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Abstract 20 

Along with recent developments in high-throughput sequencing (HTS) technologies and thus fast 21 

accumulation of HTS data, there has been a growing need and interest for developing tools for 22 

HTS data processing and communication. In particular, a number of bioinformatics tools have 23 

been designed for analysing metabarcoding data, each with specific features, assumptions and 24 

outputs. To evaluate the potential effect of the application of different bioinformatics workflow 25 

on the results, we compared the performance of different analysis platforms on two contrasting 26 

high-throughput sequencing data sets. Our analysis revealed that the computation time, quality of 27 

error filtering and hence output of specific bioinformatics process largely depends on the 28 

platform used. Our results show that none of the bioinformatics workflows appear to perfectly 29 

filter out the accumulated errors and generate Operational Taxonomic Units, although PipeCraft, 30 

LotuS and PIPITS perform better than QIIME2 and Galaxy for the tested fungal amplicon data 31 
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set. We conclude that the output of each platform require manual validation of the OTUs by 32 

examining the taxonomy assignment values. 33 

 34 

Key words: Microbial communities, microbiome, mycobiome, fungal biodiversity, 35 

metagenomics, amplicon sequencing. 36 

 37 

Introduction 38 

Fungi are major ecological and functional players in terrestrial ecosystems. The full diversity of 39 

fungi remains largely uncharted due to their largely unculturable nature, the lack of tangible 40 

morphological manifestations and shortcomings of the mycological community to sample 41 

beyond traditional habitats and substrates (Grossart et al. 2016; Hibbett et al. 2017; Lücking et al. 42 

2018). As a result, identification of fungi has come to rely mainly on direct DNA sequencing of 43 

material containing fungal hyphae or spores. In this regard, several DNA barcoding regions have 44 

been evaluated, and the current consensus is that the nuclear ribosomal internal transcribed 45 

spacer (ITS) region is the best region for delimiting fungal taxa at the species level across a 46 

variety of fungal groups (Schoch et al. 2012).  Recent advances in high-throughput sequencing 47 

(HTS) have made it possible to sequence millions of reads and identify thousands of fungal taxa 48 

from a single sample. Handling this enormous amount of data is often complicated and requires 49 

extensive bioinformatics expertise.  50 

Multiple analysis platforms have been introduced to facilitate bioinformatics treatment of 51 

HTS data. However, most of these software suites were developed for the prokaryotic 16S rRNA 52 

gene and may therefore perform poorly with other markers and other organisms, in particular 53 

ITS sequences due to their length variation and unalignability across taxonomic expanses. To 54 

accommodate for this, several tailored platforms have recently been developed to specifically 55 

address fungal ITS datasets (Anslan et al. 2017; Gweon et al. 2015; Hildebrand et al. 2014; 56 

Vetrovský et al. 2018). These platforms cover multiple steps of the analysis procedure, including 57 

quality control, clustering, taxonomic assignment and generating Operational Taxonomic Unit 58 

(OTU) abundance tables. Many of these platforms cover all these analysis steps, whereas others 59 

do not.  60 

The application of different bioinformatics workflows may introduce variation in the data 61 

quality and output OTU table (Majaneva et al. 2015; Sinha et al. 2017). However, to date there 62 
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are no data on the relative performance of the available tools for fungal HTS data analysis. In 63 

this study, we report on the relative performance of the most popular software pipelines on two 64 

contrasting HTS datasets. 65 

  66 

Methods 67 

Sequence data and general workflow 68 

We compared the performance of bioinformatics analysis platforms on two fungal ITS data sets. 69 

Tested data sets include Illumina MiSeq paired-end ITS2 amplicons from arthropod substrates 70 

(Anslan et al. 2018), and full ITS circular consensus sequences from Pacific Biosciences 71 

(PacBio) Sequel machine, amplified from soil samples. PacBio data set is available through 72 

PlutoF database (Abarenkov et al. 2010b), 73 

https://plutof.ut.ee/#/datacite/10.15156%2FBIO%2F781236). For bioinformatics analyses, we 74 

used multiple platforms that support all steps in the analysis of HTS-based metabarcoding 75 

datasets: QIIME2 (v2018.2; Caporaso et al. 2010), LotuS (v1.59; Hildebrand et al. 2014), Galaxy 76 

