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Abstract A simulation based study on model fitting for sensory neurons from stimulus/response data
is presented. The employed model is a continuous time recurrent neural network (CTRNN) which is a
member of models with known universal approximation features. This feature of the recurrent dynamical
neuron network models allow us to describe excitatory-inhibitory characteristics of an actual sensory
neural network with any desired number of neurons. This work will be a continuation of [I0] where the
parameters associated with the sigmoidal gain functions are not taken into account. In this work, we will
construct a similar framework but all parameters associated with the model are estimated. The stimulus
data is generated by a Phased Cosine Fourier series having fixed amplitude and frequency but a randomly
shot phase. Various values of amplitude, stimulus component size and sample size are applied in order to
examine the effect of stimulus to the identification process. Results are presented in tabular and graphical
forms at the end of this text. In addition a comparison of the results with previous researches including
[10] will be presented.

Keywords Neural spiking - Inhomogeneous Poisson Point Processes - Maximum Likelihood Methods -
Continuous Time Recurrent Neural Networks - Estimation of Sigmoidal Gain Parameters

1 Introduction
1.1 General Discussion

Theoretical and computational neuroscience is expected to be a major component of general neuroscience
or neurobiology study in a near future. The signs of that developments first noted when the famous
mathematical models such as Hodgkin-Huxley [15], Fitzhugh-Nagumo [12] and Morris-Lecar [21] were
developed and refereed several times by numerous researchers worldwide. These models can adequately
describe the bursting behaviors of firing neurons. They are highly nonlinear models and their main
state variable is the membrane potential. In addition they are more or less involves certain physical
components such as channel conductances etc (except Fitzhugh-Nagumo which only has membrane
potential as a physical component). In addition one also has firing rate based models [I7,20] which
are thought to be of more truly a computational type. These are useful, if only the rate of firing and/or
interspiking intervals (ISI) of the spikes are thought to be important in neural information coding [13].
The efficiency and usability of these models depend on the aim of the research and the limitations set
by the simulation/experiment environment. In experiments related to computational neuroscience field,
one such limitation may arise from the measurement capability. In vivo experiments, does not allow the
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real time measurement of the membrane potential. An attempt to achieve this will likely to interrupt
the propagation of action potentials due to a change in the axial membrane physical properties at the
location of electrode. There is even the risk of a damage to the neuron. So, a feasible and safe way to
collect data from a living neuron (in vivo) can be the placement of an electrode at a nearby location and
by that one is able to record the firing instants of the interested neuron. Only disadvantage in doing that
is the lack of continuous time dependent data. Another tackling feature of the neural spiking phenomena
is that, it is not a deterministic event. The stochasticity of the ion channels [I4] and synaptic noise led to
the fact that the data transmitted along the neurons is a stochastic process. In studies such as [24], it can
be noted that, this stochasticity of neural spiking obeys the famous Inhomogeneous Poisson Process at
least for the sensory neurons. Those findings suggest the possible usage of a likelihood functions derived
from point process theory [11L3]. This likelihood is a function of parameters and temporal location of
individual spikes. Such approaches are expected to provide a better identification results than direct
usage of the Poisson Mass Function instead [§]. The latter only requires the number of spikes rather than
their locations.

There are certain challenges in this research. First of all, we will most probably not be able to have a
reasonable estimate just from a single spiking response data set as we do not have a continuous response
data. This is also demonstrated in the related kernel density estimation research such as [22126125]
16]. From these sources, one will easily note that repeated trials and superimposed spike sequences are
required to obtain a meaningfully accurate firing rate information from the neural response data. In a
realistic experimental environment, repeating the trials with same stimulus profile will not be appropriate
as the corresponding responses of the repeated stimuli are found to be attenuated.

Because of this issue, a new stimulus should be provided at each excitation. This can be provided
by choosing a fixed amplitude and frequency but randomly shot phase angle for our Fourier Series
stimulus. Secondly, in the likelihood estimation, the complete data from the beginning will be used in the
likelihood optimization. This will be a computational challenge as a very large data will be accumulated
in each computation step. When considering an experiment we collect the data only by providing a
random stimulus entry to the animal (experiment subject) and record the spike counts and locations.
As animal is not involved in the computational part of the random stimuli based experiments an high
performance computing (HPC) facility can be involved without a need of any wet experimental element.
In this research, we are employing the high performance computing facilities (TRUBA/TR-GRID) of the
National Academic Information Center (ULAKBIM) of Turkish Scientific and Technological Research
Institution (TUBITAK).

