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Background. Knowledge on the globally outstanding Amazonian biodiversity and its

environmental determinants stems almost exclusively from aboveground organisms,

notably plants. In contrast, the environmental factors and habitat preferences that drive

diversity patterns for micro-organisms in the ground remain elusive, despite the fact that

micro-organisms constitute the overwhelming majority of life forms in any given location,

in terms of both diversity and abundance. Here we address how the diversity and

community turnover of operational taxonomic units (OTU) of micro-organisms in soil and

litter respond to soil physicochemical properties; whether OTU diversities and community

composition in soil and litter are correlated with each other; and whether they respond in a

similar way to soil properties. Methods. We used recently inferred OTUs from high-

throughput metabarcoding of the 16S (prokaryotes) and 18S (eukaryotes) genes to

estimate OTU diversity (OTU richness and effective number of OTUs) and community

composition for prokaryotes and eukaryotes in soil and litter across four localities in

Brazilian Amazonia. All analyses were run separately for prokaryote and eukaryote OTUs,

and for each group using both presence-absence and abundance data. Combining these

with novel data on soil chemical and physical properties, we identify abiotic correlates of

soil and litter micro-organism diversity and community structure using regression,

ordination, and variance partitioning analysis. Results. Soil organic carbon content was

the strongest factor explaining OTU diversity (negative correlation) and pH was the

strongest factor explaining turnover for prokaryotes and eukaryotes in both soil and litter.

We found significant effects also for other soil variables, including both chemical and
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physical properties. The correlation between OTU diversity in litter and in soil was non-

significant for eukaryotes and weak for prokaryotes, suggesting that diversity of in one

substrate should not be used as a proxy for diversity in the other. The community

compositions of both prokaryotes and eukaryotes were more separated for habitat type

than for substrate (soil and litter). Discussion. In spite of the limited sampling (four

localities, 39 plots), our results provide a broad-scale view of the physical and chemical

correlations of soil and litter biodiversity in a longitudinal transect across the world9s

largest rainforest. Our methods help to understand links between soil properties, OTU

diversity patterns, and community composition and turnover. The lack of strong correlation

between OTU diversity in litter and in soil suggests independence of diversity drives of

these substrates and highlights the importance of including both measures in biodiversity

assessments. Massive sequencing of soil and litter samples holds the potential to

complement traditional biological inventories in advancing our understanding of the

factors affecting tropical diversity.
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25 Abstract

26 Background. Knowledge on the globally outstanding Amazonian biodiversity and its 

27 environmental determinants stems almost exclusively from aboveground organisms, notably 

28 plants. In contrast, the environmental factors and habitat preferences that drive diversity patterns 

29 for micro-organisms in the ground remain elusive, despite the fact that micro-organisms 

30 constitute the overwhelming majority of life forms in any given location, in terms of both 

31 diversity and abundance. Here we address how the diversity and community turnover of 

32 operational taxonomic units (OTU) of micro-organisms in soil and litter respond to soil 

33 physicochemical properties; whether OTU diversities and community composition in soil and 

34 litter are correlated with each other; and whether they respond in a similar way to soil properties. 

35 Methods. We used recently inferred OTUs from high-throughput metabarcoding of the 16S 

36 (prokaryotes) and 18S (eukaryotes) genes to estimate OTU diversity (OTU richness and effective 

37 number of OTUs) and community composition for prokaryotes and eukaryotes in soil and litter 

38 across four localities in Brazilian Amazonia. All analyses were run separately for prokaryote and 

39 eukaryote OTUs, and for each group using both presence-absence and abundance data. 

40 Combining these with novel data on soil chemical and physical properties, we identify abiotic 

41 correlates of soil and litter micro-organism diversity and community structure using regression, 

42 ordination, and variance partitioning analysis.

43 Results. Soil organic carbon content was the strongest factor explaining OTU diversity (negative 

44 correlation) and pH was the strongest factor explaining turnover for prokaryotes and eukaryotes 

45 in both soil and litter. We found significant effects also for other soil variables, including both 

46 chemical and physical properties. The correlation between OTU diversity in litter and in soil was 
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47 non-significant for eukaryotes and weak for prokaryotes, suggesting that diversity of in one 

48 substrate should not be used as a proxy for diversity in the other. The community compositions 

49 of both prokaryotes and eukaryotes were more separated for habitat type than for substrate (soil 

50 and litter).

51 Discussion. In spite of the limited sampling (four localities, 39 plots), our results provide a 

52 broad-scale view of the physical and chemical correlations of soil and litter biodiversity in a 

53 longitudinal transect across the world9s largest rainforest. Our methods help to understand links 

54 between soil properties, OTU diversity patterns, and community composition and turnover. The 

55 lack of strong correlation between OTU diversity in litter and in soil suggests independence of 

56 diversity drives of these substrates and highlights the importance of including both measures in 

57 biodiversity assessments. Massive sequencing of soil and litter samples holds the potential to 

58 complement traditional biological inventories in advancing our understanding of the factors 

59 affecting tropical diversity.
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61 Introduction

62 Tropical rainforests are mega-diverse and environmentally heterogeneous biomes, and their 

63 biodiversity has been shown to vary considerably over space. In Amazonia, the world9s largest 

64 rainforest that covers most of northern South America, geology and soil physicochemical 

65 properties are often considered crucial in regulating the biotic dynamics, vegetation, and 

66 diversity patterns at local to regional scales (Vogel et al., 2009; Laurence et al., 2010; Higgins et 

67 al., 2011; Friesen et al., 2011; Tuomisto et al., 2016).

68

69 For instance, diversity and community composition of plants are influenced by geology and 

70 physicochemical soil properties (e.g. Vogel et al., 2009; Laurence et al., 2010; Higgins et al., 

71 2011; Friesen et al., 2011; Tuomisto et al., 2014, 2016, Tedersoo et al., 2016). In particular, the 

72 availability of soil nutrients and soil cation concentration are important factors determining plant 

73 species composition and turnover (Tuomisto et al., 2003; Laurence et al., 2010; Higgins et al., 

74 2011; Baldeck et al., 2016; Tuomisto et al., 2016; Cámara-Leret et al., 2017). Additionally, soil 

75 properties, in particular phosphorus, can affect the taxonomic composition of microbial 

76 communities (Buckley and Schmidt, 2001; Faoro et al., 2010; Navarrete et al., 2013). In 

77 addition, pH is known to shape microbial diversity (e.g., Osborne et al., 2011; Kuramae et al., 

78 2012; Bates et al., 2013; Barnes et al., 2016). 