(v.2.1.1; Afgan et al. 2016), PipeCraft (v1.0; Anslan et al. 2017), and PIPITS (v2.0; Gweon et al. 77 

2015) (Table 1; Figure 1). Depending on analysis platform, quality filtering was performed using 78 

either VSEARCH (Rognes et al. 2016), trimmomatic (Bolger et al. 2014), DADA2 (Callahan et 79 

al. 2016), sdm  (Hildebrand et al. 2014) or fastx (http://hannonlab.cshl.edu/fastx_toolkit). Quality 80 

filtered sequences were passed through chimeric reads removal algorithms as implemented in 81 

USEARCH (Edgar 2013; Edgar et al. 2011) or VSEARCH. Using PipeCraft, LotuS and PIPITS, 82 

reads were also subjected to ITS extraction using ITSx (Bengtsson-Palme et al. 2013) to remove 83 

conservative flanking genes of the ITS region. OTU formation (clustering) was performed using 84 

USEARCH or VSEARCH as outlined below (Platform specific options). For each platform, we 85 

relied on de-novo single linkage clustering, which is the most popular approach in fungal 86 

community studies, knowing that reference based clustering methods can provide similar results 87 

(Cline et al. 2017). Taxonomic affiliations were assigned to OTUs using DP Naive Bayesian 88 

rRNA Classifier (RDP classifier v2.11; Wang et al. 2007) with the Warcup Fungal ITS trainset 2 89 

(confidence threshold: 80%; Deshpande et al. 2016) as well as BLAST+ (Camacho et al. 2009) 90 

search (e-value = 0.001, word size = 7, reward = 1, penalty = -1, gap open = 1, gap extend = 2) 91 

against the UNITE v7.2 reference database (Abarenkov et al. 2010a). 92 

 93 
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Platform specific options 94 

Using QIIME2, reads were assembled (Illumina data) and quality filtered using DADA2 95 

(Callahan et al. 2016) with default options, except --p-trunc-len = 0, --p-max-ee = 1 and --p-96 

chimera-method = none (with chimera-method = consensus, QIIME2 reported error for our 97 

data). Clustering was performed with VSEARCH cluster-features-de-novo (--p-perc-identity 98 

0.97).  99 

In LotuS pipline, data was assembled (Illumina data), quality filtered (minimum length = 100 

170, minAvgQuality = 27, TruncateSequenceLength = 170, maxAccumulatedError = 0.75) and 101 

demultiplexed with sdm (pdiffs = 1, bdiffs = 1). Chimera filtering was done using USEARCH de 102 

novo chimera filtering (abundance annotation = 0.97, abskew = 2), and USEARCH reference-103 

based chimera filtering using UNITE v7.2  as reference database. Flanking genes of the ITS 104 

region were discarded using ITSx (v1.0.11; default options). ITS reads were clustered to OTUs 105 

with USEARCH/UPARSE algorithm (-id = 3, -minsize = 2).  106 

Using web-based Galaxy pipeline, Illumina data was assembled with Fastq joiner 107 

(Galaxy Version 2.0.1.1; Blankenberg et al. 2010) with default options. Quality filtering was 108 

performed with Trimmomatic (Galaxy Version 0.36.3) ‒ SLIDINGWINDOW; number of bases 109 

to average across = 15, average quality required = 30, minimum length of kept reads = 45. Fastq 110 

files were converted to FASTA files using FASTQ to FASTA converter (Galaxy Version 1.0.0). 111 

Fasta files were demultiplexed using mothur (Galaxy Version 1.39.5.0; Schloss et al. 2009) ‒ 112 

pdiffs = 2, bdiffs = 1. Because sequences were of mixed orientation in the files (5’-3’ and 3’-5’), 113 

demultiplexing step was repeated for reverse oriented sequences (reads were reversed using 114 

mothur reverse.seqs). Chimera filtering was done using VSEARCH chimera detection (Galaxy 115 

