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Abstract 19 

Along with recent developments in high-throughput sequencing (HTS) technologies and thus fast 20 

accumulation of HTS data, there has been a growing need and interest for developing tools for 21 

HTS data processing and communication. In particular, a number of bioinformatics tools have 22 

been designed for analysing metabarcoding data, each with specific features, assumptions and 23 

outputs. To evaluate the potential effect of the application of different bioinformatics workflow 24 

on the results, we compared the performance of different analysis platforms on two contrasting 25 

high-throughput sequencing data sets. Our analysis revealed that the computation time, quality of 26 

error filtering and hence output of specific bioinformatics process largely depends on the 27 

platform used. Our results show that none of the bioinformatics workflows appear to perfectly 28 

filter out the accumulated errors and generate Operational Taxonomic Units, although PipeCraft, 29 

LotuS and PIPITS perform better than QIIME2 and Galaxy for the tested fungal amplicon data 30 
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set. We conclude that the output of each platform require manual validation of the OTUs by 31 

examining the taxonomy assignment values. 32 

 33 

Key words: Microbial communities, microbiome, mycobiome, fungal biodiversity, 34 

metagenomics, amplicon sequencing. 35 

 36 

Introduction 37 

Fungi are major ecological and functional players in terrestrial ecosystems. The full diversity of 38 

fungi remains largely uncharted due to their largely unculturable nature, the lack of tangible 39 

morphological manifestations and shortcomings of the mycological community to sample 40 

beyond traditional habitats and substrates (Grossart et al., 2016; Hibbett et al., 2017).  As a 41 

result, identification of fungi has come to rely mainly on direct DNA sequencing of material 42 

containing fungal hyphae or spores. In this regard, several DNA barcoding regions have been 43 

evaluated, and the current consensus is that the nuclear ribosomal internal transcribed spacer 44 

(ITS) region is the best region for delimiting fungal taxa at the species level across a variety of 45 

fungal groups (Schoch et al., 2012).  Recent advances in high-throughput sequencing (HTS) have 46 

made it possible to sequence millions of reads and identify thousands of fungal taxa from a 47 

single sample. Handling this enormous amount of data is often complicated and requires 48 

extensive bioinformatics expertise.  49 

Multiple analysis platforms have been introduced to facilitate bioinformatics treatment of 50 

HTS data. However, most of these software suites were developed for the prokaryotic 16S rRNA 51 

gene and may therefore perform poorly with other markers and other organisms, in particular 52 

ITS sequences due to their length variation and unalignability across taxonomic expanses. To 53 

accommodate for this, several tailored platforms have recently been developed to specifically 54 

address fungal ITS datasets (e.g. Hildebrand et al., 2014; Gweon et al., 2015; Anslan et al., 2017; 55 

Větrovský et al., 2018). These platforms cover multiple steps of the analysis procedure, 56 

including quality control, clustering, taxonomic assignment and generating Operation 57 

Taxonomic Unit (OTU) abundance tables. Many of these platforms cover all these analysis steps, 58 

whereas others do not.  59 

The application of different bioinformatics workflows may introduce variation in the data 60 

quality and output OTU table (Majaneva et al., 2015; Sinha et al., 2017). However, to date there 61 
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are no data on the relative performance of the available tools for fungal HTS data analysis. In 62 

this study, we report on the relative performance of the most popular software pipelines on two 63 

contrasting HTS datasets. 64 

  65 

Methods 66 

We compared the performance of bioinformatics analysis platforms on two fungal ITS data sets 67 

with contrasting properties. Tested data sets include Illumina MiSeq paired-end ITS2 amplicons 68 

from arthropod substrates (Anslan et al., 2018), and full ITS circular consensus sequences from 69 

Pacific Biosciences (PacBio) Sequel machine, amplified from soil samples (unpublished data).  70 

For bioinformatics analyses, we used multiple platforms that support all steps in the analysis of 71 

HTS-based metabarcoding datasets: QIIME2 (v2018.2; Caporaso et al., 2010), LotuS (v1.59; 72 