79

80 Different soil layers may show different patterns of biodiversity (Hinsinger et al., 2009). For 

81 instance, the taxonomic composition of nematode species clustered in six trophic guilds 

82 (bacterial feeders, fungal feeders, root associates, plant parasites, omnivores, and predators) has 
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83 been found to vary between the mineral soil layer and the organic matter layer (litter) above it  

84 (Porazinska et al., 2012). In Amazonia, litter layers vary with habitat type and the length of the 

85 inundation period. Unflooded forests (terra-firme) are particularly rich in litter. In addition, 

86 flooded forests are also rich in litter and the litter layer increases with increasing length of the 

87 inundation period (Myster, 2017). Besides inundation, several other factors influence litter 

88 accumulation and thereby decomposition rates and nutrient cycling. These include leaf 

89 abscission and species composition (e.g. Gregorich et al., 2016), which have implications for the 

90 diversity and community structure of soil and litter-inhabiting organisms. However, the strength 

91 of soil-litter interactions varies, and a study conducted in Canada reported no influence of soil 

92 physicochemical properties on litter decomposition (Gregorich et al., 2016). This may indicate a 

93 difference in biodiversity patterns (due to different drivers and biomass) between soil and litter 

94 layers.

95

96 The diversity and composition of Amazonian soil and litter communities remain poorly 

97 understood, despite recent studies on soil micro-organismic communities (e. g. Basset et al., 

98 2012; Mahé et al., 2017; Ritter et al., 2018). This lack of knowledge, especially in taxonomic 

99 groups such as fungi, protists, nematodes, and bacteria, is problematic given the important roles 

100 of these groups in a wide range of biotic processes (Falkowski et al., 2008; Stajich et al., 2009; 

101 Friesen et al., 2011). To tackle his lack of knowledge, high-throughput amplicon-based 

102 sequencing analyses such as DNA metabarcoding (Taberlet et al., 2012) now allow examination 

103 of soil diversity patterns (Bardgett and van der Putten, 2014). However, most studies so far have 

104 been focused on one or a few taxonomic groups, which renders general conclusions on the 

105 effects of soil properties on biodiversity difficult (e.g. Faoro et al., 2010; Laurence et al., 2010; 
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106 Navarrete et al., 2013; Barnes et al., 2016). Understanding microbial diversity and communities 

107 and their relation to soil physicochemical properties on a broad taxonomic scale is therefore 

108 crucial in any location, but particularly so in mega-diverse regions such as Amazonia to access 

109 general conclusion about the abiotic drivers of diversity.

110

111 In this study, we test the effect of physicochemical soil properties on soil and litter biodiversity 

112 and community turnover at four localities along a west-to-east transect across Brazilian 

113 Amazonia. We base diversity estimates on operational taxonomic units (OTUs) from 

114 environmental DNA of the ribosomal 16S (prokaryote) and nuclear ribosomal 18S (eukaryote) 

115 genes. Specifically, we seek to answer the following questions: Are OTU diversity and turnover 

116 related to physical and chemical soil properties? If so, what are the most important soil 

117 properties? Are OTU diversity and community composition correlated when quantified for the 

118 litter layer vs. the underlying soil? All questions are addressed separately for eukaryotes (18S) 

119 and prokaryotes (16S) using both presence-absence and abundance data.

120

121 2. Materials and Methods

122 2.1. SAMPLING DESIGN AND LOCALITIES

123 We sampled four localities along the Amazon River (Fig. 1) following the sampling design of 

124 Tedersoo et al. (2014). Detailed locality descriptions are available in Ritter et al. (2018). Briefly, 

125 we sampled all depths of the litter layer above the mineral soil (all organic matter, including 

126 leaves, roots, and animal debris) and the top 5 cm of the mineral soil in a total of 39 circular 
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127 plots, each with a radius of 28 m. We chose 20 random trees inside each plot and collected litter 

128 and soil on both sides of each tree. We then pooled the samples by substrate to obtain one soil 

129 and one litter sample per plot. We sampled in different habitat types, which can be summarized 

130 as terra-firme, várzeas, igapós, and campinas. These are four of the commonly recognised main 

131 Amazonian environments. Terra-firme is characterised by not being inundated during the annual 

132 flood season, and terra-firme forests generally have tall stature and complex canopy structure 

133 (IBGE, 2004). In contrast, várzeas and igapós are seasonally flooded and remain submerged 

134 during parts of the year. Várzeas are flooded by white-water rivers, which carry a large load of 

135 suspended sediments, whereas igapós are flooded by black-water rivers, which bring a small load 

136 of suspended sediments but a high concentration of organic acids (Junk et al., 2011). Finally, 

137 campinas have nutrient-impoverished sandy soils and forests with a reduced stature and 

138 relatively simple canopy structure (Prance, 1996; IBGE, 2004).

139

140 Our sampling was carried out in four areas: Benjamin Constant (9 plots covering terra-firme, 

141 várzea and igapó), our westernmost locality, approximately 1,100 km west of Manaus in the 

142 upper Amazonas River (4.383° S, 70.017° W; Fig 1A); Jaú national park (6 plots covering terra-

143 firme and igapó; 1.850° S, 61.616°W; Fig 1B) and Novo Airão (3 plots covering campinas; 

144 2.620° S, 60.944°W; Fig 1C), on the west side of the Negro River; Reserva do Cuieras (6 plots 

145 covering terra-firme and igapó; 2.609o S, 60.217o W; Fig 1D) and Reserva da Campina (3 plots 

146 covering campinas; 2.592o S, 60.030o W; Fig 1E), on the east side of the Negro River; and 

147 Caxiaunã (12 plots covering campinas, terra-firme, várzea, and igapó), a national forest located 

148 350 km west of Belém (1.7352° S, 51,463°W; Fig 1F), which constitutes our easternmost 
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149 locality. The sample collection was authorized by Brazilian authorities: ICMBio (registration 

150 number 48185-2) and IBAMA (registration number 127341).

