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ABSTRACT 1 

The study of how the observable features of organisms, i.e., their phenotypes, result from the 2 

complex interplay between genetics, development, and the environment, is central to much 3 

research in biology. The varied language used in the description of phenotypes, however, 4 

impedes the large scale and interdisciplinary analysis of phenotypes by computational methods. 5 

The Phenoscape project (www.phenoscape.org) has developed semantic annotation tools and a 6 

gene–phenotype knowledgebase, the Phenoscape KB, that uses machine reasoning to connect 7 

evolutionary phenotypes from the comparative literature to mutant phenotypes from model 8 

organisms. The semantically annotated data enables the linking of novel species phenotypes with 9 

candidate genes that may underlie them. Semantic annotation of evolutionary phenotypes further 10 

enables previously difficult or novel analyses of comparative anatomy and evolution. These 11 

include generating large, synthetic character matrices of presence/absence phenotypes based on 12 

inference, and searching for taxa and genes with similar variation profiles using semantic 13 

similarity. Phenoscape is further extending these tools to enable users to automatically generate 14 

synthetic supermatrices for diverse character types, and use the domain knowledge encoded in 15 

ontologies for evolutionary trait analysis. Curating the annotated phenotypes necessary for this 16 

research requires significant human curator effort, although semi-automated natural language 17 

processing tools promise to expedite the curation of free text.  As semantic tools and methods are 18 

developed for the biodiversity sciences, new insights from the increasingly connected stores of 19 

interoperable phenotypic and genetic data are anticipated.  20 
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INTRODUCTION 21 

There are over 20 million extant species on the planet, most of which can be described in 22 

relation to their unique and widely diverse phenotypes. Comparisons across species phenotypes, 23 

however, cannot yet readily be made using computer-assisted methods. This is because the rich 24 

legacy of comparative morphology has not yet been semantically enabled—that is, the corpus is 25 

in a free-text format that renders computation nearly impossible. This situation began to change 26 

almost two decades ago when model organism geneticists began representing the phenotypic 27 

changes resulting from experimental gene manipulations, with terms from anatomy or phenotype 28 

ontologies that they developed for each model organism (e.g., Sprague et al. 2001).  More 29 

recently, the opportunity to enable interoperability from the phenotypes of biodiverse species to 30 

candidate genes from model species (Mabee et al. 2007a, 2007b) motivated the Phenoscape team 31 

to develop one of the first multispecies anatomy ontologies, the Teleost Anatomy Ontology 32 

(Dahdul et al. 2010b), based initially on the Zebrafish Anatomy Ontology (Ruzicka et al. 2015). 33 

Developing ontologies appropriate for biodiversity, including taxonomy ontologies (Midford et 34 

al. 2013) and scaling them up first to the level of teleost fishes (Dahdul et al. 2010), then to the 35 

level of vertebrates (Dahdul et al. 2012) and then to the level of metazoans (Mungall et al. 2012; 36 

Haendel et al. 2014), further enabled the automation of phenotypic comparisons across vertebrate 37 

species and discovery of candidate genes underlying evolutionarily novel phenotypes by the 38 

team (Edmunds et al. 2016).  Over the past ten years a broad community of scientists invested in 39 

the development of shared community ontologies (e.g., Gkoutos et al. 2005; Haendel et al. 2008, 40 

2014; Dahdul et al. 2014), annotation tools (Balhoff et al. 2010, 2014a; Yoder et al. 2010; Cui et 41 

al. 2016; The Gene Ontology Consortium 2017) and formats (Dahdul et al. 2010a; Vos et al. 42 

2012) for phenotype annotation across biodiverse species (Dahdul et al. 2010a). These resources 43 
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have made computational analyses possible and they have been leveraged to build a wealth of 44 

innovative applications (e.g., Deans et al. 2012; Mullins et al. 2012; Balhoff et al. 2013; 45 