1.2 Previous Studies

This work is a fairly novel attempt. There are very few studies in the literature that have a similar goal.
Some examples can be given as [2IBIEI2327]. The work in [2] presents a system identification study
based on maximum likelihood estimation of the internal parameters of an integrate and fire neuron
model. Likelihood function is derived from firing probabilities through local Bernoulli approximation.
[5] aims at the detection of the functional relationships between neurons. Rather than modeling an
individual neuron, it involves a characterization of the neural interactions through maximum likelihood
estimation. [23] is somehow similar to [2]. A thorough explanation of maximum likelihood explanation
is presented with an application to a linear-nonlinear Poisson cascade and an integrate and fire model
generalized linear model. It also presents a comparison with traditional spike triggered average estimator.
[27] presents a similar work to that of [2] and [23] with a different model. The model involve an estimation
of a conditional intensity function modulated by an unobservable latent state-space process. Study also
involves the identification of the latent process. Both estimation approaches are based on maximum
likelihood method. [23] and [27] applies expectation maximization method in the solution of the maximum
likelihood problems. For a more general discussion on the application of statistical techniques and their
challenges in theoretical and computational neuroscience interested readers can apply to the reference
[29].

This research has some common grounds with [2] and [23] due to the application of maximum like-
lihood method to a neural network identification problem. However the model used in this research is
quite different from the ones in those sources. Instead of an integrate and fire model we prefer a more
general continuous time recurrent neural network due to their universal approximation capability which
is expected to be an advantage to model a multi-cellular region of the nervous system. In addition their
dynamical properties are closer to network models such as Hodgkin-Huxley or Moris-Lecar equations.
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Research such as [6l[7] implements a generic neural network model which is of the a static feed-forward
type. Based on all these, one can say that this study can be considered as a novel contribution to the
neuroscience literature. In addition the work done in [2Bl5L23L27] are too elaborate in statistical theory
with a very limited discussion on how to apply the theory to neuron modeling. This restricts the repro-
ducibility of those research. This text concentrates also on how to apply the theory on the identification
problem using computational tools such as MATLAB to increase its reproducibility.

1.3 Summary of This Work

In this research, we will perform a study similar to that of [I0]. In that work, the parameters associated
with the sigmoidal gain functions are assumed to be known. This brings a critical issue as in most of the
cases the parameters of gain functions are not known or vaguely known. Because of that we will need
to include them in the set of estimated parameters. This will increase the computational complexity but
this difficulty can largely be solved thanks to the High-Performance-Computing facilities provided by
TRUBA system. There will be total of 14 parameters to estimate. The mean values and percent errors of
the estimates are presented in forms of tables whereas their variances are presented graphically to reveal
its variation.

2 Materials & Methods
2.1 Continuous Time Recurrent Neural Networks (CTRNN)

The continuous time recurrent neural networks have a similar structure to that of the discrete time
counterparts that are often met in artificial intelligence studies. These models can have any number of
neurons and a mathematical model can be expressed as shown below [I]:

dV n m
g = Vet Do Wigs (Vi) + 3 Cuel ()
k=1

j=1
Like that of [I0], a second order CTRNN is examined in this work:

TeVe = _Ve + ge(‘/e)wee - gz(‘/z)wez + CeI

. 2
7.Vi = =Vi 4+ ge(Vo)wiec — g:(Vi)wsi + ;1 ®

In the above the subscripts e refers to excitatory neurons (or neurons having excitatory synapses), i
refers to inhibitory neurons (or neurons having inhibitory synapses). The definitions of the variables and
parameters are given in the following table (Table . In the estimation studies, it will be easier if the
time constants are moved to the right:

V;: - 5(1(_‘/; + gc(V;i)wcc - gl/(‘/vl‘)w(,t + CEI)

. 3
Vi = Bi(—=Vi + ge(Ve)wie — gi(Vi)wii + ¢iI) ®)

The functions g.(V.) and g;(V;) are sigmoidal gain functions and expressed as:

I
9 (Ve) = T oxp Cae (Vo = h)) (4)
9 (Vi) -

T Ttexp (—a; (Vi — hy))

where e and ¢ refers to the excitatory and inhibitory neurons respectively. The definitions of the param-
eters in are presented in Table (1l It should also be noted that, the weights in are all assumed
as positive coefficients and they have signs in the equation. So negative signs indicate that originating
neuron is inhibitory (tend to hyper-polarize the other neurons in the network).
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Table 1 The definitions of neuron variables and parameters

