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In recent years, the pharmaceutical industry has been confronted with rising R&D costs paired with

decreasing productivity. Attrition rates for new molecules are tremendous, with a substantial number of

molecules failing in an advanced stage of development. Repositioning previously approved drugs for new

indications can mitigate these issues by reducing both risk and cost of development. Computational

methods have been developed to allow for the prediction of drug-target interactions, but it remains

difficult to branch out into new areas of application where information is scarce.

Here, we present a proof-of-concept for discovering patterns in protein-ligand data using frequent

itemset mining. Two key advantages of our method are the transferability of our patterns to different

application domains and the facile interpretation of our recommendations. Starting from a set of known

protein-ligand relationships, we identify patterns of molecular substructures and protein domains that lie

at the basis of these interactions. We show that these same patterns also underpin metabolic pathways

in humans. We further demonstrate how association rules mined from human protein-ligand interaction

patterns can be used to predict antibiotics susceptible to bacterial resistance mechanisms.
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ABSTRACT19

In recent years, the pharmaceutical industry has been confronted with rising R&D costs paired

with decreasing productivity. Attrition rates for new molecules are tremendous, with a substantial

number of molecules failing in an advanced stage of development. Repositioning previously approved

drugs for new indications can mitigate these issues by reducing both risk and cost of development.

Computational methods have been developed to allow for the prediction of drug-target interactions,

but it remains difficult to branch out into new areas of application where information is scarce.
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Here, we present a proof-of-concept for discovering patterns in protein-ligand data using frequent

itemset mining. Two key advantages of our method are the transferability of our patterns to different

application domains and the facile interpretation of our recommendations. Starting from a set of

known protein-ligand relationships, we identify patterns of molecular substructures and protein

domains that lie at the basis of these interactions. We show that these same patterns also underpin

metabolic pathways in humans. We further demonstrate how association rules mined from human

protein-ligand interaction patterns can be used to predict antibiotics susceptible to bacterial resistance

mechanisms.
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1 INTRODUCTION34

The pharmaceutical industry has been confronted with a decline in R&D productivity. Indeed, the35

industry has been said to face a productivity crisis. [1] The drug development process is an expensive36

and time-consuming endeavor, with estimated costs for new drugs reaching up to 2.6 billion USD and37

a time-to-approval ranging from 10 to 17 years. [2] Drug development programs have tremendous38

attrition rates, with only a select few candidates making it to the market. An attractive alternative39

to this laborious process is identifying new applications for drugs that are already on the market, an40

approach known as drug repositioning or drug repurposing. Drug repositioning lowers the risk, time41

and cost involved with developing new drugs, as their toxicity, clinical safety and pharmacokinetics42
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have already been established. Preclinical toxicity for instance remains an important driver of the43

attrition of drug candidates. [3] The accurate identification of drug-target interactions (DTI) is thus of44

tremendous value. The applications of these techniques are not limited to drug repurposing, as they45

can also be used to identify small molecules for which no interacting proteins have been described to46

open up new avenues for drug discovery. [2, 4]47

Interactions between drugs and their targets may be identified experimentally through various48

screening methods. However, screening every possible combination of known drugs and targets is49

prohibitively expensive. The low cost and high throughput of computational screening approaches50

renders them an interesting alternative. Following the classification described by Ezzat et al., com-51

putational approaches towards this problem can broadly be categorized into three classes. [5] The52

first class consists of ligand-based approaches, which is based on the concept that similar drugs tend53

to have similar targets. The second class is docking, where the three-dimensional structures of the54

ligand and the target protein are used to predict a possible binding mode and assign an energy score.55

A major drawback of docking is its reliance on the three-dimensional structure, which is not available56

for the majority of proteins. The third class, chemogenomic approaches, combines protein and drug57

data to discover novel DTIs. This type of approach can be further divided into two broad categories:58

feature-based methods and similarity-based methods [5–7].59

Feature-based methods derive feature vectors for both drugs and targets. An example of these60

features might be hydrophobicity or amino acid composition for proteins, and molecular fingerprints61

or geometric descriptors for drugs. These features vectors are used to train machine learning models,62

which may then be used to identify novel DTIs. Similarity-based methods rely on similarities between63

drugs and targets to predict novel DTIs. These may further be divided into four separate categories [5]:64