Dececchi et al. 2015; Manda et al. 2015; Druzinsky et al. 2016; Jackson et al. 2018) across a 46 

variety of biodiversity-based research. The Phenoscape Knowledgebase (KB) (Figure 1) 47 

demonstrates these connections by integrating gene phenotype annotations from model organism 48 

databases with phenotype annotations from the biodiversity literature (Table 1). Compelling 49 

demonstrations of the utility of semantics for biodiversity studies are important because of the 50 

large and expensive investments in infrastructure and tool development required to curate the 51 

legacy literature and move the publication of phenotypic data into a natively semantic form.   52 

 53 

Figure 1. Flow chart of currently existing data sources and tools (solid borders and lines) in the 54 

Phenoscape KB, and data and tools not yet integrated or developed (dotted borders and lines) but 55 

relevant to users in biodiversity research. 56 

  57 
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Table 1: Data for evolutionary and model organism phenotypes in the Phenoscape KB. (Data as 58 

of 2018-05-11) 59 

Evolutionary Phenotypes 60 

Annotated anatomical character states 22,321 

Total number of annotated taxa (extant and fossil vertebrates) 5,310 

Total number of taxon phenotypes 540,163 

Terminal taxa (species) with at least one phenotype  4,260 

Non-terminal taxa with at least one phenotype 1,050 

Evolutionary phenotype profiles 682 

 61 

Model Organism Phenotypes 62 

 Zebrafish Mouse  Xenopus Human 

Genes with at least one 

phenotype 

5,883 7,758 12 3,717 

Phenotype annotations 90,132 171,876 236 123,956 

Genes with any expression 

data 

12,509 10,599  15,062  0 

Gene expression 

annotations  

179,232 800,824 454,337 0 
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To date, only a small proportion of the biodiversity literature has been annotated 63 

semantically, and no publisher, to our knowledge, tags phenotypes with ontological terms that 64 

would support interoperability. The comparative study of organismal phenotypes, however, 65 

motivates research across diverse fields of biology, including evolution, paleontology, 66 

developmental biology, agriculture, and the veterinary and health sciences (Deans et al. 2015). 67 

The efficiency and potential of fundamental discoveries in the biodiversity arena would be 68 

dramatically expanded by the increased use of semantics. Further, few species, i.e., only model 69 

organisms, have curated phenotypic data that is linked to genetic and genomic data. The growth 70 

in sequencing technology, however, is changing this dynamic, resulting in the rapid expansion of 71 

genomic data for non-model species (e.g., Russell et al. 2017 and Chapter 10). However, without 72 

corresponding phenomic databases, the challenge of relating the growing volume of genetic 73 

knowledge in model and emerging model organisms to the diversity of phenotypes in nature 74 

cannot be met.  In this chapter, through the description of driving research questions and by 75 

examples of the use of semantically annotated data in the Phenoscape KB, we provide a glimpse 76 

of the promise that semantic analysis tools hold in comparing phenotypes across species and 77 

globally associating genetic to phenotypic data.   78 

1. Relating biodiverse phenotypes to candidate genes 79 

Identifying the genetic and developmental changes that brought forth the incredible 80 

phenotypic diversification of life is a recalcitrant problem, but one where a basic semantic 81 

approach has shown promise and where more sophisticated approaches using semantic similarity 82 

may yet be even more valuable. Semantic similarity enables comparison and analysis of semantic 83 

annotations between entities (genes, taxa) using ontologies and computational reasoners to 84 

compute scores that reflect the level of similarity (e.g., Washington et al. 2009; Manda et al. 85 
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2015; see examples in Chapter 10). The Phenoscape team showed that ontology-driven 86 

information systems can generate thousands of testable hypotheses relating unique morphologies 87 

from non-model biodiverse species to candidate genes (Mabee et al. 2012).  One of these, for 88 

example, connected the unique loss of a tongue (‘basihyal element’) in catfishes (Siluriformes) 89 

with several candidate genes from the zebrafish data.  Edmunds et al. (2016) experimentally 90 

tested the candidates by examining their endogenous expression patterns in the channel catfish, 91 

Ictalurus punctatus, and found results consistent with the in silico hypothesis that the tongue 92 

evolved through disruption in developmental pathways at, or upstream of, brpf1.  93 