Variable or Parameter Definition Unit
I External stimulus input LA
Ve Excitatory neuron membrane potential mV
Vi Inhibitory neuron membrane potential mV
Te Excitatory neuron time constant s
i Inhibitory neuron time constant s
Be Excitatory neuron reciprocal time constant (ﬂe = T—i) s—1
B Inhibitory neuron reciprocal time constant (ﬁZ = 7_% s~1

Wee Self excitation synaptic weight mV-s
Wes Synaptic weight of excitatory neuron inhibition mV-s
Wie Synaptic weight of inhibitory neuron excitation mV-s
Wi Self inhibition synaptic weight mV-s
Ce Synaptic weight of external input to the excitatory neuron k2
¢ Synaptic weight of external input to the inhibitory neuron k2
Ie Maximum firing rate of the excitatory neuron s~ 1
I; Maximum firing rate of the inhibitory neuron s—1
Qe Slope parameter (excitatory sigmoidal gain) mV~—1
a; Slope parameter (inhibitory sigmoidal gain) mV~—1!
he Soft threshold parameter (excitatory sigmoidal gain) mV
h; Soft threshold parameter (inhibitory sigmoidal gain) mV

2.2 Inhomogeneous Poisson spike model

The theoretical response of a neuron model will be the firing rate of excitatory or inhibitory neuron. In
this research, we collect the data from excitatory neuron. So our response will theoretically be:

Te = Ge (Ve) (5)

In the actual environment, the neural spiking due to the firing rate r. (t) is available instead. While
introducing this research, it is stated that this spiking events conform to an inhomogeneous Poisson
process which is defined below:

e M

Prob [N (t+ At) = N (t) = k| = (6)

t+AL
A= /t re (T)dr (7)

is the mean number of spikes based on the firing rate r.(t) which varies with time, and N(7) indicates
the cumulative total number of spikes up to time 7T, so that N (¢t + At) — N (¢) is the number of spikes
within the time interval [t,t + At). In other words, the probability of having k number of spikes in the
interval (¢,t + At) is given by the Poisson distribution above.

Consider a spike train (t1,ts,...,tx) in the time interval (0,7) (here 0 <t} <ty < ... <tx <T so
t and At become t = 0 and At = T'). Here the spike train is described by a list of the time stamps for
the K spikes. The probability density function for a given spiking train (t1,t2,...,tx) can be derived
from the inhomogeneous Poisson process [TTL3]. The result reads:

where

T K
plntati) oo (= [ retx0)at) [T (x.0) (8)
0

k=1

This probability density describes how likely a particular spike train (¢1,ts,...,tx) is generated by the
inhomogeneous Poisson process with the rate function r. (¢,x, )., Of course, this rate function depends
implicitly on the network parameters and the stimulus used.
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2.3 Maximum Likelihood Methods and Parameter Estimation

The network parameters to be estimated are listed below as a vector:
9 - [917 ceey 914} - [/867 /Bi7 Ce, Cjy Wee, Weijy Wie, Wig, Fe7 Fi7 Ae, Ui,y h67 hl] (9)

which includes the time constants and all the connection weights in the excitatory-inhibitory network of
. The maximum-likelihood estimation of network parameters is based on the likelihood function given
by , which takes the individual spike timings into account. It is well known from estimation theory
is that maximum likelihood estimation is asymptotically efficient, i.e., reaching the Cramér-Rao bound
in the limit of large data size. To extend the likelihood function in to the situation where there are
multiple spike trains elicited by multiple stimuli, consider a sequence of M stimuli. This means that we
drive the network in M times by generating M different stimuli at each trial. If I; and I}, are the
stimuli for the j'* and k' trials respectively for j, k = 1,...,M, I; # I, for all cases where j # k.
Suppose the m-th stimulus (m = 1,..., M) elicits a spike train with a total of K,, spikes in the time
window [0,77], and the spike timings are given by S,, = (tgm)7tgm), . Jg?:g). By 7 the likelihood
function for the spike train S, is

T Km
P(Sm | 0) = exp (— | e dt) IERICS) (10)

k=1
where rE,,"” is the firing rate in response to the m-th stimulus. Note that the rate function 7'£m> depends
implicitly on the network parameters # and on the stimulus parameters. The left-hand side of
emphasizes the dependence on network parameters €, which is convenient for parameter estimation. The
dependence on the stimulus parameters will be discussed in the next section.
We assume that the responses to different stimuli are independent, which is a reasonable assumption
when the inter-stimulus intervals are sufficiently large. Under this assumption, the overall likelihood
function for the collection of all M spike trains can be written as

M
L(Sy,S2,.,Su [0) =] »(Sm [ 6) (11)
m=1

By taking natural logarithm, we obtain the log likelihood function:

M 7 M Kn
1(Sh,Sar... . Sar | 0) = — Z/ K@+ 30 3t (1) (12)
m=1 0 m=1k=1

Maximum-likelihood estimation of the parameter set is given formally by

Ot = argmax [1(S1,S,...,5|0)] (13)

2.4 Stimulus

As discussed in Section we will model the stimulus signal by a phased cosine Fourier series as
shown below:

Ny
I= Z A, cos (wpt + o) (14)

n=1

where A,, is the amplitude, w,, = 27 fyn is the frequency of the n-th Fourier component in radians/sec,
and ¢, is the phase of the component. Here the amplitude A,, and the base frequency fo (in Hz) are
fixed but the phase ¢, will be a randomly chosen from a uniform distribution between [—m, 7| radians.
The amplitude parameter A, is fixed for all mode n as A, = Anax.
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Table 2 The true values of the parameters of the network model in and . These are the parameters to be estimated.

Parameter ~ Unit  True value (6)

Be /s 50
Bi /s 25
We ks? 1.0
w; k2 0.7
Wee mV-s 1.2
We; mV-s 2.0
Wie mV-s 0.7
Wi4 mV-s 0.4
Ie 100 1/s
Qe 0.04 1/mv
he 70 mV
I; 50 1/s
a; 0.04 1/mv
h; 35 mV

3 Results
3.1 Model Details

In this section, we will summarize the functional and numerical details of the neural network parameter
estimation algorithm. In the example application, the algorithms presented in Section are applied to
probe an excitatory-inhibitory network. In order to verify the performance of the parameter estimation
we have to compare the estimates with their true values. So we will need a set of reference values of the
model parameters in and . These are shown in Table [2] This set of parameters (Table E[) allows
the network to have a unique equilibrium state for each stationary input. This set of parameters (Table
[2] allows the network to have a unique equilibrium state for each stationary input. The numerical values
of the parameters are exactly the same as that of [I0] so that we can make a comparison between the
results. In addition certain details of the model such as wide and narrow pulse responses, response to
the Fourier series stimulus with different component sizes (Ny7), mean firing rate response and dynamic
range can be found in the same reference [10]. These will not be presented here in order to save space
and not to dilute the interest of the readers.

3.2 Stimulus and Response

The stimulus to be used in this example is given in . In this application, A,, will be constant for all
mode n (n = 1...Ny). The phase angles ¢,, will be assigned randomly (uniformly distributed between
[—7,7]) at each iteration. It should be noted that we do not intend to provide a random stimulus here.
The phase angles will be randomly drawn at the beginning of each iteration and stays constant till the
new iteration starts. Due to the random assignment they will be different for each iteration. This will
yield a different Fourier series stimulus at each iteration. In the case of an experiment, this is critical as
the response of a neuron may cease after repeating the stimulation with the same stimulus profile a few
times.

3.3 Spike Generation

As we have discussed in Section we will not have any measurement of membrane potential V,(t)
or V;(t). Instead, we will record the spike timings of the neuron and try to solve a maximum likelihood
estimation of network parameters 0 using the likelihood function in . Because of that, the simulation
needs a method to generate the spike timings of the neurons. As we know from [24] that the spikes
obey an inhomogeneous Poisson distribution, one can obtain the spike timings from a simulation of an
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inhomogeneous Poisson process of which event or firing rate is given by:

1+ exp(—ae (V. — he))

re(t) = ge (Vo) (15)
There are numerous methodologies to generate the Poisson events given the event rate 7.(t). These
ranging from discrete simulation [II] to thinning [I8]. Discrete simulation may be beneficial when one
solves the dynamical models by fixed step solvers such as Euler Integration or Runge-Kutta methods.
The only disadvantage of this approach is that, it confines the spikes into discrete time bins.However, if
one has a sufficiently small discrete time bin such as At = 1 ms, the statistical distribution of the spikes
should approach to that of an Inhomogeneous Poisson Process [11]. Discrete simulation of neural spiking
can be summarized as shown below:

1. Given the firing rate of any neuron as r(t)

2. Find the probability of firing at time ¢; by evaluating p; = r(¢;) At where At is the integration interval.
It should be as small as 1 ms.

3. Compute a random variable by drawing a sample from a distribution which is uniform between 0 and
1. Define this as x,.qng = U0, 1] where U stands for uniform distribution.

4. If p; > xpang fire a spike at t = t;, else do nothing.

5. Collect spikes as S = [ty,...,tn,] where Ny will be the number of spikes obtained at a single run of
simulation.

3.4 Step-by-step description of the Problem and Simulation

The working principles in the example problem can be described in a step-by-step fashion as shown
below:

1. A single run of simulation will last for T = 3 seconds.

2. The neuron model in will be simulated at the true value of parameters which are given in Table
and firing rate data is stored as r,,(t) where m is the current number of simulation.