151

152 2.2. PHYSICOCHEMICAL SOIL ANALYSES 

153 We determined the physicochemical soil properties of each plot from three soil samples per plot, 

154 totalling 117 samples. The pH was measured in water (soil: water ratio 1:2.5). The exchangeable 

155 concentrations were measured for sodium (Na), potassium (K), and phosphorus (P) using 

156 Mehlich-1 extraction (unit mg/dm3) and for calcium and magnesium (Ca, Mg) using KCl (1 

157 mol/L) extraction (unit cmolc/dm3). The sum of all exchangeable bases (SB; which comprises 

158 K+, Ca²+, Mg²+, and Na+; unit cmolc/dm3) was then calculated. We also estimated exchangeable 

159 aluminium (Al and H+Al unit cmolc/dm3) extracted with calcium acetate (0.5 mol/L at pH 7.0), 

160 aluminium saturation index (m; unit %), and Base Saturation Index (V; unit %). The effective 

161 cation exchange capacity (t) as well as the cation exchange capacity (T) were measured at pH 7.0 

162 (unit cmolc/dm3). The organic matter (O.M) was quantified (unit g/kg) and the organic carbon 

163 (C) was estimated from the organic matter as: C = MO / 1,724 - Walkley-Black (unit g/kg). Soil 

164 texture was characterized by quantifying the fractions of clay (< 0.002 mm), silt (0.002 3 0.05 

165 mm), fine sand (0.05 3 0.2 mm), coarse sand (0.2 3 2 mm), and total sand (0.05 3 2 mm) (unit % 

166 of soil weight). We did not quantify nitrogen levels due to the highly volatile nature of nitrogen; 

167 its concentration changes quickly during sample storage due to the activity of soil bacteria, and 

168 freezing the samples in our remote sampling localities was not feasible. All analyses were 

169 commissioned from EMBRAPA Ocidental (Brazil), following the protocol described in 

170 Donagema et al. (2011). Afterwards, we used the mean of the three soil samples from the same 
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171 plot to obtain a representative value for the measurement of each variable for each plot.

172

173 2.3. DNA EXTRACTION, AMPLIFICATION, AND SEQUENCING

174 The detailed laboratory procedures are described in Ritter et al. (2018). Briefly, we extracted soil 

175 and litter using the PowerMax® Soil DNA Isolation Kit (MO BIO Laboratories, USA) following 

176 the manufacturer9s instructions. The amplification of 16S was performed by Macrogen (Republic 

177 of Korea) following standard protocols, and sequencing was performed using the Illumina MiSeq 

178 2x300 platform. For metabarcoding of the 18S gene, sequencing preparation was performed at 

179 the laboratory of the University of Gothenburg as described in Ritter et al. (2018) and the 

180 amplicons were sequenced at SciLifeLab (Stockholm, Sweden) using an Illumina MiSeq 2x250 

181 machine.

182

183 2.4. SEQUENCE ANALYSES

184 We used the USEARCH/UPARSE v9.0.2132 Illumina paired reads pipeline (Edgar, 2013) to 

185 filter out poor-quality sequences, de-replicate and sort reads by abundance, and remove 

186 singletons. We inferred operational taxonomic units (OTU) at the 97% sequence similarity level 

187 as usually used for OTU clustering (meaning that sequences differing by more than 3% are 

188 considered to belong to different OTUs; Stackebrandt and Goebel, 1994; Blaxter et al., 2005). 

189 We used the SINA v1.2.10 for ARB SVN (revision 21008; Pruesse, Peplies, and Glöckner, 

190 2012) taxonomic reference dataset for both markers and used SILVAngs 1.3 for taxonomic 

191 assignments (Quast et al., 2013).

192  

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27012v1 | CC BY 4.0 Open Access | rec: 28 Jun 2018, publ: 28 Jun 2018



193 2.6. CONSTRUCTION OF CORRECTED OTU TABLES

194 Presence/absence analyses 3 PCR biases, variation in the copy number of 16S/18S genes per 

195 cell/genome, as well as differences in size and biomass across the targeted organisms can 

196 compromise a straightforward interpretation of OTU reads as an abundance measure (Elbrecht 

197 and Leese, 2015; Pawluczyk et al., 2015). Since the number of observed OTUs is dependent on 

198 the number of reads, we first rarefied all samples to the lowest number of reads obtained from 

199 any one plot (22,209 for 16S and 25,144 for 18S; Fig S1). One sample containing only 1,359 

200 reads was excluded from the 18S data analysis prior to rarefaction to avoid having to downsize 

201 the other samples to such a low number of reads (McMurdie and Holmes, 2014). The OTU 

202 richness of each plot was computed after rarefaction using the function <rarefy= in the package 

203 vegan v. 2.4-3 (Oksanen et al., 2007) in R v3.3.2 (R Development Core Team, 2017). We 

204 subsequently transformed the rarefied OTU tables to presence/absence for both prokaryote (16S) 

205 and eukaryote (18S) data.

206

207 Abundance analyses Despite known limitations of methods, read abundances can be 

208 meaningful, especially for 16S. Therefore, we carried out analyses also using abundance data. 

209 We calculated true OTU diversity of order q = 1, which is equivalent to the exponential of the 

210 Shannon entropy (Jost, 2006). It can be interpreted as the effective number of OTUs, i.e. the 

211 number of OTUs in an idealised community where the geometric mean of the proportional OTU 

212 abundances is the same as in the original sample, but all OTUs are equally abundant (Tuomisto, 

213 2010). The effective number of OTUs is more robust against biases arising from uneven 

214 sampling depth than the simple number of OTUs, so for diversity we used the unrarefied read 

215 counts as OTU abundance. However, the results were virtually identical when we used the 
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216 rarefied OTU table (correlation = 1 for both 16S and 18S). For the remaining abundance-based 

217 analyses, we transformed read counts using the <varianceStabilizingTransformation= function in 

218 DESeq2 (Love et al., 2014) as suggested by McMurdie and Holmes (2014). This transformation 

219 normalizes the count data with respect to sample size (number of reads in each sample) and 

220 variances, based on fitted dispersion-mean relationships (Love et al., 2014). 