The Phenoscape team recently extended this approach (Manda et al. 2015) by using 94 

semantic similarity to find matches between the full set of phenotypes described for a gene and 95 

the unique set of phenotypes that characterizes a clade of species, i.e., an ‘evolutionary 96 

phenotype profile’. The effects from a gene knockdown range from several to hundreds of 97 

phenotypes, and the goal is to compare these in their entirety to the calculated set of phenotypes 98 

that are variable among the immediate descendants of a particular taxon. Using semantic 99 

similarity, the Phenoscape KB performs fuzzy matching between suites of phenotypes, and 100 

displays the taxonomic groups that vary in phenotypes that match most closely to the gene 101 

profile that results when the action of that gene is disrupted (e.g., knocked down). The user 102 

interface provides the statistical support for each match and allows the supporting evidence to be 103 

examined. There are some important caveats that must be considered when interpreting the 104 

results, such as the potential for some matches to result from differences in annotation coverage 105 

between genetic and evolutionary studies in the KB. Potentially spurious matches in that 106 

category are flagged by the KB. The KB also provides an interface for the reverse query: what 107 

genes have phenotypes that match most closely to the set of evolutionary phenotypes in a 108 
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particular taxon under consideration? That is, a biologist who is curious about the genetic basis 109 

of taxonomic diversity might want to find genes that have phenotypes that resemble the 110 

phenotypic variation exhibited by a particular taxon.  111 

2. Future applications of semantic similarity to phenotypes of biodiverse taxa 112 

Questions of whether a particular combination of phenotypes in a taxon is unique, or 113 

what it might be similar to, are the types of broad questions that may be addressed in applying 114 

semantic similarity-based data mining to phenotypes across diverse taxa.  Semantic similarity 115 

would retrieve taxa with similar phenotypic profiles; such similarity may have arisen because of 116 

common ancestry or independent origin (a ‘homoplasy finder’). As described by Braun et al. 117 

(Chapter 10), predictive phenomics can, for example, be used to target desired phenotypes in 118 

species of interest - and together with recent gene editing capabilities, functional genomic 119 

analysis can be newly brought to bear on biodiverse species. The Phenoscape KB currently 120 

enables users to view taxa with variation similar to the phenotypic profile of a gene (and vice 121 

versa). In the future, they will also be able to query one custom set of phenotypes against another 122 

or a taxonomically selected subset, and obtain a ranked list of taxa with similar phenotypes. For 123 

example, miniature fishes in the genus Paedocypris, like many fishes that are evolutionarily 124 

reduced to an extremely small body size, exhibit the absence of bones including the interhyal, 125 

vomer, parietal, posttemporal, and supraneurals (Britz and Conway 2009). Are there other taxa 126 

that lack a highly similar set of bones?  Enabling a comparison of these phenotypes across 127 

diverse taxa would allow a user to query for such matches; in this case, matches would include 128 

the ricefishes in the family Adrianichthyidae (Wiley and Johnson 2010), which similarly lack the 129 

interhyal, vomer, and supraneurals, and other bones such as the supracleithrum. Further, 130 

adrianichthyids may lack or possess extremely small or absent parietal bones and have 131 
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structurally simple posttemporal bones, which biologists may recognize as reductive phenotypes 132 

on a continuum close to ‘absent’.  Methods that incorporate a framework of probabilistic 133 

reasoning for phenotype relatedness (e.g., Bauer et al. 2012) have the potential to improve 134 

precision of ontology-based queries. 135 

3. Relating biodiverse phenotypes across studies: presence/absence 136 

Addressing many of the questions in the biodiversity sciences involve knowing how a 137 

specific trait or set of traits has evolved across a group of species.  Although the published 138 

literature is replete with research relating species and traits, and a few repositories hold 139 

phylogenetic trees, some of which are computed products from trait data, neither the traits nor 140 

the trees can be easily synthesized across studies. The OntoTrace tool was developed by the 141 

Phenoscape team (Balhoff et al. 2014b; Dececchi et al. 2015) to enable users to automatically 142 

pull together, from phenotype annotations made to published character matrices and 143 

monographic texts (Dececchi et al. 2015, 2016), a set of presence/absence data for specific traits 144 

for a set of taxa.  For example, querying the Phenoscape KB for a supermatrix of traits of fins, 145 

limbs, girdles and their parts in sarcopterygian vertebrates (lobe-finned fishes and tetrapods), 146 