3. Firing rate data r,,(t) is used to generate neural spikes S,, in the m' run using the methodology
defined in Section [3.3] This data will be used to compute the likelihood. The number of spikes will
be K,, at the m'*™ run.

4. Repeat the simulation N times to obtain enough number of spikes.

5. The spiking data needed by will be obtained at the h step. However, the firing rate component
of should be computed at the current iteration of the optimization.

6. Run an optimization algorithm of which objective computes the firing rate at the current iterated
value of the parameters but the spikes from Step

3.5 Optimization Algorithm

Theoretically, any optimization algorithm ranging from gradient descent to derivative free simulated
annealing can be utilized in computational parts of this research. Most of these algorithms are provided
as ready made routines in the optimization and global optimization toolboxes of MATLAB. Regardless
of the type of algorithm, all of the methods converge to a local optimum and requires an initial guess. As
a result, one needs to start from multiple initial guesses to have a adequate amount of local optimum that
will allow us to detect the global one. If we have a convex problem, different initial guesses are expected
to converge to same local optimum and this is the desirable situation. However, this may not always be
the case in problems similar to that of this research. In any case, the main criteria on the choice of the
algorithms is the speed of convergence. Though we have a HPC computing facility we should choose the
fastest algorithm as we need to collect a huge amount of data to conclude about the efficiency of the
project. Some initial evaluations suggested that local optimizer routines provided by MATLAB’s fmincon
should be preferred concerning speed and computational resource considerations. The MATLAB provided
global optimization algorithms such as genetic algorithms, simulated annealing or pattern search may
also be utilized to solve the same problem. However they seem to be computationally more intensive
and they are also designated officially as local optimizers. Thus one may need to repeat the trials a
few times to find an optimum. This is not desired if we adapt this research to an experiment. The
fmincon algorithm needed gradient information but it can be provided by itself through finite difference
approximations. There will be 14 (this number equals to the number of cores in a local machine) initial
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Table 3 Typical data related to the simulation scenario. Table

Parameter Symbol Value
Simulation Time Ty 3 sec.
Number of Trials Nt 100
# of Components in Stimulus Ny 5
Method of Optimization N/A Interior-Point Gradient Descent (MATLAB)
# of True Parameters Size(0) 8
Stimulus Amplitude (uA) Amax 100
Base Frequency fo 3.333 Hz

Table 4 The data related to the analysis of the problem for different number of trials N;;, number of stimulus components
Ny, stimulus amplitude Amax

Parameter Symbol Value(s)
Number of Trials Nt 25, 50, 100, 200, 400
# of Components in Stimulus Ny 5, 10, 20, 30, 40, 50
Stimulus Amplitude (uA) Amax 25, 50, 100, 200, 400

guesses and each initial run will be performed on one core. The whole optimization will be run parallel
by the parfor parallel for loop structure of MATLAB. The initial guesses are generated randomly from
a uniform distribution.

3.6 Simulation data

The nominal data in the current problem are given in Table [3| In order to reveal the effect of different
number of stimulus components Ny, amplitude level Ay . and number of trials N;; we will repeat the
problem for a set of different values of those parameters. The different values of those parameters are
provided in Table The initial levels of membrane potentials of excitatory and inhibitory neurons
are V.(0) = 0 and V;(0) = 0. As we will most probably not know the true values of those conditions
assumption of zero values should be sufficient. We will repeat the simulation 10 times for each case, so
that we will have sufficient number of results to perform a statistical analysis.

3.7 Presentation of the results

In this section, the numerical results of the maximum likelihood estimation of the parameters of our
neuron model in using maximum likelihood estimation through the maximization of against
parameters in @D The optimization is performed using the gradient based interior-point method provided
by MATLAB’s fmincon algorithm. All the cases in Table [ are examined under the conditions in Table
The overall results are presented in the following forms:

1. Mean estimated values are displayed as tables.

2. To be used in comparison, variation of percent estimation errors will be presented in graphical form.

3. Graphical results that presents the variances of estimates and whole variation of percent errors against
changing number of stimulus components Ny, amplitude parameter A,.x, number of trials N;; and
base frequency fy will also be given.