221

222 2.7 STATISTICAL ANALYSES

223 Preparation of environmental data 3 We first normalised all soil variables to zero mean and 

224 unit variance using the <scale= function of vegan. We then performed two principal component 

225 analyses (PCAs) to reduce the number of variables. The first PCA used the chemical soil 

226 properties, i.e. all variables based on concentrations of elements. The second PCA used the 

227 physical soil properties, i.e. grain size classes. We input missing sand, silt, and clay information 

228 for three plots, based on regression weights from the observed data using the mice v. 2.30 R 

229 package (Buuren and Groothuis-Oudshoorn, 2011) before performing the PCAs. We used the 

230 first axis of each PCA (explaining 66% and 65% of the total variation, respectively) in the 

231 subsequent analyses. Given the expected importance of soil organic carbon content (Nielson et 

232 al., 2011) and pH (Lauber et al., 2009), we used these as independent variables.

233

234 Hypothesis testing 3 For all analyses we used pH, organic carbon, chemical PC1, and physical 

235 PC1 as explanatory variables. All analyses were carried out using presence-absence data and 

236 relative abundance data in parallel: in the case of diversity, richness corresponds to presence-

237 absence data and effective number of OTUs to relative abundance data. Overall, each kind of 
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238 analysis was carried out eight times: one for each of the eight possible combinations of organism 

239 group (prokaryote or 16S, eukaryote or 18S), substrate (soil, litter) and abundance measure 

240 (presence-absence, proportional abundance).

241

242 Do OTU diversities reflect physical or chemical soil properties? To address the first 

243 question, we performed Bayesian general linear models (GLM), as implemented in the R-INLA 

244 v. 17.6.20 R package (Rue et al., 2009). The response variables were the eight different variants 

245 of OTU diversity in turn, and in each case the soil properties were used as explanatory variables. 

246 We tested the effect of spatial auto-correlation by comparing analyses of standard GLMs with 

247 GLM analysis using stochastic partial differential equations (SPDE) that explicitly consider 

248 spatial correlation. 

249

250 Do OTU community turnovers reflect differences in physical and chemical soil properties? To 

251 address the second question, we performed multiple regressions on dissimilarity matrices 

252 (MRM), as implemented in the function <MRM= of the R package ecodist v.2.0.1 (Goslee and 

253 Urban, 2007). The response variables were dissimilarity matrices based on the eight different 

254 variants of OTU turnover (as calculated using the Jaccard dissimilarity) in turn. In each case, the 

255 explanatory variables were four distance matrices based on soil properties and one geographical 

256 distance matrix (all calculated using Euclidean distances). Statistical significance of the 

257 regression coefficients was determined with 10,000 permutations. Additionally, we used 

258 variance partitioning analysis based in dissimilarity matrixes to quantify the unique and shared 
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259 contributions of each of the explanatory variables to explaining variance in the response distance 

260 matrix (Tuomisto and Ruokolainen 2006).

261

262 Does OTU diversity of the litter layer predict the OTU diversity of the underlying soil? To 

263 address the third question, we analysed the relationship between litter and soil OTU richness and 

264 diversity for prokaryotes (16S) and eukaryotes (18S) using a linear regression model (the lm 

265 function in R). 

266 Are OTU community turnover patterns in the litter layer similar to those in the underlying soil? 

267 To address the fourth question, we first performed non-metric multidimensional scaling (NMDS) 

268 ordinations as implemented in the metaMDS function in the R package vegan. Compositional 

269 dissimilarity was quantified with the Jaccard dissimilarity index. Ordinations based on the same 

270 organism group and abundance data type but different substrates were then compared. Next, we 

271 used the Permutational Analysis of Variance (PERMANOVA) to assess whether substrate type 

272 has an effect on community composition. Finally, we illustrated which were the dominant 

273 taxonomic groups (orders or phyla) with bar-plots. As with the other questions, all analyses were 

274 repeated for all possible combinations of organism group (prokaryotes or 16S and eukaryotes or 

275 18S) and abundance data type (presence-absence and proportional abundance, in the bar-plots we 

276 used the rarefied abundance data).

277

278 Additional R packages we used for data curation and visualization were tidyverse v. 1.1.1 

279 (Wickham, 2017), Hmisc v. 4.0-3 (Harrell Jr., 2016), ggfortify v. 0.1.0 (Tang et al., 2016), 

280 gridExtra v. 2.2.1 (Auguie, Antonov and Auguie, 2016), ggplot2 (Wickham, 2016), entropart 
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281 (Marcon and Hérault, 2015), broom v.0.4.4 (Robinson, 2018), and viridis v. 0.4.0 (Garnier, 

282 2016). Scripts for all analyses are provided in the supplementary material.

283

284 3. Results

285 3.1. OTU DIVERSITY AND TURNOVER IN RELATION TO SOIL PROPERTIES (RESEARCH QUESTIONS 1 

286 AND 2)

287 In the physical soil data PCA, large values on the first PC were associated with coarse texture 

288 (coarse sand fraction loading 0.52, total sand fraction loading 0.55) and small values with fine 

289 texture (silt loading -0.45, clay loading -0.38; Table S2). The flooded forests (igapós and 

290 várzeas) generally had fine-textured soils (negative values of PC1). The unflooded forests (terra-

291 firme and campinas) were more widely distributed along PC1, with some plots having similar 

292 values with várzeas and igapós (Fig. 2A). In the chemical soil data PCA, large values on the first 

293 PC were associated with poor soils. The most negative loading was -0.35 for the sum of 

294 exchangeable bases (SB), and the largest positive loading was 0.29 for aluminium saturation 

295 index (Table S3). The habitat types were not well separated along the first axis of the chemical 

296 PCA, as most plots of all habitat types had poor soils (large values of PC1) and just a few 

297 scattered várzea and igapó plots had more cation-rich soils (small values of PC1; Fig. 2B). 

298

299 In general, organic carbon and pH had the strongest effects on OTU diversity. This was the case 

300 both for prokaryotes and eukaryotes, for richness and effective number of OTUs) and for soil and 

301 litter (Table 1). In addition, PC1 of chemical soil properties was an important predictor for 

302 prokaryotic OTU richness in the soil and for prokaryotic effective number of OTUs in both soil 
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303 and litter, with stronger effect in soil than in litter. For eukaryotes, soil texture had an important 

304 effect on OTU diversity, albeit different on each substrate: positive for soil and negative for litter 

305 (Table 1). Overall, soil properties had strong effects on OTU diversity in litter.