Dececchi et al. (2015) retrieved data for 1,052 taxa from 55 studies. The data, 1,759 synthetic 147 

presence/absence characters, were derived from 2,588 text-based character states (1,195 148 

characters). The resultant character by taxon matrix was termed a ‘synthetic morphological 149 

supermatrix’. Because of the ontological annotations, not only could these phenotypic data be 150 

automatically aggregated from multiple studies into a supermatrix, but the asserted data could be 151 

extended through inference to traits that were implied by, but not directly asserted in the original 152 

publications. For example, if an author observed a curved pectoral fin ray in a species, the 153 

machine would infer, based on the knowledge of anatomy encoded in the requisite ontology 154 
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(Uberon in this case), that a pectoral fin is present in that species (see Dececchi et al. 2015 and 155 

Jackson et al. 2018 for further examples). In this manner, the missing data in the variable 156 

character subset of the matrix (the subset containing only characters that include both present and 157 

absent states) was reduced from 98.5% to 78.2%. Further, 76% of the variable characters were 158 

made variable through the addition of inferred states. The authors pointed out that character 159 

conflicts and provenance reports from OntoTrace would support researchers review of large 160 

aggregated data sets and they showed how such machine reasoning enables quantification and 161 

new visualizations of the data, allowing the identification of undersampled character space.  162 

4. Relating biodiverse phenotypes to phylogenetic trees 163 

Using ontologies and machine reasoning to automatically generate large, synthetic 164 

character matrices of presence/absence phenotypes (as per above) set the stage for the research of 165 

Jackson et al. (2018), who took this a step further.  They developed a bioinformatic pipeline to 166 

propagate data that was asserted to higher-level taxonomic nodes, to descendant species that 167 

were missing data.  Similar to Dececchi et al. (2015), they showed that such logic inference 168 

significantly extended the asserted data (missing data were reduced from 98.0% to 85.9%), but 169 

additionally they showed the value of taxonomic data propagation, which extended the data 170 

further, reducing missing data to 34.8% (Jackson et al. 2018). Using the resultant matrix along 171 

with a synthetic phylogeny from the Open Tree of Life (Hinchliff et al. 2015), they mapped the 172 

full trait data set for 12,582 species to the tree and addressed the question of how often paired 173 

fins were lost in teleost fishes and whether they were ever regained (Jackson et al. 2018).  174 

Looking ahead, if all published traits and trees were made computable using these methods, any 175 

user could automatically generate a matrix for a specified set of traits and map it on various 176 

synthetic tree topologies, which in turn would allow addressing a host of questions regarding the 177 
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pattern and tempo of phenotypic evolution and associations with genomic and environmental 178 

(Thessen et al. 2015) variables.    179 

5. Relating biodiverse phenotypes across studies: future work 180 

As described above, OntoTrace generates synthetic morphological supermatrices for 181 

presence/absence characters only (Dececchi et al. 2015).  Expanding this functionality to 182 

automatically synthesize characters of other qualities, such as shape, size, structure, and color, is 183 

a current challenge that the Phenoscape team is addressing. For example, whereas characters in a 184 

presence/absence matrix are by definition limited to two states per character, the number of 185 

possible states for characters in other categories is a priori unconstrained. Thus, automatically 186 

synthesizing characters that, for example, describe ‘basihyal bone, shape’, can result in a large 187 

number of states per character because every originally published state that semantically is some 188 

type of ‘basihyal bone shape’ would have to be appended as a new state to the synthesized 189 

character.  In the case of this example, there may be seven distinct shape terms used in its 190 

annotation (Box 1). The ontological relationships indicate that subsets of these states are more 191 

similar to each other than others. By adapting current semantic similarity metrics for the purpose 192 

of character and character state aggregation, and in effect, homology assignment, these distinct 193 

shape descriptors can be consolidated into new, synthetic states (see matrix in Box 1).  194 

  195 
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 196 

Box 1. Assembling a synthetic character and its states for ‘basihyal bone, shape’.  197 