(i) neighborhood methods that predicts novel interactions for drug (protein) based on a nearest65

neighbor; (ii) bipartite local methods that predict interactions for drugs and proteins separately, and66

then combine results for the final prediction; (iii) network diffusion methods which use graph-based67

techniques for DTI prediction; and finally (iv) matrix factorization methods that learn feature matrices68

from the DTI matrix and use these for novel DTI predictions.69

While a great deal of progress has been made in the prediction of interactions between drugs70

and their targets, it remains difficult to predict interactions for new application areas, where data71

may not be so readily available. New methods which capture the interactions between proteins72

and ligands in a general manner may therefore be invaluable. In this work, we present a method73

for discovering patterns underlying interactions between proteins and ligands through frequent74

itemset mining. Frequent itemset mining was first conceptualized to investigate customer behavior in75

grocery shopping. [8] Transactions of customers could be analyzed to identify frequently co-occuring76

purchases, for instance the combination of milk, bread and butter. Such associations can be mined to77

identify a rule, for instance when a customer purchases milk and bread, he will also purchase butter.78

These rules could then be used to guide marketing decision making.79

In recent years, frequent itemset mining has also been applied to a number of problems in80

bioinformatics, such as the identification of metabolites from mass spectral data. [9, 10] In this work,81

we use frequent itemset mining to identify patterns governing the interaction of ligands with their82

target proteins. Two key advantages of our method are the transferability of our patterns to different83

application areas and the facile interpretation of our recommendations. More complex machine84

learning techniques such as deep learning or random forest approaches are often more powerful,85

but this comes at the expense of interpretability. These approaches tend to be black boxes, where86

it is difficult to gain insight into the inner workings of the predictions. In contrast, as frequent87

itemset mining produces an explicit list of patterns and recommendation rules, the interpretation is88

straightforward. Furthermore, frequent itemset mining may be used as part of a pipeline to select89

features for use in more advanced machine learning models.90

Starting from known protein-ligand relationships, we uncover patterns consisting of molecular91

substructures and protein domains that underlie these relationships. We demonstrate how these92

2/13

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27002v1 | CC BY 4.0 Open Access | rec: 22 Jun 2018, publ: 22 Jun 2018



patterns can be used to explain metabolic pathway data and we further show how this approach can93

be used to predict antibiotic resistance.94

2 MATERIALS AND METHODS95

2.1 Problem description96

Our goal is to obtain a set of patterns from the transactional dataset containing molecular fingerprint97

keys for the ligands and domains for the proteins. To this end, we will use frequent itemset mining98

to discover which chemical structure elements and domains frequently co-occur. The method is99

illustrated in figure 1.100

2.2 Frequent itemset mining101

Frequent itemset mining discovers frequently co-occurring items in a transactional data set. In102

this type of data set, each transaction represents a set of items (i.e. itemset). Here, we created a103

transactional data set starting from known protein-ligand interactions. As ligands are represented by104

their substructures and targets by their protein domains, each item is either a chemical substructure or105

a protein domain. A transaction consists of all chemical substructures and protein domains describing106

a single protein-ligand interaction. We define the support of an itemset as the number of appearances107

in the data set, where itemset is frequent if its support is higher than a predefined threshold. Here, we108

mined for frequent itemsets of the following form.109

{molecular fingerprint, protein domain}110

Having obtained these frequent patterns, we can then mine these for association rules. An111

association rule is an implication in the form x ⇒ y. The left hand side, body, or antecedent is an item112

x present in the dataset and the right hand side, head, or consequent is an item y which is frequently113

associated with x. The support of an association rule x ⇒ y is equal to the support of items in its body114

and head, i.e. x∪ y. Given that many rules are produced in this step and the most frequent rules are115

not necessarily the most interesting ones, we can further prune them using additional interestingness116

measures, confidence and lift. The confidence in a given rule is the frequency with which the rule was117

found to be correct. The lift for a given rule is defined as the frequencies for both items occurring118

together divided by the frequency by which either item occurs.119

To mine the association rules we used the R package arules [11]. The mining algorithm of choice120

was apriori [12]. It searches for frequent itemsets in breadth-first manner: it identifies all frequent121

itemsets of size k, then uses them to create all candidate itemsets of size k + 1. Once all frequent122

itemsets have been found, association rules are created. The support, confidence and lift thresholds123

used herein were 0.1%, 10% and 1, respectively. We mined for association rules in the following124

form:125

protein domain d ⇒ molecular f ingerprint f p126

2.3 Data127

Protein-ligand information was downloaded from STITCH (Search Tool for Interacting Chemicals),128

a database of known and predicted interactions between chemicals and proteins [13]. The current129

incarnation, STITCH 5, covers 1.6 billion interactions between almost 10 million proteins across130