Version 1.9.7.0) with default settings (abundance annotation = 97% similarity threshold) and 116 

using the UNITE v7.2 database as reference. Clustering was performed using VSEARCH (--117 

cluster-fast, --id 0.97, --iddef 1).  118 

In PipeCraft platform reads were assembled (Illumina data) and quality filtered using 119 

VSEARCH (minimum overlap = 15, minimum length = 100, E max = 1, max ambiguous = 0, 120 

allowstagger = T). Demultiplexing was done using mothur (pdiffs = 2, bdiffs = 1). In this step 121 

sequences are also reoriented into the 5’-3’ orientation based on primers (2 mismatches allowed). 122 

Chimeric sequences were removed using VSEARCH de novo (abundance annotation = 0.97, 123 

abskew = 2) and reference-based (UNITE v7.2 as reference) chimera filtering algorithms. In 124 
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chimera filtering step, PipeCraft supported option for “primer artefact” removal was also used 125 

(sequences where primer strings were found in the middle of the sequence were removed). ITS 126 

reads were extracted using ITSx (default options). Clustering was done using 127 

USEARCH/UPARSE algorithm (id = 3, minsize = 2).  128 

Using PIPITS, sequences were assembled with VSEARCH and quality-filtering was done 129 

with fastx through the PIPITS command pispino_createreadpairslist. The ITSx was executed 130 

through the PIPITS command pipits_funits. Chimera filtering and clustering was done using 131 

VSEARCH through the PIPITS command pipits_process.  132 

 133 

Additional filtering 134 

The additional manual OTU table filtering was based on the BLAST similarity scores when run 135 

against UNITE (v7.2) reference database. Any OTUs that had no BLAST hit or that were not 136 

classified to the kingdom Fungi were discarded from the OTU table. Remaining OTUs were 137 

filtered based on BLAST e-value and query coverage. OTUs with higher e-value than 1e-25 and 138 

query coverage less than 70% were excluded from the dataset (as putative artefacts or non-fungal 139 

OTUs). Additionally, OTUs with low numbers of sequences per sample were removed (less than 140 

10 sequences per sample; Brown et al. (2015)). Finally, the LULU (Frøslev et al. 2017) 141 

algorithm was applied (minimum_ratio_type = "min", minimum_match = 97) to merge 142 

consistently co-occurring ‘daughter’ OTUs. 143 

 144 

Data pooling 145 

To detect the effect of analysis platform choice on the OTU composition, we pooled sequences 146 

originating from different platforms and applied common clustering method to generate a single 147 

OTU table. For Illumina data, filtered reads from PipeCraft, LotuS and PIPITS were pooled and 148 

clustered using CD-HIT (Fu et al. 2012) at 97% sequence similarity (Table 1). The pooled 149 

PacBio data set included filtered sequences from LotuS, PipeCraft and Galaxy platform, 150 

clustering was performed using UPARSE algorithm with 97% sequence similarity threshold 151 

(Table 1). 152 

 153 

Statistical analysis 154 
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We used PERMANOVA analysis (Anderson and Walsh 2013; Type III SS, 4,999 permutations) 155 

on Bray-Curtis distances of Hellinger-transformed OTU matrices, using PRIMER6 (Clarke and 156 

Gorley 2006). Outliers were screened and removed using analysis of non-metric 157 

multidimensional scaling (NMDS). The numbers of sequences per sample were included in the 158 

analysis as covariates. Rarefaction curves were generated based on OTU abundance matrices for 159 

each dataset using the RTK package (Saary et al. 2017) of R (R-Core-Team 2015). 160 

 161 

Results and Discussion 162 

Properties of bioinformatics analysis platforms 163 

All tested bioinformatics platforms offer straightforward installation. While Galaxy provides a 164 

freely available online platform, the benefits of PipeCraft and QIIME2 include easy-to-use 165 

graphical user interfaces and multiple options for data analysis. These platforms bundle many 166 

tools for diverse tasks. LotuS and PIPITS represent command-line based platforms. PIPITS 167 

offers a limited number of tools, but data analysis is easily performed with a straightforward 168 

pipeline. LotuS has been developed to minimize computational time and memory requirements. 169 