3.7.1 Variation of the estimates against stimulus component size (Ny)

One can see the variation of mean estimated values of the parameters in @ and their associated percent
estimation errors in Tables [5|and Figure [1} The variation of their mean square estimation errors against
varying Ny is available in Figure

3.7.2 Variation of the estimates against stimulus amplitude parameter (Amax)

One can see the variation of mean estimated values of the parameters in @[) and their associated percent

estimation errors in Tables[6]and Figure [3] The variation of their mean square estimation errors against
varying Apax is available in Figure
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Table 5 The values of the mean estimated parameters 6 against increasing stimulus component size Ny;. The other
conditions are Amax = 100 pA, N;; = 100 and fo = 3.3333 Hz.

0 Ny=5 Ny=10 Ny=20 Ny=30 Ny=40 Ny=50

Be 49.709 50.008 49.524 49.775 50.356 49.903
Bi 23.342 23.027 24.610 24.495 23.440 23.709

Ce 1.032 1.030 1.010 1.018 1.008 1.026
c; 0.620 0.664 0.687 0.670 0.698 0.711
Wee 1.263 1.213 1.243 1.248 1.194 1.243
Wei 1.730 1.803 1.965 1.928 1.935 1.861
Wie 0.695 0.736 0.665 0.694 0.683 0.641
Wig 0.527 0.440 0.402 0.378 0.330 0.414

Ie 99.502 100.460 99.974 100.221 100.319 99.994
I; 64.276 58.984 57.024 58.281 53.817 58.503
he 70.481 73.031 68.097 70.391 71.222 70.698
h; 26.194 30.610 31.295 31.113 33.079 29.081
Qe 0.040 0.039 0.040 0.040 0.040 0.040
a; 0.049 0.048 0.044 0.049 0.045 0.047

Table 6 The values of the mean estimated parameters 0 against increasing stimulus amplitude Amax (in pA). The other
conditions are Ny = 5, Ny = 100 and fo = 3.3333 Hz.

0 Amax =25  Amax =50  Amax =100  Amax =200 Amax = 400

Be 55.161 50.023 49.709 50.673 50.235
Bi 23.024 23.595 23.342 23.483 23.528
Ce 0.824 0.992 1.032 0.999 1.070
c; 0.583 0.607 0.620 0.626 0.657
Wee 1.360 1.299 1.263 1.260 1.310
Wei 2.154 1.839 1.730 1.750 1.578
Wie 0.989 0.787 0.695 0.748 0.766
Wi 0.446 0.457 0.527 0.435 0.535
I, 99.863 99.242 99.502 99.759 99.771
r; 68.675 65.724 64.276 60.073 72.614
he 63.730 68.997 70.481 72.914 75.057
h; 31.159 29.762 26.194 30.766 23.129
Qe 0.047 0.041 0.040 0.040 0.039
a; 0.072 0.053 0.049 0.052 0.060

Table 7 The values of the mean estimated parameters § against increasing sample size (number of iterations) Nj;. The
other conditions are Amax = 100 pA, Ny =5 and fo = 3.3333 Hz.

0 N;jt =25 Njzy =50 N;zy =100 Ny =200 Ny =400

Be 48.552 48.628 49.709 49.550 49.990
Bi 23.376 24.032 23.342 23.844 24.064
Ce 1.028 1.038 1.032 1.055 1.069
Ci 0.600 0.605 0.620 0.629 0.654
Wee 1.313 1.283 1.263 1.294 1.293
We; 1.900 1.843 1.730 1.790 1.939
Wie 0.724 0.704 0.695 0.687 0.709
Wi; 0.523 0.479 0.527 0.524 0.458
Ie 99.830 100.001 99.502 99.549 99.816
I; 69.977 69.315 64.276 62.857 57.140
he 62.648 66.440 70.481 72.038 74.851
hi 23.198 26.267 26.194 27.345 30.833
Qe 0.041 0.040 0.040 0.039 0.038
a; 0.054 0.051 0.049 0.047 0.045

3.7.8 Variation of the estimates against sample size (Ny)

One can see the variation of mean estimated values of the parameters in @ and their associated percent
estimation errors in Tables [7]and Figure [5] The variation of their mean square estimation errors against
varying N;; is available in Figure [6]
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Table 8 The values of the mean estimated parameters 8 against increasing stimulus base frequency fo in Hz. The other
conditions are Amax = 100 pA, Ny =5 and N;; = 100.

b fo—ts fo—1 fo—7s =15 fo—b

Be 52.173 50.712 51.040 49.709 50.320
Bi 24.457 25.128 23.659 23.342 23.971

Ce 0.985 1.001 1.002 1.032 1.002
¢ 0.649 0.688 0.705 0.620 0.695
wee  1.235 1.233 1.165 1.263 1.238
wei 1851 1.901 1.972 1.730 1.913
wie  0.705 0.703 0.709 0.695 0.626
Wi 0.408 0.352 0.284 0.527 0.436