Hildebrand et al., 2014), Galaxy (v.2.1.1; Afgan et al., 2016), PipeCraft (v1.0; Anslan et al., 73 

2017), and PIPITS (v2.0; Gweon et al., 2015). Quality filtering was performed using VSEARCH 74 

(Rognes et al., 2016), trimmomatic (Bolger et al., 2014), DADA2 (Callahan et al., 2016), sdm 75 

(Hildebrand et al., 2014) and fastx (http://hannonlab.cshl.edu/fastx_toolkit). Quality filtered 76 

sequences were passed through chimeric reads removal algorithms as implemented in 77 

USEARCH (Edgar et al., 2011; Edgar, 2013) and VSEARCH. Using PipeCraft, LotuS and 78 

PIPITS, reads were also subjected to ITS extraction using ITSx (Bengtsson-Palme et al., 2013) to 79 

remove conservative flanking genes of the ITS region. OTU formation (clustering) was 80 

performed using USEARCH and/or VSEARCH as outlined below. For each platform, we relied 81 

on de-novo single linkage clustering, which is the most popular approach in fungal community 82 

studies, knowing that reference based clustering methods can provide similar results (Cline et al., 83 

2017). Taxonomic affiliations were assigned to OTUs using DP Naive Bayesian rRNA Classifier 84 

(Wang et al., 2007) (RDP classifier v2.11) with the Warcup Fungal ITS trainset 2 (Deshpande et 85 

al., 2016) (confidence threshold: 80%) as well as BLAST+ (Camacho et al., 2009) search (e-86 

value = 0.001, word size = 7, reward = 1, penalty = -1, gap open = 1, gap extend = 2) against the 87 

UNITE v7.2 reference database. 88 

 Using QIIME2, reads were assembled (Illumina data) and quality filtered using DADA2 89 

(Callahan et al., 2016) with default options, except --p-trunc-len = 0, --p-max-ee = 1 and --p-90 

chimera-method = none (with chimera-method = consensus, QIIME2 reported error for our 91 

data). Clustering was performed with VSEARCH cluster-features-de-novo (--p-perc-identity 92 
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0.97). In LotuS pipline, data was assembled (Illumina data), quality filtered (minimum length = 93 

170, minAvgQuality = 27, TruncateSequenceLength = 170, maxAccumulatedError = 0.75) and 94 

demultiplexed with sdm (pdiffs = 1, bdiffs = 1). Chimera filtering was done using USEARCH de 95 

novo chimera filtering (abundance annotation = 0.97, abskew = 2), and USEARCH reference-96 

based chimera filtering using UNITE v7.2 (Kõljalg et al., 2013) as reference database. Flanking 97 

genes of the ITS region were discarded using ITSx (v1.0.11; default options). ITS reads were 98 

clustered to OTUs with USEARCH/UPARSE algorithm (-id = 3, -minsize = 2). Using web-99 

based Galaxy pipeline, Illumina data was assembled with Fastq joiner (Galaxy Version 2.0.1.1; 100 

Blankenberg et al., 2010) with default options. Quality filtering was performed with 101 

Trimmomatic (Galaxy Version 0.36.3; Bolger et al., 2014) ‒ SLIDINGWINDOW; number of 102 

bases to average across = 15, average quality required = 30, minimum length of kept reads = 45. 103 

Fastq files were converted to FASTA files using FASTQ to FASTA converter (Galaxy Version 104 

1.0.0). Fasta files were demultiplexed using mothur (Galaxy Version 1.39.5.0; Schloss et al., 105 

2009) ‒ pdiffs=2, bdiffs=1. Because sequences were of mixed orientation in the files (5’-3’ and 106 

3’-5’), demultiplexing step was repeated for reverse oriented sequences (reads were reversed 107 

using mothur reverse.seqs). Chimera filtering was done using VSEARCH chimera detection 108 

(Galaxy Version 1.9.7.0) with default settings (abundance annotation = 97% similarity threshold) 109 

and using the UNITE v7.2 database as reference. Clustering was performed using VSEARCH (--110 

cluster-fast –id 0.97). In PipeCraft platform reads were assembled (Illumina data) and quality 111 

filtered using VSEARCH (minimum overlap = 15, minimum length = 100, E max = 1, max 112 

ambiguous = 0, allowstagger = T). Demultiplexing was done using mothur (pdiffs=2, bdiffs=1). 113 