Specifically, for accuracy of ITS-based analyses of fungi and other eukaryotes, PipeCraft, LotuS 170 

and PIPITS implement the ITSx tool (Bengtsson-Palme et al., 2013), which removes the 171 

fragments of conservative flanking genes for precise clustering purposes. There is no such option 172 

in QIIME2 and Galaxy. 173 

 Bioinformatics platforms differ by specific requirements to the input data, with the 174 

options being a raw multiplexed file (a single file containing all sequences from one run) and 175 

multiple demultiplexed files (reads split into separate files based on indexes). PipeCraft and 176 

Galaxy use raw multiplexed data, whereas QIIME2 and PIPITS require demultiplexed files. Only 177 

LotuS allows both, multiplexed and demultiplexed files as input. As the raw data files are 178 

multiplexed by default, QIIME2 and PIPITS platforms required additional steps of analyses 179 

outside these tool to meet the input requirements. Using a Python script, we demultiplexed the 180 

raw Illumina data, allowing 2 and 1 mismatches to primer and index strings, respectively. 181 

However, PacBio data analysis was dropped for QIIME2 and PIPITS as the present versions of 182 

these platforms are limited to analysis of short read (Illumina) data. 183 

 184 

Performance of bioinformatics platforms on sequence data 185 
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For both the Illumina and PacBio datasets, the final OTU richness (singleton OTUs excluded) 186 

differed considerably among the tested workflows (Table 1). We found that pipelines that 187 

produced roughly comparable numbers of total OTUs (QIIME2, PipeCraft, PIPITS, and LotuS 188 

for Illumina data) still exhibited large variation in OTU richness per sample (Figure 2, 3). By 189 

performing joint de-novo clustering for filtered sequences from different pipelines (total number 190 

of OTUs = 16 333), we observed a weak but significant effect of pipeline choice on overall OTU 191 

composition for the Illumina data set (PERMANOVA: pseudo-F2,868 = 5.88, R2
adj = 0.012, P < 192 

0.001). For PacBio data set (total number of OTUs = 4448), differences among platforms were 193 

slightly stronger (pseudo-F2,512 = 9.174; R2
adj = 0.033, P < 0.001). 194 

Taxonomic annotation tools differed in the ability to classify OTUs. In general, BLAST 195 

searches revealed many cases of high-quality matches to non-fungal organisms (in some cases 196 

for hundreds of OTUs), while RDP as combined with the Warcup Fungal ITS trainset 197 

optimistically classified all OTUs to Fungi (100% confidence). Numerous papers have evaluated 198 

the performance of different methods on the accuracy of taxonomic assignment, and 199 

performance inevitably hinges on the completeness of the reference database used (e.g. Gdanetz 200 

et al., 2017; Richardson et al., 2017). In spite of its relatively rapid performance, the RDP Fungal 201 

ITS trainset does not include any non-fungal data, which explains its shortcomings in detecting 202 

non-fungal OTUs. However, the confidence score of an RDP classifier did not exceed 64% for 203 

non-fungal OTUs, mostly overestimating the group of unclassified fungi.  204 

We also observed that the quality-filtered datasets included up to ~10% of obvious 205 

erroneous/chimeric OTUs that produced matches with low query coverage and confidence 206 

scores. A long tail of satellite OTUs, assigned to a single species hypothesis with 99-100% 207 

BLAST identity and RDP classifier confidence level, were also common – especially in the 208 

results where relatively a high number of OTUs was observed (Galaxy platform). After filtering 209 

the spurious OTUs manually (see Methods), we found that richness estimates per sample became 210 

more homogeneous across pipelines (Illumina data: Figure 3). When OTU table filtering was 211 

applied to jointly clustered reads from different pipelines, the significant effect of pipeline choice 212 

on the community composition diminished (Illumina data: pseudo-F2,837 = 0.955, R2
adj = 0.007, P 213 