ITe 100.028  100.090 99.783 99.502 99.769
I; 57.370 55.332 49.659 64.276 58.040
he 72.101 71.536 72.096 70.481 69.871
hi 32.657 34.530 34.311 26.194 32.624
Qe 0.040 0.040 0.040 0.040 0.040
a; 0.048 0.045 0.042 0.049 0.048

3.7.4 Variation of the estimates against stimulus base frequency (fo)

One can see the variation of mean estimated values of the parameters in @D and their associated percent
estimation errors in Tables[8and Figure 7] The variation of their mean square estimation errors against
varying fy is available in Figure

4 Discussion & Conclusion
4.1 General Discussion

In this paper, we have performed a theoretical (or simulation based) study the stimulus-response relation-
ship of sensory neurons which generate a discontinuous noisy data. Knowing the fact that the response
data obeys an inhomogeneous Poisson process, one will be able to fit a model through a point process
maximum likelihood estimation (derived from local Bernoulli approximation). The stimulus is modeled
as a phased cosine Fourier series of which fundamental amplitude and frequency are assigned as constant
parameters but phases are shot randomly.

The simulations are repeated several times with different amplitude Anax, frequency fo, stimulus
component size Ny and sample sizes N;; to examine the influence of their variation on estimation
performance (percent and mean square estimation errors against true parameter values in Table .

This study has a similar framework to that of [I0] except the fact that, we attempt to estimate
the parameters of the sigmoidal gain functions (I, I}, ac, a;, he, h;) together with the reciprocal time
constants (S, 5;) and network weights (ce, Ci, Wee, Wei, Wie, Wi ). Inclusion of more parameters to the
estimation procedure is expected to improve the universal approximation capability of the CTRNN in
consideration. However, that will bring an extra computational complexity and issues such as parameter
confounding.

Here, we will first specifically evaluate the findings od this research. After its completion, we will
attempt to compare the results with that of [I0] and similar previous studies in the literature.

4.2 Evaluation of the Results
4.2.1 Estimation performance against changing stimulus component size Ny

Increasing, the stimulus component size Ny do not yield an overall improvement of the estimation
performance. This result can be noted from the variation of the percent and mean square estimation
errors (Figures [1] and . For some parameters such as ¢; percent estimation errors decrease with
increasing stimulus component size. Contrary to that, we have a reversed behavior associated with the
parameter w;.. For almost all parameters mean square errors of estimation do not display a considerable
variation. Considering the computational complexity of the study, it is reasonable to keep Ny in the
range 5-20.
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4.2.2 Estimation performance against changing stimulus amplitude parameter Amax

Concerning the stimulus amplitude one can make the following comments. Figure [4] revealed that, there
is a general improvement in the mean square errors of estimation when the stimulus amplitude parameter
Apax is kept in the range 25-100 pA. Variation of the percent estimation errors (Figure display a
mixed behavior. For example percent error associated with the parameter w.. shows an improvement
whereas that of h; degrades with increasing amplitude. Compilation of the two findings related to the
errors suggests that, the stimulus amplitude parameter A,,., should be kept in the range 25-50 pA.

4.2.8 Estimation performance against changing sample size Ny

An interesting result of this work is related to the sample size N;;. Theoretically speaking, when sample
size increases the estimation errors are expected to decrease. A similar result is also noted in [10].
However, Figures [5] and [6] shows that increasing sample size does not necessarily improve the estimation
performance. Concerning the mean square errors, except for w;; and I, increasing the sample size in
the range 25 - 100 improves the estimation (Figure @ but not when this range is exceeded. Same
comments can not be made for the percent estimation errors (Figure . The above situation may be
linked to parameter confounding issue. That is an undesired phenomenon in statistics that can render the
experimental data useless and ruin its results. [4[19] states that a parameter will be called a confounder
(also called as confounding or lurking parameter) if it influences both an independent and a dependent
variable. This will cause a spurious association between them. The major peculiarities related to a
parameter confounding phenomenon will be increased variance and bias.