Step 1: Assemble list of ‘shape’ (PATO:0000052) quality terms for all characters and states from 198 

multiple publications that include the entity ‘basihyal bone’ (UBERON:0011618): 199 

‘spiny’ (PATO:0001365) 200 

‘folded’ (PATO:0001910) 201 

‘upturned’ (PATO:0002031) 202 

‘blade-like’ (PATO:0002235) 203 

‘pointed’ (PATO:0002258) 204 

‘curved ventral’ (PATO:0001469) 205 

‘tapered’ (PATO:0001500) 206 

 207 

Step 2: Apply semantic similarity to above list of PATO terms for basihyal bone.  Because of 208 

higher similarity among terms, three states (0, 1, 2) are generated from the seven phenotypes:  209 

Character 1: Basihyal bone: shape  210 

Synthetic State 0: ‘sharp’ (PATO:0001419) (includes ‘blade-like’, ‘pointed’, ‘tapered’) 211 

Synthetic State 1: ‘curved’ (PATO:0000406) (includes ‘upturned’, ‘curved ventral’) 212 

Synthetic State 2: ‘surface feature shape’ (PATO:0001925) (includes ‘spiny’, ‘folded’) 213 

 214 

 215 

The Phenoscape team is now developing semantic similarity-based methods to cluster 216 

phenotypes across different character categories into characters and states, thus automating 217 

matrix construction, and enabling users to optimize the matrix for a variety of metrics. This 218 
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would allow a user to constrain the number of characters in a synthesized matrix by excluding 219 

those with low information content (e.g., those for high level terms from the anatomy ontology 220 

such as ‘fin’’ vs. ‘pectoral fin’). Thus, employing semantic reasoning in matrix construction will 221 

allow a user to balance the properties of a synthetic matrix between, on the one hand, containing 222 

highly specific characters (and thus increased missing data), and on the other, including lower 223 

specificity characters (and thus decreasing missing data).  224 

In addition to semantic tools for supermatrix construction, the Phenoscape team is 225 

developing enhanced semantics for addressing questions of trait evolution. Unlike the current 226 

tools available for analyzing molecular data, where each nucleotide site can be treated as 227 

independent of each other, evolutionary models for large morphological character matrices face 228 

significant challenges overcoming the strong conditional dependencies and correlations among 229 

morphological traits. Most existing methods ignore such dependencies and morphological 230 

characters are treated as independent. By leveraging domain knowledge relevant to assessing 231 

correlations of the traits underlying the characters, Phenoscape is developing tools that enable 232 

users to incorporate evidence of the relatedness of traits in a morphological matrix and into 233 

models of character evolution. These include measures of trait independence based on 234 

ontological relationships, distance (semantic similarity) of traits in the knowledge graph, and 235 

measures of genetic overlap (as derived from gene-phenotype annotations from model organism 236 

databases). Such dependencies can be directly built into the macroevolutionary model, or can be 237 

used to inform prior probabilities in Bayesian analyses when grouping traits into modules with 238 

shared evolutionary parameters or dynamics.  239 

One of the challenges in conducting semantic similarity comparisons is the computational 240 

overhead of comparing EQ phenotypes over a large ontology space. Improvements in scalability 241 
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of semantic similarity methods would enable fast, on-the-fly semantic similarity searches.  242 

Successfully applying these methods also currently depends on accurate a posteriori annotation 243 

of characters to capture the original author’s intent.  With only the published description and 244 

perhaps images to rely on, curators are unable to consistently apply standardized terms, a factor 245 

leading to lower consistency (Cui et al. 2015).  For example, in a comparison of curator vs. 246 

machine generated annotations (Cui et al. 2015; in prep), three curators described the increased 247 

distance between the contralateral pelvic fins with three different quality descriptors: ‘far from’, 248 

