 97) to merge
143 consistently co-occurring ‘daughter’ OTUs.

144

145 Data pooling

146 To detect the effect of analysis platform choice on the OTU composition, we pooled sequences
147  originating from different platforms and applied common clustering method to generate a single
148 OTU table. For Illumina data, filtered reads from PipeCraft, LotuS and PIPITS were pooled and
149 clustered using CD-HIT (Fu et al. 2012) at 97% sequence similarity (Table 1). The pooled
150  PacBio data set included filtered sequences from LotuS, PipeCraft and Galaxy platform,
151  clustering was performed using UPARSE algorithm with 97% sequence similarity threshold
152 (Table 1).

153

154 Statistical analysis
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155 We used PERMANOVA analysis (Anderson and Walsh 2013; Type III SS, 4,999 permutations)
156  on Bray-Curtis distances of Hellinger-transformed OTU matrices, using PRIMERG6 (Clarke and
157 Gorley 2006). Outliers were screened and removed using analysis of non-metric
158  multidimensional scaling (NMDS). The numbers of sequences per sample were included in the
159  analysis as covariates. Rarefaction curves were generated based on OTU abundance matrices for
160  each dataset using the RTK package (Saary et al. 2017) of R (R-Core-Team 2015).

161

162 Results and Discussion

163 Properties of bioinformatics analysis platforms

164  All tested bioinformatics platforms offer straightforward installation. While Galaxy provides a
165  freely available online platform, the benefits of PipeCraft and QIIME2 include easy-to-use
166  graphical user interfaces and multiple options for data analysis. These platforms bundle many
167  tools for diverse tasks. LotuS and PIPITS represent command-line based platforms. PIPITS
168  offers a limited number of tools, but data analysis is easily performed with a straightforward
169  pipeline. LotuS has been developed to minimize computational time and memory requirements.
170 Specifically, for accuracy of ITS-based analyses of fungi and other eukaryotes, PipeCraft, LotuS
171 and PIPITS implement the ITSx tool (Bengtsson-Palme et al., 2013), which removes the
172 fragments of conservative flanking genes for precise clustering purposes. There is no such option
173 in QIIME2 and Galaxy.

174 Bioinformatics platforms differ by specific requirements to the input data, with the
175  options being a raw multiplexed file (a single file containing all sequences from one run) and
176 ~ multiple demultiplexed files (reads split into separate files based on indexes). PipeCraft and
177 Galaxy use raw multiplexed data, whereas QIIME2 and PIPITS require demultiplexed files. Only
178  LotuS allows both, multiplexed and demultiplexed files as input. As the raw data files are
179  multiplexed by default, QIIME2 and PIPITS platforms required additional steps of analyses
180  outside these tool to meet the input requirements. Using a Python script, we demultiplexed the
181  raw Illumina data, allowing 2 and 1 mismatches to primer and index strings, respectively.
182 However, PacBio data analysis was dropped for QIIME2 and PIPITS as the present versions of
183 these platforms are limited to analysis of short read (Illumina) data.

184

185  Performance of bioinformatics platforms on sequence data
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186 For both the Illumina and PacBio datasets, the final OTU richness (singleton OTUs excluded)
187  differed considerably among the tested workflows (Table 1). We found that pipelines that
188  produced roughly comparable numbers of total OTUs (QIIME2, PipeCraft, PIPITS, and LotuS
189  for Illumina data) still exhibited large variation in OTU richness per sample (Figure 2, 3). By
190  performing joint de-novo clustering for filtered sequences from different pipelines (total number
191 of OTUs = 16 333), we observed a weak but significant effect of pipeline choice on overall OTU
192 composition for the Illumina data set (PERMANOVA: pseudo-F, ses = 5.88, Rzadj =0.012, P <
193 0.001). For PacBio data set (total number of OTUs = 4448), differences among platforms were
194 slightly stronger (pseudo-F» 512 = 9.174; Rzadj =0.033, P <0.001).

195 Taxonomic annotation tools differed in the ability to classify OTUs. In general, BLAST
196  searches revealed many cases of high-quality matches to non-fungal organisms (in some cases
197  for hundreds of OTUs), while RDP as combined with the Warcup Fungal ITS trainset
198  optimistically classified all OTUs to Fungi (100% confidence). Numerous papers have evaluated
199  the performance of different methods on the accuracy of taxonomic assignment, and
200  performance inevitably hinges on the completeness of the reference database used (e.g. Gdanetz
201 etal., 2017; Richardson et al., 2017). In spite of its relatively rapid performance, the RDP Fungal
202 ITS trainset does not include any non-fungal data, which explains its shortcomings in detecting
203 non-fungal OTUs. However, the confidence score of an RDP classifier did not exceed 64% for
204  non-fungal OTUs, mostly overestimating the group of unclassified fungi.