306

307 OTU community turnover was significantly associated with differences in soil properties, 

308 especially those in organic carbon and pH, which were significant for all communities. The pH 

309 effect was strong for all prokaryote (16S) datasets and for eukaryotes (18S) in soil when relative 

310 abundance data were used (Table 2). Organic carbon had the strongest effect for eukaryotes in 

311 soil when presence/absence data were used and for eukaryotes in litter with both 

312 presence/absence and relative abundance data. Chemical PC1 was significant for prokaryotes in 

313 soil (both presence/absence and relative abundance) and for eukaryotes in litter when 

314 presence/absence data were used. Texture PC1 was significant only for eukaryotes in litter (both 

315 presence/absence and relative abundance; Table 2). Geographical distance was a significant 

316 explanatory factor for all datasets, but as closer places usually are more environmentally similar, 

317 we cannot separate the effect of spatial correlation from soil property effects.

318

319 A moderate percentage of the variation in Jaccard dissimilarities was explained by soil 

320 physicochemical properties in the presence/absence data, for prokaryotes (31% in soil and 35% 

321 in litter; Fig. 3). For eukaryotes, the total explanatory power of soil physicochemical properties 

322 was smaller (12% in soil and 16% in litter). For prokaryotes and eukaryotes, the litter 

323 communities were more structured by soil characteristics than were the soil communities. All 

324 variables explained small but significant proportions of the variance in all communities and 
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325 showed some weak but significant interactions considering presence/absence matrices (Fig. 3) 

326 and a similar, strong proportion of the variance in abundance data (Fig. S2). Organic carbon had 

327 the strongest effect in all substrates and for both organism groups (ranging from 0.03 for 

328 eukaryotes in soil through 0.05 for eukaryotes in litter to 0.08 for prokaryotes in both soil and 

329 litter). 

330

331 3.2. SIMILARITIES IN OTU DIVERSITY AND TURNOVER PATTERNS BETWEEN LITTER AND SOIL 

332 (RESEARCH QUESTIONS 3-4)

333 We found a weak positive regression between OTU richness of prokaryotes in litter and in soil 

334 (adj. R2 = 0.25, p < 0.001; Fig. 4A) and between the effective number of prokaryote OTUs in 

335 litter and in soil (adj. R2 = 0.1, p = 0.03; Fig. 4B). For eukaryotes, the corresponding correlations 

336 were not significant (Fig. 4C and 4D). The plot <CXNCAMP3= had very low soil OTU richness, 

337 and excluding this data point strengthened the correlation of OTU richness between soil and litter 

338 for prokaryotes (to adj. R2 = 0.46, p < 0.001; Fig. S3A), but not for eukaryotes (Fig. S3B).

339

340 The OTU communities in litter and in soil tended to be separated in the NMDS ordination space, 

341 although there was some overlap especially for the igapó plots (Fig. 5). The PERMANOVA test 

342 indicated weak but significant effects (all p < 0.001) of substrate type on compositional 

343 dissimilarities of both prokaryotes (R2 = 0.06, F = 5.83, for presence/absence data and R2 = 0.07, 

344 F= 6.7, for abundance data) and eukaryotes (R2 = 0.03, F = 2.8 for presence/absence data and R2 

345 = 0.04, F = 3.74, for abundance data). Habitat type had an even stronger effect on the 

346 compositional dissimilarities of both prokaryotes (R2 = 0.17, F = 5.48, for presence/absence data 
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347 and R2 = 0.18, F = 5.68, for abundance data) and eukaryotes (R2 = 0.1, F = 2.8, for 

348 presence/absence data and R2 = 0.1, F = 2.98, for abundance data). Taxonomic composition at 

349 the order and phylum level was similar in litter and in soil both for prokaryotes and for 

350 eukaryotes (Fig. 6).

351

352 4. Discussion

353 4.1. SOIL PREDICTORS OF OTU DIVERSITY AND TURNOVER

354 In this study, we tested the impact of physicochemical soil properties on the OTU diversity and 

355 community turnover of prokaryotes and eukaryotes in soil and litter across Brazilian Amazonia. 

356 We found that that the soil properties we quantified had variable effects on OTU diversity 

357 (richness and effective number of OTUs) and community turnover for litter and soil, and that the 

358 effect varied between prokaryotic and eukaryotic organisms. The variable with the highest 

359 explanatory power was overall organic carbon for both prokaryotes and eukaryotes. OTU 

360 diversity and community turnover were better explained by soil properties in litter than in soil.

361

362 Considering the results from the linear models, in general organic carbon and pH were the 

363 strongest factors in explaining eukaryotic litter and soil prokaryotic and eukaryotic diversity. Our 

364 results show a positive correlation between soil pH and OTU diversity, which is expected since 

365 much of the soils in Amazonia are acidic. For instance, for soil communities, Lauber et al. (2009) 

366 found pH to be the main factor in explaining bacterial phylogenetic diversity and phylogenetic 

367 composition, where soils with pH between 4.5 and 8 had the highest bacterial diversity. Tropical 
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368 forests with high macro-organismic diversity had soil with pH < 4.5 and had the lowest bacterial 

369 diversity (Lauber, 2009). In our samples, pH was overall low and its variation was moderate, 

370 from 3.65 to 5.14, thereby in less acid soil we found highest OTU diversity. 

371

372 We also found that pH was significant for all community turnovers, and that it was the strongest 

373 variable in explaining community turnover for prokaryotes (in both soil and litter) and for 

374 eukaryotes in soil. However, we found that pH had no effect on prokaryote diversity in litter. The 

375 consistent effect of pH for prokaryotes and eukaryotes in the soil but inconsistent effect in litter 

376 support the findings of Gregorich et al. (2016), who found no correlation of soil properties and 

377 litter decomposition. This point to the independence of the environmental factors regulating each 

378 substrate. 