= 0.779). 214 

In conclusion, our results indicate that bioinformatics analysis pipelines greatly differ in 215 

their relative performance on ITS data sets targeting fungi, although roughly similar quality-216 
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oriented settings were implemented. Overall, our recommended Illumina data workflow would 217 

be PipeCraft, PIPITS or LotuS, which provide a good balance between speed, mycological 218 

accuracy (including support for ITS Extractor) and technical quality. For PacBio, the tools 219 

implemented in PipeCraft were most suitable for the long-read analysis. Conversely, the widely 220 

used platform in prokaryote 16S-based studies, our options chosen in Galaxy, performed 221 

relatively poorly on the ITS data. While QIIME2 implements accurate quality filtering algorithm 222 

of DADA2, the lack of ITS region extraction lowers the accuracy for mycological studies. Of 223 

classification tools, BLAST searches against the UNITE database provided more accurate results 224 

on the kingdom and phylum levels compared with the RDP and Warcup ITS trainset combined. 225 

We emphasize that none of the tested bioinformatics workflows are able to fully filter out the 226 

errors that accumulated during sample preparation and sequencing, even when using the most 227 

elaborate error-filtering options. Therefore, manual curation of OTU tables continues to be an 228 

important step in obtaining robust datasets, although semi-automatic tools to assist evaluation are 229 

becoming available (Frøslev et al. 2017). It is also important to rely on high-coverage reference 230 

databases to be able to recognize non-target organisms and metagenomic reads. 231 
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Table 1. Used software, sequence and OTU counts (values in bold) by a) Illumina and b) PacBio 365 

analysis platforms. The number of sequences denote raw input reads and remaining reads after 366 

each analysis step. Singleton OTUs were excluded from the OTU counts. 367 

 368 

a 369 

 LotuS Qiime2 PipeCraft Galaxy PIPITS 
Raw reads 7,981,812a 7,335,838b 7,981,812a 7,981,812a 7 335 838b 
Assembly FLASH/                

NA 
DADA2/              

NA 
VSEARCH/ 
7,511,274 

FASTQ 
joiner/    

7,911,554 

VSEARCH/   
7,198,094 

Quality 
filtering 

sdm/                   
NA 

DADA2/ 
5,428,563 

VSEARCH/    
7,511,274 

trimmomatic/ 
7,879,960 

fastqx/         
7,142,354 

Demultiplexing sdm/       
6,727,631 

NP mothur/ 
6,558,772 

mothur/      
1,643,879 

NP 

Chimera 
filtering 

USEARCH/ 
6,486,802 

NP VSEARCH/ 
6,300,085 

VSEARCH/      
1,621,330 

VSEARCH/                 
NA 

ITS extractor 5,919,084 NP 6,262,000 NP 6,401,097 
Clustering 

(OTUs) 
UPARSE/        

8,659 
VSEARCH/      

7,477 
UPARSE/         

7,598 
VSEARCH/       

23,167 
VSEARCH/            

7,887 
 370 

b 371 

 LotusS PipeCraft Galaxy 
  CCSc reads 720,222a 720,222a 720,222a 
  Quality 

filtering 
sdm/                    
NA 

VSEARCH/   
462,010 

trimmomatic/  
672,292 

  Demultiplexing sdm/          
258,085 

mothur/      
380,722 

mothur/      
457,173 

  Chimera 
filtering 

USEARCH/    
255,746 

VSEARCH/   
341,154 

VSEARCH/   
405,025 

  ITS extraction 192,485 338,150 NP   Clustering 
(OTUs) 

UPARSE/            
942 

UPARSE/         
4,176 

VSEARCH/       
8,338 

  amultiplexed input data; bdemultiplexed input data; ccircular consensus sequences; NA: indicate 372 

not available; NP: not performed.  373 

 374 

 375 

 376 

 377 

 378 
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Figures 379 

 380 

 381 

Figure 1. Outline of workflow in different analysis pipelines. 382 

 383 

 384 

 385 

 386 

Figure 2. OTU accumulation curves of the evaluated pipelines for a) PacBio and b) Illumina 387 

data sets.  388 

 389 

 390 

 391 
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 392 

  393 

Figure 3. Number of OTUs per sample for Illumina data recorded from a) pipeline-generated 394 

OTU tables (median differences = 38 OTUs) and from b) filtered OTU tables (median 395 

differences = 12 OTUs). The Galaxy workflow was excluded here. 396 
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