205 We also observed that the quality-filtered datasets included up to ~10% of obvious
206  erroneous/chimeric OTUs that produced matches with low query coverage and confidence
207  scores. A long tail of satellite OTUs, assigned to a single species hypothesis with 99-100%
208  BLAST identity and RDP classifier confidence level, were also common — especially in the
209  results where relatively a high number of OTUs was observed (Galaxy platform). After filtering
210  the spurious OTUs manually (see Methods), we found that richness estimates per sample became
211 more homogeneous across pipelines (Illumina data: Figure 3). When OTU table filtering was
212 applied to jointly clustered reads from different pipelines, the significant effect of pipeline choice
213 on the community composition diminished (Illumina data: pseudo-F, g37 = 0.955, R%,4; = 0.007, P
214 =0.779).

215 In conclusion, our results indicate that bioinformatics analysis pipelines greatly differ in

216  their relative performance on ITS data sets targeting fungi, although roughly similar quality-
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217  oriented settings were implemented. Overall, our recommended Illumina data workflow would
218 be PipeCraft, PIPITS or LotuS, which provide a good balance between speed, mycological
219 accuracy (including support for ITS Extractor) and technical quality. For PacBio, the tools
220  implemented in PipeCraft were most suitable for the long-read analysis. Conversely, the widely
221 used platform in prokaryote 16S-based studies, our options chosen in Galaxy, performed
222 relatively poorly on the ITS data. While QIIME2 implements accurate quality filtering algorithm
223 of DADAZ2, the lack of ITS region extraction lowers the accuracy for mycological studies. Of
224 classification tools, BLAST searches against the UNITE database provided more accurate results
225 on the kingdom and phylum levels compared with the RDP and Warcup ITS trainset combined.
226 ~ We emphasize that none of the tested bioinformatics workflows are able to fully filter out the
227  errors that accumulated during sample preparation and sequencing, even when using the most
228  elaborate error-filtering options. Therefore, manual curation of OTU tables continues to be an
229  important step in obtaining robust datasets, although semi-automatic tools to assist evaluation are
230  becoming available (Freslev et al. 2017). It is also important to rely on high-coverage reference
231  databases to be able to recognize non-target organisms and metagenomic reads.

232
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Table 1. Used software, sequence and OTU counts (values in bold) by a) Illumina and b) PacBio
analysis platforms. The number of sequences denote raw input reads and remaining reads after

each analysis step. Singleton OTUs were excluded from the OTU counts.

a
LotuS Qiime2 PipeCraft Galaxy PIPITS
Raw reads 7,981,812°  7,335.838" 7,981,812  7,981,812°  7335838"
Assembly  FLASH/ DADA2/  VSEARCH/ FASTQ VSEARCH/
NA NA 7,511,274 joiner/ 7,198,094
7,911,554
Quality sdm/ DADA2/ VSEARCH/ trimmomatic/ fastqx/
filtering NA 5,428,563 7,511,274 7,879,960 7,142,354
Demultiplexing sdm/ NP mothur/ mothur/ NP
6,727,631 6,558,772 1,643,879
Chimera USEARCH/ NP VSEARCH/ VSEARCH/ VSEARCH/
filtering 6,486,802 6,300,085 1,621,330 NA
ITS extractor 5,919,084 NP 6,262,000 NP 6,401,097
Clustering UPARSE/ VSEARCH/ UPARSE/ VSEARCH/ VSEARCH/
(OTUs) 8,659 7,477 7,598 23,167 7,887
b
LotusS PipeCraft Galaxy
CCS°reads  720,222° 720,222% 720,222°
Quality sdm/ VSEARCH/ trimmomatic/
filtering NA 462,010 672,292
Demultiplexing sdm/ mothur/ mothur/
258,085 380,722 457,173
Chimera USEARCH/ VSEARCH/ VSEARCH/
filtering 255,746 341,154 405,025
ITS extraction 192,485 338,150 NP
Clustering UPARSE/  UPARSE/  VSEARCH/
(OTUs) 942 4,176 8,338

“multiplexed input data; "demultiplexed input data; “circular consensus sequences; NA: indicate

not available; NP: not performed.
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Figure 1. Outline of workflow in different analysis pipelines.
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Figure 2. OTU accumulation curves of the evaluated pipelines for a) PacBio and b) [llumina

data sets.
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396  differences = 12 OTUs). The Galaxy workflow was excluded here.
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