2000 organisms and half a million chemicals. All non-human chemical-protein interactions were131

filtered out, as well as protein-protein interactions where present. This resulted in a simple protein-132

ligand network for Homo sapiens, containing 14,987,535 interactions between 19,182 proteins and133

781,250 ligands. The molecular structure of the ligands were obtained from STITCH 5 under the134

form of SMILES strings. These were used to calculate a substructure-key based fingerprint for135

each molecule, a vector where each bit encodes the presence of a certain structural property of the136

molecule. We elected to use the MACCS fingerprint, because of its small length of 166 bits, which137
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Figure 1. Starting from protein-ligand data, a transactional dataset was created consisting of

fingerprint keys of the ligands and the domains of the proteins. We mined for frequent itemsets,

retaining only those itemsets with at least one molecular fingerprint key and one domain. These

frequent patterns were then minded for association rules of the form: protein domain d is associated

with molecular fingerprint key f p.
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reduces the dimensionality of our mining, and its availability across many different cheminformatics138

packages. [14] It should be noted that the first MACCS key is not defined in RDKit, resulting in a139

total of 165 possible fingerprints. Each of these MACCS keys was considered as a separate item140

and all 165 fingerprint keys were identified in our dataset. Fingerprinting was performed using the141

RDKit cheminformatics package. [15] The Interpro [16] protein domains were downloaded from142

UniProt [17], retaining only high-quality entries curated by SwissProt and discarding unreviewed,143

predicted entries. Each protein was represented by at least one protein domain, resulting in a total of144

16,254 unique protein domains.145

We then sought to investigate if these patterns are generalizable across different areas of applica-146

tion. We have therefore opted to use two diverse datasets as our validation: ConsensusPathDB [18], a147

general database consisting of independent small molecule-protein data, including metabolic path-148

ways, and the Comprehensive Antibiotic Resistance Database (CARD), which contains data on149

antimicrobial resistance (AMR) [19], including the interactions between antibiotics and the bacterial150

antibiotic resistance proteins. A list of interactions between metabolites and enzymes was then151

downloaded from ConsensusPathDB, which contains a total of 3527 relationships. The interactions152

between antibiotics and antibiotic resistance proteins were then downloaded from CARD, resulting in153

a total of 7,444 relationships.154

2.4 Protein-ligand patterns155

Starting from the protein-ligand data originating from STITCH 5 as described in section 2.3, we156

created a transactional dataset consisting of structural information, encoded as structural features157

corresponding to the MACCS fingerprint, and protein information, encoded as proteins domains.158

After filtering out any transactions present in the ConsensusPathDB validation set [18], 17,064159

transactions were retained.160

These transactions were then mined for frequently co-occurring items. We mined for frequent161

itemsets with a minimum prevalence in the dataset of 0.001, corresponding to a support higher than162

17, thus retaining only those patterns present in at least 17 transactions. Itemsets were furthermore163

required to contain at least one fingerprint and one domain. For reasons of computational tractability,164

we restricted the size of our itemsets to three. The following example illustrates the form of the165

frequent patterns. This pattern describes the co-occurrence between a sulfotransferase domain and166

the NS and S=O substructures.167

{molecular fingerprint, protein domain}168

f60 [S=O], f33 [NS], IPR000863 [Sulfotransferase domain]169

These patterns provide insight into which items frequently co-occur. In section 3.2 we compare the170

patterns mined from the STITCH database to the patterns governing the interactions in an independent171

metabolite-protein dataset.172

After obtaining frequent patterns, we mined them for association rules. We retain only those173

rules that contain one or more protein domain(s) in the body and a molecular fingerprint in the174

head. This step filters uninteresting itemsets that do not contain a combination of both domain and175

structural information. Due to the restriction to the size of the itemset to three, we only consider rules176

that contain either one or two protein domains in its body and one molecular fingerprint key in its177

head. The following example shows a rule stating that proteins with a sulfotransferase domain will178

frequently interact with an SO3 substructure.179

protein domain d ⇒ molecular f ingerprint f p180

IPR000863 [Sulfotransferase domain] ⇒ f39 [SO3]181

In order to select interesting rules, we will further filter them based on two metrics describing182

the performance of the rule in its original dataset - confidence and lift. Rules which meet the given183

criteria will be used to predict the interactions between antibiotics and antibiotic resistance proteins184

in section 3.3.185
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Pattern present in transaction Pattern absent in transaction

Pattern present in STITCH ps∩ px ps\ px

Pattern absent in STITCH px\ ps pn\ (px∪ ps)

Table 1. Contingency table for Fischer’s exact test. The set of possible combinations of the MACCS

keys and protein domains in transaction x is denoted as px. The set of possible combinations of

MACCS keys and protein domains for the entire dataset is denoted as pn. The set of patterns derived

from STITCH is denoted as ps.

