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Identifying the best framework for two-choice decision-making has been a goal of

psychology theory for many decades (Bohil, Szalma, & Hancock, 2015; Macmillan &

Creelman, 1991). There are two main candidates: the theory of signal detectability (TSD)

(Swets, Tanner Jr, & Birdsall, 1961; Thurstone, 1927) based on a normal distribution/probit

function, and the choice-model theory (Link, 1975; Luce, 1959) that uses the logistic

distribution/logit function. A probit link function, and hence TSD, was shown to have a

better Bayesian Goodness of Fit than the logit function for every one of eighteen diverse

psychology data sets (Open-Science-Collaboration, 2015a), conclusions having been

obtained using Generalized Linear Mixed Models (Lindstrom & Bates, 1990; Nelder &

Wedderburn, 1972) . These findings are important, not only for the psychology of

perceptual, cognitive and social decision-making, but for any science that use binary

proportions to measure effectiveness, as well as the meta-analysis of such studies.
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11 Abstract

12 Identifying the best framework for two-choice decision-making has been a goal of psychology 

13 theory for many decades (Bohil, Szalma, & Hancock, 2015; Macmillan & Creelman, 1991). 

14 There are two main candidates: the theory of signal detectability  (TSD) (Swets, Tanner Jr, & 

15 Birdsall, 1961; Thurstone, 1927) based on a normal distribution/probit function, and the choice-

16 model theory (Link, 1975; Luce, 1959) that uses the logistic distribution/logit function. A probit 

17 link function, and hence TSD, was shown to have a better Bayesian Goodness of Fit than the 

18 logit function for every one of eighteen diverse psychology data sets (Open-Science-

19 Collaboration, 2015a), conclusions having been obtained using Generalized Linear Mixed 

20 Models (Lindstrom & Bates, 1990; Nelder & Wedderburn, 1972). These findings are important, 

21 not only for the psychology of perceptual, cognitive and social decision-making, but also for any 

22 science that use binary proportions to measure effectiveness, as well as the meta-analysis of such 

23 studies.

24

25
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26 Choice of Choice Models: Theory of Signal Detectability Outperforms Bradley-Terry-Luce 

27 Choice Model

28 The aim of this report is to compare two different theoretical frameworks for modelling decision-

29 making: namely, those based on the theory of signal detection (TSD) (Swets, et al., 1961; 

30 Thurstone, 1927) and hence the normal distribution alongside its associated quantile function 

31 called the probit function; and those based on Bradley-Terry-Luce Choice models (BTL) 

32 (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; Link, 1975) and hence the associated logit 

33 function.  The comparison is made using 18 data sets that use binary proportions as a response 

34 (Open-Science-Collaboration, 2015a, 2015b).  Bayesian Information Criterion (BIC) Goodness-

35 of-Fit measures, from Generalized Linear Mixed Models (GLMMs), were used to make the 

36 comparisons.

37 TSD and BTL have long been theoretical rivals. It had been thought that they were 

38 almost indistinguishable empirically for two-choice tasks because, except at their extremes, 

39 probit and logit functions are sufficiently similar that no reliable empirical discrimination of the 

40 two has previously been found, e.g. (Bohil, et al., 2015; Macmillan & Creelman, 1991). 

41 Although work with ordinal categorical judgements does suggest a superiority of TSD as early as 

42 1978 (Kornbrot, 1978), since then, much theoretical work has concentrated on development of 

43 either the signal detection (Killeen, Taylor, & Treviño, 2018) or the choice framework (Bohil, et 

44 al., 2015). In spite of their similarities, the generic mechanisms that lead to logit and probit 

45 distributions are different. 

46 One kind of mechanism that leads to a logit distribution is the random walk with a drift 

47 rate applied according to the evidence available (Wald, 1947): This has been frequently proposed 

48 for perceptual discrimination (Laming, 1968; Luce, 1986). It is known that ‘pure’ random walks 

49 are not sufficient as they predict that if barrier locations are held constant there will be identical 

50 distributions for a specific response, whether given correctly or in error. Several modifications 

51 have been suggested to account for the finding that this almost never happens. Specific examples 
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52 include error-correcting models, where people move their barrier location after an error. We do 

53 not know if such mechanisms would produce results more compatible with a probit function. 

54 Another theoretical mechanism that generates choice data compatible with a logit 

55 function comes from research on category judgments, such as ‘word’ or ‘non-word’ in lexical 

56 decision, ‘cheat’ or ‘honest’ in social decisions, or ‘old’ or ‘new’ in memory studies. One kind of 

57 memory model suggests that, with experience of members of each of two categories, observers 

58 build up a set of exemplars for each category. They then compare any new test exemplar with the 

59 memorized exemplars to establish the best-matching memorized exemplar, giving the test 

60 exemplar the category label associated with that best-matching exemplar. Choice behaviour can 

61 then be expected to be well modelled by a logit function under specific conditions. These include 

62 when experience contains multiple (i.e., repeated) presentations of the same training exemplars 

63 and where the degree-of-match of only the best matching exemplar of any given category is 

64 considered in the choice process.  Technically, this is because the extreme value (e.g., highest 

65 value) across a number of variables that are identically normally distributed, is characterized by 

66 the Gumbel distribution. The difference between two Gumbel distributions is a logistic 

67 distribution, for which the logit, and not the probit, is the appropriate distribution function (Page, 

68 2000). By contrast, the pooled distribution of a set of variables that are normally distributed is, of 

69 course, normally distributed itself, and the probit function is the appropriate quantile function. A 

70 finding that the probit function provides for better-fitting models would suggest, therefore, that 

71 in classification tasks, match-information across many learned exemplars (particularly where 

72 individual exemplars are repeatedly presented during learning) is more likely to be pooled, as 

73 opposed to being reduced just to the best-matching exemplar from each category. 