Inclusion of sigmoidal gain ((4))) parameters in the estimation procedure increases the level of param-
eter confounding. The problem in [I0] also has a level of confounding but it is not as severe as in the
case of this research. A related discussion on parameter confounding can be found in [9]. In that, the
discussed model is same as that of [I0] and the current research. Shortly, if we expand the second order
CTRNN model in as shown below:

y Feﬂewee Fiﬁewei
‘/e = - e‘/e - e e[
BeVe + 1+exp(—ac(Ve —he)) 1+ exp(—a;(V; — hy)) + Bec
LB, IBws; (16)
V; — —/BZ‘//L + er € T~ kX3 +/BZCZI

L+exp(—ac(Ve —he)) 1+ exp(—ai(Vi — hy))

One can see that the triplet [Be, wee, Ie] and [B;, we;, I3] has a similar effect on the dyanmics of V. Same
situation appears for variable V; due to the parameter triplets [5;, wse, ] and [B;, wi;, I;]. In addition
to those the threshold and slope parameters (he,ae, hi,a;) have a lower but similar influence. These
correlations should be behind the existing confounding issue.

4.2.4 Estimation performance against stimulus base frequency fy

Concerning the variation of estimation performance against changing stimulus base frequency fo, one
should refer to Figures [7]and [§] The results do not seem to reveal a definite variation profile. Specifically
speaking, to have comparably lower percent estimation errors for most parameters the base frequency fy
should be relatively low (1/3 — 7/3) Hz. Concerning the mean square error, same discussion can be made
for midrange frequencies (7/3 — 10/3) Hz. So it is reasonable to chose the frequency at fo = 7/3 Hz.

4.3 Comparison to other studies
It would be convenient to compare the findings of this research to that of [10]. In that, only 8 parameters

Op = [Be, Bi, Ce, Ci, Wee, Wei, Wie, Wi;| are estimated. So we will need to compare the estimation performance
related to these parameters.

4.3.1 Changing Ny
When the simulation conditions are set as fy = 3.3333 Hz, N;; = 100, Apax = 100 pA and Ny is varied

in the range [5, 10, 20, 30,40, 50], the mean square errors associated with the parameters 6, stays smaller
in [I0]. Also, like in this work variation of Ny does not lead to a distinct profile in [I0].
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4.3.2 Changing Apmax

Concerning the stimulus amplitude A.x, a comparison study will reveal that overall mean square errors
associated with 6, stays smaller in [I0]. Conditions are fy = 3.3333 Hz, N;; = 100 and Ny = 5. In both
cases Amax varied in the range 25,50, 100,200, 400] and the amplitudes in the mid-range (Amax in the
range 100-200 pA) seemed to provide smallest mean square error among all.

4.3.3 Changing N

In [I0], increasing the number of samples leads to a decrease in the mean square errors. In this study,
this behavior is not seen for all parameters (see Section . In that section, possible reasons are
also discussed. Overall mean square errors are smaller in [I0]. In both cases the conditions are same and
they are fo = 3.3333 Hz, Anax = 100 and Ny = 5.

4.3.4 Changing fo

Concerning the base frequency of stimulus fy [10] shows a decreasing behavior in the mean square errors
among a large range of frequencies (1/3 < fy < 10/3 Hz). In this research, a similar behavior can be
seen for a few parameters such as . however for most parameters this behavior is not seen. Looking
at Figure [8] it is reasonable to stay in the range 1 < fy < 10/3 Hz. The conditions are same for both
studies i.e. N;; = 100, Ny = 5 and A, = 100.

4.8.5 General comparison to previous research

It will be beneficial to compare the results of this study to a few different studies in the neuroscience
literature. Examples are [2730,28]. As done in this paper, those studies worked on estimation of neural
model parameters by maximum likelihood methods. [27] estimates two models, one with 23 parameters
and one with 4 parameters. In both attempts, some mean estimates appeared to deviate as much as
25% from their true parameters values. The error levels vary from parameter to parameter and lies in
the range [0.3%, 24.7%)]. However, most of the parameters have error levels larger than 10%. In [30], the
error levels seems to be improved and they lie in the range [0.3%, 5%]. However, this model has fewer
parameters (only three) and thus it might be a trivial result. In [28], some time dependent variables are
being estimated using likelihood methods. Based on the results obtained in the mentioned research, one
can say that the error levels vary with the region of the signals in consideration. Although the trials are
repeated 120 times to perform model fitting, the percent estimation error stays around 30% or larger.
Based on the results of this research and the compiled ones above, we can deduce that:

1. The level of efficiency of the estimation algorithm is definitely acceptable. The estimation error levels
are comparable to that of various researches performed before.

2. Large estimation percent errors appear only for few parameters in this research, whereas works such
as [27] appear to have larger percent estimation errors for many parameters. Moreover, Figure
suggests that a choice of frequency like fo = 1 Hz yields lower percent estimation errors than that of
those studies.

Parameter confounding is likely the reason behind the larger mean square errors in this work.
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