In this step sequences are also reoriented into the 5’-3’ orientation based on primers (2 114 

mismatches allowed). 115 

Chimeric sequences were removed using VSEARCH de novo (abundance annotation = 116 

0.97, abskew = 2) and reference-based (UNITE v7.2 as reference) chimera filtering algorithms. 117 

In chimera filtering step, PipeCraft supported option for “primer artefact” removal was also used 118 

(sequences where primer strings were found in the middle of the sequence were removed). ITS 119 

reads were extracted using ITSx (default options). Clustering was done using 120 

USEARCH/UPARSE algorithm (id = 3, minsize = 2). Using PIPITS, sequences were assembled 121 

with VSEARCH and quality-filtering was done with fastx through the PIPITS command 122 

pispino_createreadpairslist. The ITSx was executed through the PIPITS command pipits_funits. 123 
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Chimera filtering and clustering was done using VSEARCH through the PIPITS command 124 

pipits_process.  125 

The manual OTU table filtering was based on the BLAST similarity scores when run 126 

against UNITE (v7.2) reference database. Any OTUs that had no BLAST hit or that were not 127 

classified to the kingdom Fungi were discarded from the OTU table. Remaining OTUs were 128 

filtered based on BLAST e-value and query coverage. OTUs with higher e-value than 1e
-25

 and 129 

query coverage less than 70% were excluded from the dataset (as putative artefacts or non-fungal 130 

OTUs). Additionally, OTUs with low numbers of sequences per sample were removed (less than 131 

10 sequences per sample; Brown et al. (2015)). Finally, the LULU (Frøslev et al., 2017) 132 

algorithm was applied (minimum_ratio_type = "min", minimum_match = 97) to merge 133 

consistently co-occurring ‘daughter’ OTUs. 134 

To detect the effect of analysis platform choice on the OTU composition, we pooled 135 

sequences originating from different platforms and applied common clustering method to 136 

generate a single OTU table. Filtered reads from PipeCraft, LotuS, and PIPITS were pooled and 137 

clustered using CD-HIT at 97% sequence similarity (-id 0.97; Fu et al., 2012).   138 

We used PERMANOVA analysis (Anderson and Walsh, 2013) (Type III SS, 4,999 139 

permutations) on Bray-Curtis distances of Hellinger-transformed OTU matrices, using 140 

PRIMER6 (Clarke and Gorley, 2006). The numbers of sequences per sample were included in 141 

the analysis as covariates. Rarefaction curves were generated based on OTU abundance matrices 142 

for each dataset using the RTK package (Saary et al., 2017) of R (R-Core-Team, 2015). 143 

 144 

Results and Discussion 145 

Properties of bioinformatics analysis platforms 146 

All tested bioinformatics platforms offer straightforward installation. While Galaxy provides a 147 

freely available online platform, the benefits of PipeCraft and QIIME2 include easy-to-use 148 

graphical user interfaces and multiple options for data analysis. These platforms bundle many 149 

tools for diverse tasks (Figure 1). LotuS and PIPITS represent command-line based platforms. 150 

PIPITS offers a limited number of tools, but data analysis is easily performed with a 151 

straightforward pipeline. LotuS has been developed to minimize computational time and memory 152 

requirements. Specifically for accuracy of ITS-based analyses of fungi and other eukaryotes, 153 

PipeCraft, LotuS and PIPITS implement the ITSx tool (Bengtsson-Palme et al., 2013), which 154 
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removes the fragments of conservative flanking genes for precise clustering purposes. There is 155 

no such option in QIIME2 and Galaxy. 156 

 Bioinformatics platforms differ by specific requirements to the input data, with the 157 

options being a raw multiplexed file (a single file containing all sequences from one run) and 158 

multiple demultiplexed files (reads split into separate files based on indexes). PipeCraft and 159 