379

380 We found significant effects of organic carbon on all community turnovers and the strongest 

381 effect for eukaryotes in litter. Additionally, we found a negative correlation of soil organic 

382 carbon with OTU diversity for all groups. Soil biodiversity has previously been found to have an 

383 effect on carbon sequestration (Wagg et al., 2013). However, the relationship between soil 

384 biodiversity and carbon has varied across studies (Nielson et al., 2011). Furthermore, Fierer et al. 

385 (2012) and de Lima Brossi et al. (2014) found that soil organic matter was related to microbial 

386 community composition in several different vegetation types. The negative correlation between 

387 soil organic carbon content and OTU diversity reported here might be related to high nutrient 

388 turnover in high-diversity soil/litter, keeping the carbon stock locked in aboveground biomass. 

389 Our results support the findings of Wall et al. (2008), who found a positive influence of the 
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390 richness of soil biota on decomposition rates in wet tropical environments. Along the same line, 

391 Wagg et al. (2013) found that soil diversity and soil community composition are related through 

392 nutrient cycling. Decreases in soil diversity and the related changes in community composition 

393 alter the communities´ capacity to break down organic matter and recycle nutrients, slowing 

394 down the return of nutrients to the above-ground communities (Wardle et al., 2004). These 

395 findings stress the complex nature of carbon-diversity dynamics and the plant3soil feedback loop 

396 mediated by soil biota (Mangan et al., 2010). They furthermore highlight a connection between 

397 decomposition rates and biodiversity in Amazonia that should be better explored.

398

399 Biotic and abiotic interactions jointly determine soil properties, making it important to consider 

400 environmental and biological interactions between variables. Indeed, our variance analysis 

401 reveals several co-variances between soil properties, such as pH and organic carbon and physical 

402 and chemical properties. Although these interactions were weak, this analysis is important for 

403 providing a better understanding of the study system. Considering physicochemical soil 

404 properties, we had a partial separation of the major environmental types by the properties of their 

405 soils. It is in agreement with previous studies, which report an association of soil types and 

406 habitats in Amazonia (e.g. Falesi, 1984; Prance, 1996). The soil texture (first axis of the physical 

407 PCA) was well separated by the habitat types of flooded forests (igapós and várzeas), whereas 

408 the terra-firme and campinas were more spread in physical properties. On the other hand, the 

409 first axis of chemical PCA was less well separated for flooded areas (igapós and várzeas). This 

410 result was expected since there is a variation within habitat types, especially flooded forests 

411 (Kalliola et al., 1993;Tuomisto, Ruokolainen and Yli-Halla, 2003; Tuomisto et al., 2014, 2016). 

412 Furthermore, terra-firme forests have been reported to vary in soil nutrients (e.g. Tuomisto, 
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413 Ruokolainen and Yli-Halla, 2003; Tuomisto et al., 2014, 2016; Fine et al., 2005), consistent with 

414 the variation observed in our plots. However, due to the limited sampling in our studies, the 

415 variation we detected was small (Fig. 2B). Our finding that soil texture is similar among the 

416 flooded environments (várzeas and igapós) and that soil texture was an important factor for 

417 eukaryote diversity (both soil and litter) is consistent with the previously reported community 

418 similarity among these environmental types based on the data from the same samples (Ritter et 

419 al., 2018).

420

421 4.2. CONTRASTING LITTER AND SOIL DIVERSITY

422 The correlations between soil and litter OTU richness and the effective number of OTUs were 

423 significant for prokaryotes but not for eukaryotes. This is congruent with previous reports that 

424 showed the independence of litter accumulation from properties of the underlying soils 

425 (Gregorich et al., 2016). 

426

427 We expected a difference in taxonomic composition between litter and soil communities, with 

428 microbes dominating the soil as previously reported (e.g. Bates et al., 2013; Mahé et al. 2017) 

429 and plant and nematode OTUs dominating the litter due to its mainly being composed of leaves 

430 and roots. However, we found highest plant (Chloroplastida) richness and abundance in soil 

431 samples. Furthermore, unlike Porazinska et al. (2012) who found a dominance of nematodes in 

432 the litter of tropical forests, we found very similar proportions of nematode OTUs in soil and 

433 litter, with the highest richness and abundance in the soil (Fig. 6C and 6D). This pattern of no 
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434 clear taxonomic differences between soil and litter layers is consistent with respect to all 

435 dominant groups on the order and phylum levels (Fig. 6). This suggests that, on the Amazon 

436 basin scale, the taxonomic composition at higher levels (phylum and order) is consistent between 

437 litter and soil with some differences in abundance for some groups, such as Arthropoda and 

438 Chloroplastida for eukaryotes and Actinobacteri, Bacterioides and Chloroflexi for prokaryotes 

439 (Fig. 6). 

440

441 Interestingly, the phyla that dominated our samples were only partly the same as those found 

442 dominant in a large global dataset (Fig. 6A and 6B; Delgado-Baquerizo et al., 2018). While we 

443 also found Proteobacteria to be the most frequent phylum considering both presence/absence and 

444 relative abundance, the second most frequent phylum was Chloroflexi in presence/absence data 

445 for soil and litter and abundance for soil in our samples, while this Chloroflexi only being the 5th 

446 most abundant in the global dataset. Actinobacteria, the second more abundant phyla in the 

447 global database, was the second most frequent phyla just for abundance in litter samples in our 

448 data. Moreover, the rank-abundance distribution of the most dominant phyla was more even in 

449 our tropical sample than in the global sample, with Proteobacteria accounting for just over 20% 

450 of all reads (versus almost 40% in the global dataset) and eight phyla representing more than 5% 

451 of relative frequency each (> 70% of relative frequency) versus only four phyla in Delgado-

452 Baquerizo et al. (2018). Taken together, these differences highlight the need for more studies 

453 across the Amazon basin to better characterize the taxonomic composition.

454

455 The OTU community compositions of both prokaryotes and eukaryotes were better explained by 
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456 habitat type (terra firme, várzea, igapó, campina) than they were by substrate type (soil, litter), 

457 which was expected since both substrates should share a large number of organisms. The 

458 substrate types were weakly differentiated at the OTU level, but we could not observe any 

459 difference at the phylum or order levels for presence/absence and a small difference in for 

460 abundance data (Fig. 6). For instance, fungi usually dominate eukaryotic soil communities in any 

461 environment, including tropical forests (Tedersoo et al., 2017), but the dominant fungal taxa 

462 (OTU) may vary considerably even on local and sub-local scales (Urbanová et al., 2015). In a 

463 study conducted in the western parts of the Czech Republic, similar results for bacteria and fungi 

464 were found: the phylum level indicated the same taxonomic groups as dominant in soils and 

465 litter, but there were striking differences on the OTU level in these substrates (Urbanová et al., 

466 2015). 