3 RESULTS186

3.1 Mining the STITCH database for molecular interaction patterns187

Mining for frequent itemsets resulted in 5,765,302 relationships between ligand structural features188

represented as fingerprint keys and the proteins domains that interact with them. Subsequent associa-189

tion rule mining resulted in 183,222 association rules. The frequent patterns we identified contain190

490 unique protein domains, while the association rules contain 487 unique protein domains.191

3.2 Similar molecular patterns describe metabolic pathways192

Having identified a set of patterns in a ligand-protein dataset, we then sought to investigate whether193

similar patterns also describe metabolic pathways in humans. Starting from the pathway-metabolite194

data (3,527 pathways in total), we mined all present metabolite structural fingerprint-domain patterns.195

We then compared the patterns we mined from the protein-ligand dataset to the patterns mined196

from the metabolite dataset. Fischer’s exact test was then used to determine whether the patterns197

derived from the STITCH database correlate well with the patterns derived from ConsensusPathDB.198

A contingency table for our patterns is given in Table 1. The p-value of the Fischer’s exact test is the199

probability of observing a set of values at least as extreme as these (or more extreme values) by chance200

alone, which can be calculated using the hypergeometric distribution. A low p-value thus indicates201

that these patterns are unlikely to be the result of chance and that the two categorical statements are202

thus likely correlated.203

A p-value is calculated for each transaction x. Figure 2 shows the histogram of the p-values for204

this test, indicating that our method is able to identify protein domain - substructure relationships for205

many of the documented pathways. Figure 3 shows the ratio of patterns mined from the STITCH206

database to the patterns mined from the metabolite dataset. For instance, the enzyme CYP4F2207

catalyzes alpha-tocopherol-omega-hydroxylation, a key step in the degradation of vitamin E. For208

this transaction, the ratio of metabolites and protein domains is equal to one. This means that every209

metabolite substructure and protein domain combination that can be identified in this transaction210

corresponds to one of the relationships that was mined out of the STITCH dataset. In other words,211

the entirety of the molecular interactions within this pathway can be inferred from the patterns mined212

from STITCH. Figure 4 shows the pathway with each of the substructures identified through pattern213

mining shown in colour.214

3.3 Predicting antibiotic resistance patterns using association rules215

Antibiotic resistance is one of the major challenges for global health care. More and more bacteria are216

growing resistant to antibiotics used in the clinic, highlighting the need for an improved understanding217

of these mechanisms. To demonstrate the utility of the association rules derived from the STITCH218

dataset, we used our set of rules to predict which antibiotics may be affected by a certain resistance219

mechanism. Our validation dataset consists of the CARD database, which provides a list of proteins220

and the antibiotics to which they confer resistance, for a total of 7,444 relationships composed of221

877 unique proteins and 151 unique antibiotics. Protein domains were extracted for each protein,222

while each antibiotic was converted to a series of molecular fingerprints. In order to predict antibiotic223
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Figure 2. Patterns identified in the STITCH dataset match patterns in a metabolic pathway dataset.

This figure shows the logarithm of the p-values for the Fischer’s exact test determining how well the

patterns mined from the STITCH dataset match patterns mined from a metabolic pathway dataset for

each of the 3,527 metabolite - protein transactions. Higher -log(p) values indicate more significant

enrichment. Significantly enriched transactions are shown in blue, non-significantly enriched

transactions are shown in red.
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Figure 3. The ratio of patterns mined from STITCH to those present in the transaction for each of

the 3,527 metabolite - protein transactions present in the ConsensusPath database. For a number of

pathways this ratio was equal to 1, indicating that every substructure-domain combination present in

this reaction corresponds to one of the relationships that was mined from the STITCH dataset.
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Figure 4. Patterns mined from STITCH explain alpha-tocopherol-omega-hydroxylation. The ratio

of patterns mined from STITCH to patterns present in the transaction was equal to one for the

alpha-tocopherol-omega-hydroxylation reaction catalyzed by CYP4F2. Every metabolite

substructure and protein domain combination present in this reaction thus matches one of the

relationships obtained by mining the STITCH dataset. The colour of each substructure corresponds

to one of the MACCS keys shown under the figure.
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Figure 5. Association rules can recommend patterns for unrelated datasets. This figure shows the

logarithm of the p-values for the Fischer’s exact test determining how well the patterns proposed by

our association rules (derived from STITCH) match patterns mined from a metabolic pathway dataset

for of the 7,444 antibiotic - antibiotic resistance protein transactions present in the CARD database.