Galaxy use raw multiplexed data, whereas QIIME2 and PIPITS require demultiplexed files. Only 160 

LotuS allows both, multiplexed and demultiplexed files as input. As the raw data files are 161 

multiplexed by default, QIIME2 and PIPITS platforms required additional steps of analyses 162 

outside these tool to meet the input requirements. Using a Python script, we demultiplexed the 163 

raw Illumina data, allowing 2 and 1 mismatches to primer and index strings, respectively. 164 

However, PacBio data analysis was dropped for QIIME2 and PIPITS as the present versions of 165 

these platforms are limited to analysis of short read (Illumina) data. 166 

 167 

Performance of bioinformatics platforms on sequence data 168 

For both the Illumina and PacBio datasets, the final OTU richness (singleton OTUs excluded) 169 

differed considerably among the tested workflows (Table 1; Figure 2). Compared with the other 170 

platforms, the Galaxy workflow produced a substantially larger number of OTUs, which was 171 

most likely due to the effect of inadequate error filtering. In particular, for Illumina data, this was 172 

illustrated by the QIIME2 workflow that generated much less OTUs using the same clustering 173 

method but different error-filtering algorithm. None of these platforms included the ITS 174 

extraction step. Pipelines that produced roughly comparable numbers of total OTUs (QIIME2, 175 

PipeCraft, PIPITS, and LotuS for Illumina data) still exhibited large variation in OTU richness 176 

per sample (Figure 2,3). By performing joint de-novo clustering for filtered sequences from 177 

different pipelines, we observed a weak but significant effect of pipeline choice on overall OTU 178 

composition for the Illumina data set (PERMANOVA: pseudo-F2,868 = 5.88, R
2

adj = 0.012, P < 179 

0.001). For PacBio data set, differences among platforms were slightly stronger (pseudo-F2,512 = 180 

9.174; R
2
adj = 0.033, P < 0.001). 181 

Taxonomic annotation tools differed in the ability to classify OTUs. In general, BLAST 182 

searches revealed many cases of high-quality matches to non-fungal organisms (in some cases 183 

for hundreds of OTUs), while RDP as combined with the Warcup Fungal ITS trainset 184 

optimistically classified all OTUs to Fungi (100% confidence). Numerous papers have evaluated 185 
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the performance of different methods on the accuracy of taxonomic assignment, and 186 

performance inevitably hinges on the completeness of the reference database used (e.g. Gdanetz 187 

et al., 2017; Richardson et al., 2017). In spite of its relatively rapid performance, the RDP Fungal 188 

ITS trainset does not include any non-fungal data, which explains its shortcomings in detecting 189 

non-fungal OTUs. However, the confidence score of an RDP classifier did not exceed 64% for 190 

non-fungal OTUs, mostly overestimating the group of unclassified fungi.  191 

We also observed that the quality-filtered datasets included up to ~10% of obvious 192 

erroneous/chimeric OTUs that produced matches with low query coverage and confidence 193 

scores. A Long tail of satellite OTUs, assigned to a single species hypothesis with 99-100% 194 

BLAST identity and RDP classifier confidence level, were also common - especially in the 195 

results where relatively a high number of OTUs was observed (Galaxy platform). After filtering 196 

the spurious OTUs manually (see Methods), we found that richness estimates per sample became 197 

more homogeneous across pipelines (Illumina data: Figure 3). When OTU table filtering was 198 

applied to jointly clustered reads from different pipelines, the significant effect of pipeline choice 199 

on the community composition diminished (Illumina data: pseudo-F2,837 = 0.955, R
2
adj = 0.007, P 200 