467

468 5. Conclusions

469 In this study, we found OTU diversities to be related between soil and litter in prokaryotes, but 

470 not in eukaryotes. We also found that physicochemical soil properties can predict soil and litter 

471 diversity in Amazonia to some extent. In particular, we found a positive correlation for pH and a 

472 negative correlation for soil organic carbon content with respect to prokaryotic and eukaryotic 

473 OTU diversity. Furthermore, we found a significant effect of soil organic carbon content on 

474 community turnover. In general, our results stress the complexity of soil-biodiversity 

475 relationships, and hence the importance of considering multiple factors and their interactions in 

476 the characterization of biodiversity patterns. Soil biodiversity is crucial for carbon cycling in 

477 terrestrial ecosystems, and our results suggest that additional studies to better understand the 
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478 relationship between diversity (above and belowground) and carbon cycles may help modelling 

479 carbon deposition and biodiversity patterns.

480
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Table 1(on next page)

Soil effects on OTU richness and Shannon diversity:

The importance of soil properties differed between taxon, substrate and diversity metrics.

Carbon content and pH were important in most of the cases. The table shows the coefficients

of each predictor in four Bayesian general multivariate regression model using Stochastic

Partial Differential Equations (SPDE) that explicitly consider spatial correlation, modelling

OTU richness and effective number of OTUs dependent on soil properties for eukaryotes and

prokaryotes in litter and soil, respectively. As the organic carbon content and pH are

important variables for soil biota, we use them as independent variables. Bold indicates

important predictor variables (credible intervals not crossing zero).
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1 Table 1: Soil effects on OTU richness and Shannon diversity: The importance of soil 

2 properties differed between taxon, substrate and diversity metrics. Carbon content and pH were 

3 important in most of the cases. The table shows the coefficients of each predictor in four 

4 Bayesian general multivariate regression model using Stochastic Partial Differential Equations 

5 (SPDE) that explicitly consider spatial correlation, modelling OTU richness and effective 

6 number of OTUs dependent on soil properties for eukaryotes and prokaryotes in litter and soil, 

7 respectively. As the organic carbon content and pH are important variables for soil biota, we use 

8 them as independent variables. Bold indicates important predictor variables (credible intervals 

9 not crossing zero).

  OTU richness Effective number of OTUs

Taxon Substrate Predictor Mean
0.025 

quantile

0.975 

quantile
Mean

0.025 

quantile

0.975 

quantile

Intercept 6.14 2.31 9.95 6.07 2.03 10.43

pH 0.22 0.16 0.27 0.22 0.17 0.27

Carbon -0.13 -0.19 -0.08 -0.15 -0.20 -0.10

Chemical -0.08 -0.14 -0.02 -0.08 -0.14 -0.02

S
o
il

Physical 0.02 0.00 0.04 0.02 -0.01 0.04

Intercept 4.14 -4.78 12.65 5.04 -3.97 13.71

pH 0.03 -0.03 0.08 0.05 0.00 0.10

Carbon -0.23 -0.28 -0.17 -0.21 -0.26 -0.16

Chemical -0.07 -0.12 -0.01 -0.05 -0.11 0.01

P
ro

k
a
ry

o
te

s

L
it

te
r

Physical 0.13 0.10 0.15 0.12 0.10 0.15

Intercept 3.28 -7.36 13.39 3.22 -6.49 13.22

pH 0.30 0.22 0.38 0.33 0.25 0.41

Carbon -0.36 -0.46 -0.26 -0.36 -0.46 -0.27

Chemical -0.08 -0.20 0.04 -0.05 -0.17 0.06

S
o
il

Physical 0.11 0.07 0.15 0.10 0.07 0.14

Intercept 4.93 -10.81 19.82 6.07 -10.14 21.34

pH 0.24 0.15 0.34 0.26 0.16 0.35

Carbon -0.22 -0.32 -0.13 -0.23 -0.32 -0.14

Chemical -0.01 -0.12 0.10 0.00 -0.10 0.11

E
u

k
a
ry

o
te

s

L
it

te
r

Physical -0.14 -0.19 -0.09 -0.15 -0.20 -0.10
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Table 2(on next page)

Association between environmental distance and community turnover:

Community dissimilarity is significantly associated with geographical and soil environmental

distance for eukaryote and prokaryote communities in soil and litter. The Multiple

Regressions were based on the geographical distance, Euclidean distance matrices of soil

properties and community Jaccard dissimilarity indexes. Geographic distances were

significant for all communities turnover; however, as geographical closest places are usually

more environmental similar, we cannot separate the effect of soil properties from the spatial

correlation. All community turnovers were significant with 10,000 permutations (p < 0.001)

with the follow R2: prokaryote soil (R2 = 0.36for presence/absence and R2 = 0.36 for relative

abundance), prokaryote litter (R2 = 0.39 for presence/absence and R2 = 0.35 for relative

abundance), eukaryote soil (R2 = 0.21 for presence/absence and R2 = 0.20 for relative

abundance) and eukaryote litter (R2 = 0.32 for presence/absence and R2 = 0.30 for relative

abundance).
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1 Table 2: Association between environmental distance and community turnover: Community 

2 dissimilarity is significantly associated with geographical and soil environmental distance for 

3 eukaryote and prokaryote communities in soil and litter. The Multiple Regressions were based on 

4 the geographical distance, Euclidean distance matrices of soil properties and community Jaccard 

5 dissimilarity indexes. Geographic distances were significant for all communities turnover; 

6 however, as geographical closest places are usually more environmental similar, we cannot 

7 separate the effect of soil properties from the spatial correlation. All community turnovers were 

8 significant with 10,000 permutations (p < 0.001) with the follow R2: prokaryote soil (R2 = 

9 0.36for presence/absence and R2 = 0.36 for relative abundance), prokaryote litter (R2 = 0.39 for 

10 presence/absence and R2 = 0.35 for relative abundance), eukaryote soil (R2 = 0.21 for 

11 presence/absence and R2 = 0.20 for relative abundance) and eukaryote litter (R2 = 0.32 for 

12 presence/absence and R2 = 0.30 for relative abundance).