Higher -log(p) values indicate more significant enrichment. Significantly enriched transactions are

shown in blue, non-significantly enriched transactions are shown in red.

resistance, we used our set of association rules in the following fashion: for every protein from224

CARD, represented by protein domains, we identified the set of rules containing those protein225

domains in the rule body. These rules were then used to recommend substructures for the protein,226

sorted by the mean confidence of the rule recommending them. In order to determine whether these227

recommended substructures are statistically superior to randomly assigning substructures to protein228

domains, we used a Fisher’s exact test in the same manner as previously described, here comparing229

our recommended patterns to the patterns mined from the resistance protein - antibiotic transactions.230

Figure 5 shows the p-values for this test, which indicates that our method is able to provide relevant231

recommendations.232

We furthermore calculate a receiver operator characteristic (ROC) curve for these recommenda-233

tions ( Figure 6). The ROC curve plots the true positive rate (TPR), the predicted substructures which234

are actually present in the antibiotics to which the protein confers resistance, as a function of the235

false positive rate (FPR), or the substructures predicted by our method which are not present in the236

antibiotics to which the protein confers resistance. These results demonstrate that our method can237

accurately identify substructures of antibiotics which are sensitive to drug resistance proteins, based238

on the average confidence of the method for each of the recommendations.239

The fingerprint recommendations we have generated for each antibiotic resistance protein were240

then used to rank all 151 antibiotics by the likelihood of being affected by this resistance mechanism.241

The results are summed up in Table 2. While the mean rank of the true hit was low (68), at least one242

correct antibiotic was ranked within the top fifteen for 28% of the proteins.243
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Figure 6. Association rules can be used to predict drug resistance. The ROC curve plots the true

positive rate (TPR), the predicted substructures which are actually present in the antibiotics to which

the protein confers resistance, as a function of the false positive rate (FPR), or the substructures

predicted by our method which are not present in the antibiotics to which the protein confers

resistance. The mean ROC curve shown here was obtained by averaging over the ROC curves for all

antibiotic resistance proteins.
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#unique proteins 877

#unique antibiotics 151

mean rank of true positive 68

#true positive ranked in top15 2048 (28%)

Table 2. Summary of the results for ranking antibiotics susceptible to antibiotic resistance proteins

based on association rules.

4 CONCLUSION244

The prediction of interactions between drugs and their targets is central to the field of cheminformatics.245

Such methods have tremendous application potential, for instance in the development of new drugs or246

the predication of side effects. Numerous methods have been developed allowing for such predictions,247

but it remains difficult to transfer knowledge to new application areas where information about248

binding is scarce.249

We present a proof-of-concept showing that a conceptually elegant frequent itemset mining ap-250

proach is capable of elucidating the molecular patterns governing drug-target interactions. By mining251

databases for frequently occurring interactions between molecular substructures and protein domains,252

patterns may be identified which capture these molecular interactions. We mine patterns from a253

protein-ligand interaction dataset and show that similar patterns also underlie an orthogonal dataset254

of metabolic pathways. A set of association rules which may be used to recommend substructures255

for given protein domains was generated based on the patterns identified in a human protein-ligand256

database. For a given bacterial antibiotic resistance protein, these rules were able to recommend257

substructures present in susceptible antibiotics. The utility of these rules was further demonstrated258

by using them to rank antibiotics by their likelihood for interaction with a given bacterial resistance259

protein. Our results show that this method is able to identify and extract patterns from one dataset260

and then utilize them in diverse settings.261

The itemset mining approach we use here is conceptually elegant and provides easy to understand262

recommendations. Another key advantage is that it is highly flexible, allowing for the inclusion of a263

variety of discrete features. In future work, the itemsets examined here may be extended to include264

additional features of the protein such as post-translational modifications or amino acid mutations.265

More elaborate substructure key based fingerprints may also be used to further augment this method.266

Finally, the features derived using this method may be used to train supervised machine learning267

models in order to further augment predictive performance.268

In conclusion, we show that general patterns for molecular interactions may be identified through269

frequent itemset mining, and that this method may be used to transfer insights mined from these270

patterns to diverse application areas.271
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