‘separated from’, and ‘set apart from’.  As methods and software tools develop, such that original 249 

authors are better empowered to apply the semantics themselves, the accuracy of character 250 

annotation, and thus, consolidation will increase. In the above example, the author would 251 

presumably be able to choose, based on the different definitions of the ontology terms, which 252 

term is most applicable to the phenotype observed.   253 

6. Future challenges 254 

A long-standing question, and one also being currently tackled by the Phenoscape team, 255 

is how the relationship of historical homology, i.e., similarity due to common ancestry, can most 256 

effectively be used in data retrieval.  Recent work by Manda et al. (2016b), examined how 257 

semantic similarity is affected when external homology knowledge is included in an ontology.  258 

They measured phenotypic similarity between orthologous and non-orthologous gene pairs 259 

between humans and either mouse or zebrafish, and they compared the effect of including real 260 

vs. faux homology axioms. Semantic similarity was preferentially increased for orthologs when 261 

using real homology axioms, though only across the more divergent of the two species (human to 262 

zebrash, not human to mouse) (Manda et al., 2016).  Overall, the effect of including homology 263 

axioms on cross-species semantic similarity was modest, though the authors suggested that the 264 
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effect might be greater for more distant species comparisons.  Current efforts include editing and 265 

clarifying the homology relationships in the Uberon ontology and investigating how reasoning 266 

on different models of homology affects information retrieval in the KB.  267 

Another challenge for the broader application of semantics to biodiversity data is the 268 

significant, largely manual, effort necessary to annotate phenotypes from the published literature 269 

(Dahdul et al. 2015). Natural language processing tools are needed going forward to auto-270 

annotate the legacy literature (Arighi et al. 2013; Cui et al. 2015; in prep). Further, in the future 271 

semantic phenotype data may increasingly come directly from publications, as semi-automated 272 

methods for marking up manuscripts at the time of publication become more accurate, mature, 273 

and thus prevalent. Evaluating, and hence continuously improving the accuracy of machine 274 

generated annotations depends on expert-curated “gold standard” data sets. To this end, 275 

Phenoscape has developed the first gold standard dataset for biodiversity phenotypes (in prep). 276 

Efforts to use ontologies in the process of new species descriptions are underway (Deans et al. 277 

2012; Balhoff et al. 2013), and will contribute to achieving a vision of widely available  linked 278 

species phenotype data.  279 

As high-throughput phenotyping, typically involving image data collection, becomes 280 

more scalable, the application of semantic metadata would enable automated connections to the 281 

tools and computable datasets described herein. These digitization efforts can be new sources of 282 

phenotype information (Figure 1). Although broad domains of biology can be served if semantics 283 

are placed on digitized images and specimens, so far only a few projects are using semantics to 284 

label digitized specimens and their parts, despite promising prototypes (Maglia et al. 2007; 285 

Rámirez et al. 2007).  If anatomical parts were tagged with ontology terms, then queries on basic 286 

trait distributions could be enabled (e.g., presence of pectoral fins in taxa a, b, c...). Although 287 
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having a reduced information content compared to full Entity-Quality expressions, entity-only 288 

annotations have been shown to be informative for semantic similarity (Manda et al. 2016a).  289 

Thus, new sources of phenotypic data, such as those for specimens of extinct and extant taxa 290 

associated with institutional collections, can easily be made interoperable through shared 291 

semantics (Figure 1). 292 

CONCLUSIONS 293 

Over the past 10 years the development of shared cross-species community ontology resources 294 

such as Uberon and PATO has enabled interoperability of phenotype and genotype data.  This in 295 

turn enables a wealth of potential applications and discoveries from semantic analysis of 296 

biodiverse taxa.  Scientific attention continues to move toward gaining a deeper fundamental 297 

understanding of the developmental and evolutionary relationship between genotype and 298 

phenotype.  The profound scale and scope of this problem will not only require interoperable big 299 

data, both genomic and phenomic, from a biodiverse set of taxa, but also new ways of using 300 

machines to enable this understanding.  The applications of semantic analysis described herein 301 

only scratch the surface of what is possible. As scientific publication moves to incorporate 302 

semantic markup of phenotype data, and semi-automated tools are improved to annotate the 303 

phenotype legacy literature, knowledge of the rich phenotypic palette of life on our planet can be 304 

exposed to machine computation with great advantage to fundamental discovery across the life 305 

sciences. 306 
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