   Presence/besence Relative abundance

Taxon Substrate Predictor coefficients
p 

value
coefficients

p 

value

Intercept -24.28 1.00 -8.63 1.00

Geo_dist 0.15 0.00 0.15 0.00

Chemical 0.23 0.00 0.21 0.01

Physical 0.18 0.01 0.17 0.01

pH 0.30 0.00 0.34 0.00

S
o
il

Carbon 0.20 0.01 0.16 0.03

Intercept -60.59 1.00 -37.45 1.00

Geo_dist 0.19 0.00 0.20 0.00

Chemical 0.18 0.00 0.11 0.09

Physical 0.16 0.00 0.19 0.00

pH 0.32 0.00 0.33 0.00

P
ro

k
a
ry

o
te

s

L
it

te
r

Carbon 0.32 0.00 0.28 0.00

Intercept 43.54 1.00 59.63 1.00

Geo_dist 0.09 0.06 0.10 0.03

Chemical 0.12 0.16 0.11 0.21

E
u

k
a
ry

o
te

s

S
o
il

Physical 0.15 0.04 0.16 0.03
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pH 0.22 0.00 0.24 0.00

Carbon 0.29 0.00 0.23 0.01

Intercept -8.86 1.00 10.65 1.00

Geo_dist 0.15 0.00 0.17 0.00

Chemical 0.26 0.00 0.22 0.00

Physical 0.09 0.13 0.05 0.40

pH 0.19 0.00 0.24 0.00

L
it

te
r

Carbon 0.33 0.00 0.29 0.00
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Figure 1

Study area and sampling locations.

Inset panels show details of each locality. A: Benjamin Constant; B: Jaú; C: Jaú, naturally open

areas; D: Cuieras; E: Cuieras, naturally open areas; and F: Caxiuanã. The symbols in A3F

represent different vegetation types that are linked with different soil properties: circles =

open areas; triangles = forest seasonally flooded by black water rivers; squares = unflooded

forest; and crosses = forest seasonally flooded by white water rivers. The sampling strategy

was designed to cover a wide longitudinal range in Amazonia. The map was constructed

using QGIS (2012).

*Note: Auto Gamma Correction was used for the image. This only affects the reviewing manuscript. See original source image if needed for review.
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Figure 2

Physical and chemical soil similarity of sample sites across Amazonia.

The figure shows the study sites 3coloured by habitat type3 on the first two axes of a

Principle Component Analysis for A) physical properties (silt, clay and fine, coarse, and total

sand fraction) and B) chemical proprieties (phosphorus [P], exchangeable bases [Na, K, Ca,

and Mg], the sum of all exchangeable bases [m], exchangeable aluminium [Al and H+Al],

saturation index by aluminium [m], base saturation index [V], effective cation exchange

capacity [t], and cation exchange capacity [T]). The blue rows show the values of each

variable loadings in the two firs PCs. For physical PCA we can observe that flooded forest

(igapós and várzeas) are associated with negative values in the first PC axis and a more

spread distribution of terra-firme and campinas. For chemical PCA there is no separation of

flooded forest, but campinas group in most positive values in the first PCA axis followed by

terra-firmes.
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Figure 3

Variation in OTU community composition in Amazonian soil samples explained by soil

characteristics.

Results of the variance partition analysis based on Jaccard dissimilarity distance-based

analysis. Small but significant proportions of soil and litter communities vary with soil

variables, and a small but significant proportion shows variation shared by soil variables. All

values represent the proportion of variation explained by the factor/interaction. Chemical

variables are shown in green (based on the first PCA of chemical variables, see Table S3 for

details), physical variables in purple (based on first PCA axis of soil texture, see Table S2 for

details), pH in blue, and carbon content in orange. The prokaryote communities are more

structured by soil characteristics than are the eukaryote ones. Inside each taxonomic group,

the litter communities are more structured by soil characteristics than are the soil

communities.
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Figure 4

Relation between OTU diversity in soil and litter:

Prokaryotes (16S) are showed in A) OTU richness and B) effective number of OTUs;

eukaryotes (18S) are showed in C) OTU richness and D) effective number of OTUs in the

Amazonian soil samples. The blue line shows a linear regression with standard error

indicated by the shaded area for significant correlations. The relationship between soil layers

(litter vs soil) is weak and differs between taxa, with only prokaryotes showing a significant

correlation for richness and effective number of OTUs. This result suggests that it OTU

diversity in litter is unsuitable as proxy for the OTU diversity in the soil and vice versa.
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Figure 5

Community structure related to substrate type (litter and soil) and habitat types.

Visualization of differences in OTU composition (measured with the presence/absence

matrixes using Jaccard dissimilarity index in A and B; and measured with relative abundance

matrixes using Bray-Curtis dissimilarity index) using non-metric multidimensional scaling

(NMDS) for A) and C) prokaryotes (16S) and B) and D) eukaryotes (18S). Symbols represent

different habitats. Blue represent litter samples and green soil samples. A small but

statistically significant (PERMANOVA test) separation between the substrates can be

observed along the second ordination axis for both groups of organisms. The strongest and

most significant separation is observed between habitat types.
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Figure 6

Taxonomic composition of Amazonian soil and litter micro-organismic communities.

The plots show the fraction of OTUs divided by taxonomic group for A) relative frequency of

OTU presence for prokaryotes; B) relative abundance of OTU for prokaryotes; C) relative

frequency of OTU presence for eukaryotes; D) relative abundance of OTU for eukaryotes.

There is no clear taxonomic variation among groups in litter vs soil, in either the prokaryote

or the eukaryote data for presence/absence. The relative abundance data shows a highest

frequency of Actinobacteria in litter compared with soil and a highest abundance of

Chloroflexi and Bacterioides in soil sample for prokaryotes. For eukaryotes is possible

observe a highest relative abundance of Arthropoda and Chloroplastida in soil than litter

samples.
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