= 0.779). 201 

In conclusion, our results indicate that bioinformatics analysis pipelines greatly differ in 202 

their relative performance on ITS data sets targeting fungi, although roughly similar quality-203 

oriented settings were implemented. Overall, our recommended Illumina data workflow would 204 

be PipeCraft, PIPITS or LotuS, which provide a good balance between speed, mycological 205 

accuracy (including support for ITS Extractor) and technical quality. For PacBio, the tools 206 

implemented in PipeCraft were most suitable for the long-read analysis. Conversely, the widely 207 

used platform in prokaryote 16S-based studies, Galaxy, performed relatively poorly on the ITS 208 

data. While QIIME2 implements accurate quality filtering algorithm of DADA2, the lack of ITS 209 

region extraction lowers the accuracy for mycological studies. Of classification tools, BLAST 210 

searches against the UNITE database provided more accurate results on the kingdom and phylum 211 

levels compared with the RDP and Warcup ITS trainset combined. We emphasize that none of 212 

the tested bioinformatics workflows are able to fully filter out the errors that accumulated during 213 

sample preparation and sequencing, even when using the most elaborate error-filtering options. 214 

Therefore, manual curation of OTU tables continues to be an important step in obtaining robust 215 

datasets, although semi-automatic tools to assist evaluation are becoming available (Frøslev et 216 
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al., 2017). It is also important to rely on high-coverage reference databases to be able to 217 

recognize non-target organisms and metagenomic reads. 218 
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Table 1. Used software, sequence and OTU counts (values in bold) by a) Illumina and b) PacBio 344 

analysis platforms.  345 

 346 

a 347 

 LotusS Qiime2 PipeCraft Galaxy PIPITS 

Raw reads 7,981,812
a
 7,335,838

b
 7,981,812

a
 7,981,812

a
 7 335 838

b
 

Assembly FLASH/                

NA 

DADA2/              

NA 

VSEARCH/ 

7,511,274 

FASTQ 

joiner/    

7,911,554 

VSEARCH/   

7,198,094 

Quality 

filtering 

sdm/                   

NA 

DADA2/ 

5,428,563 

VSEARCH/    

7,511,274 

trimmomatic/ 

7,879,960 

fastqx/         

7,142,354 

Demultiplexing sdm/       

6,727,631 

NP mothur/ 

6,558,772 

mothur/      

1,643,879 

NP 

Chimera 

filtering 

USEARCH/ 

6,486,802 

NP VSEARCH/ 

6,300,085 

VSEARCH/      

1,621,330 

VSEARCH/                 

NA 

ITS extractor 5,919,084 NP 6,262,000 NP 6,401,097 

Clustering 

(OTUs) 

UPARSE/        

8,659 

VSEARCH/      

7,477 

UPARSE/         

7,598 

VSEARCH/       

106,245 

VSEARCH/            

7,887 

 348 

b 349 

 LotusS PipeCraft Galaxy 

  CCS
c
 reads 720,222

a
 720,222

a
 720,222

a
 

  Quality 

filtering 

sdm/                    

NA 

VSEARCH/   

462,010 

trimmomatic/  

672,292 

  Demultiplexing sdm/          

258,085 

mothur/      

380,722 

mothur/      

457,173 

  Chimera 

filtering 

USEARCH/    

255,746 

VSEARCH/   

341,154 

VSEARCH/   

405,025 

  ITS extraction 192,485 338,150 NP 
 

 Clustering 

(OTUs) 

UPARSE/            

942 

UPARSE/         

4,176 

VSEARCH/       

8,854 

  a
multiplexed input data; 

b
demultiplexed input data; 

c
circular consensus sequences; NA: indicate 350 

not available; NP: not performed. Singleton OTUs were excluded from the counts.
 

351 

 352 

 353 

 354 

 355 

 356 

 357 
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Figures 358 

 359 

 360 

  361 

 362 

Figure 1. Outline of workflow in different analysis pipelines. 
1
Taxonomy assignment was 363 

performed outside the listed pipelines. 364 

 365 
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366 
Figure 2. OTU accumulation curves of the evaluated pipelines for a) PacBio and b) Illumina 367 

data sets. 368 

 369 

 370 

 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 

 379 

 380 
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  383 

Figure 3. Number of OTUs per sample for Illumina data recorded from a) pipeline-generated 384 

OTU tables (median differences = 38 OTUs) and from b) filtered OTU tables (median 385 

differences = 12 OTUs). The Galaxy workflow was excluded because of the several orders of 386 

magnitude higher number of generated OTUs.  387 

 388 

 389 
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