74 Pooling over relevant mental representations is just one of many mechanisms that might 

75 generate a normal distribution of, say, match values to a given test stimulus. This is because the 

76 central limit theorem suggests that the normal distribution occurs whenever multiple sources of 

77 variable information contribute to some feature. In the classical signal-detectability account of a 

78 perceptual experiment, the representation in the human brain of a sequence of physically 
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79 identical stimuli has a normal distribution, hence d’ is the discrimination measure of choice. This 

80 signal detection model can be generalized to any classification task (Ratcliff, 1978; Ratcliff & 

81 McKoon, 2008).  A finding of probit superiority would, therefore, generally support models that 

82 have multiple sources of information or ‘activation’ even for both simple perceptual and 

83 complex cognitive tasks. Current paradigms do not enable us to distinguish whether these 

84 multiple sources operate in the primary representation of stimuli or in the criteria setting that is 

85 an integral and unavoidable part of any of these tasks.

86 In any event, a method that can reliably distinguish these frameworks has considerable 

87 theoretical importance. Since there are persuasive arguments for both logit and probit as the 

88 appropriate function to apply when assessing evidence in choice tasks, we had no predictions as 

89 to which framework would ‘win’. Indeed, we considered it quite possible that the best model 

90 would depend on the task, maybe TSD probit for more perceptual tasks, and BTL logit for more 

91 cognitive tasks.

92 Method

93 Data sets

94 The data-sets were downloaded from the Open Science Collaboration website (Open-Science-

95 Collaboration, 2015a, 2015b). There were 100 data-sets. We chose all those (18) that met the 

96 criteria that the response variable was effectively a proportion (i.e., the number of trials meeting 

97 some specified criterion from a fixed number of opportunities), and that the published analysis 

98 was ANOVA. This was because one of our goals was comparing the descriptive and inferential 

99 results of ANOVA and GLMM analyses. The topics covered a range of social and cognitive 

100 areas of psychology, and used several designs with between 1 and 4 factorial predictors, some 

101 varying between group and some repeated over participants. Details of the ANOVA/GLMM 

102 comparison are available in a separate manuscript. Table 1 summarizes properties of studies.

103 ____________________

104 Insert Table 1 about here
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105 Analysis Methods

106 GLMM analyses were conducted on each data-set using the SPSS procedure MIXED. Each 

107 analysis was run twice: once with a probit link function, once with logit. BIC goodness-of-fit 

108 measures were compared.  

109 Results

110 Table 2 shows the design and resulting BIC values and the ratio of logit BIC to probit BIC. The 

111 probit link gave the best fit, that is, it had the lowest BIC, for all studies. The ratio varied from 

112 1.1 to 16.1 for the 17 cases with positive BIC. A negative BIC was obtained for study-15 probit, 

113 as is possible with these kinds of model, so probit was best for this study also. 

114 ____________________

115 Insert Table 2 about here

116 Discussion

117 The signal-detection framework is shown to be superior to the choice framework across all 18 

118 data sets. This is a serendipitous finding. Our initial aim was to show that any binomial GLMM 

119 was better than standard ANOVA, as was indeed the case. As noted earlier, we had no a priori 

120 prediction between logit and probit, so the unequivocal favouring of the normal distribution, as 

121 instantiated by the probit link, came as a big surprise. This finding has implications both for 

122 theories of psychological discrimination and for methods of choosing between rival theories in 

123 any science.

124  For psychological discrimination the TSD framework is favoured across a wide range of 

125 diverse Tasks (Table 1). TSD supports models that have multiple sources of information or 

126 ‘activation’ even for the simplest tasks. More specifically, for classification tasks it suggests that 

127 match-information across many learned exemplars is more likely to be pooled, rather than being 

128 reduced just to the best-matching exemplar from each category. 

129 The psychological discrimination problem is structurally very similar to medical meta-

130 analysis problems where the response variable is binary (e.g., dead or alive, disease progressed 

131 or not, etc.). Many, if not most, such meta-analyses use log (odds ratios) which are logits, 
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132 although some do use probits. We have not been able to discern how the strategic choice 

133 between log (odds ratio) and probit is made. Our findings suggest a comparison between logit 

134 and probit should be a routine part of meta-analyses of binary proportions.  This should ensure 

135 that the best-fitting model is used to draw conclusions about potentially life-threatening 

136 conclusions.

137 These results also show the benefit of using GLMMs to identify best models for 

138 proportion data in any area of science, including meta-analysis. This is a considerable 

139 methodological advance and a very practical reason for using GLMMs.

140 Conclusions

141 We draw the following conclusions.

142 The signal-detection framework is superior to the choice framework for modelling of 

143 proportions as a response variable across a wide range of psychological domains.

144 Generalized Linear Mixed Models constitute a method of analysis with statistical 

145 theoretical support, which (while not new) deserves to be used more widely by psychological 

146 and other sciences. 

147 The results suggest that probit links may be more useful for meta-analysis than the more 

148 prevalent log-likelihood methods that use logit links. In any event, meta-analyses should 

149 compare logit and probit links for goodness-of-fit. We were unable to find any meta-analyses 

150 where such a comparison occurred.

151 These results contribute to resolving a major issue in psychology, and suggest a powerful 

152 method of identifying best models in science generally.

153

154

155

156
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203 Supplementary Material

204 EXCEL workbook ProportionRawAll.xlsx contains raw data with one sheet for each study, 

205 specifying the study number, study; participant number, pno; all between predictors, b1, b2 etc.; 

206 all within predictors, w1, w2, etc.; the number of observations meeting the criterion, freq, and the 

207 number of opportunities Nmax. 
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Table 1(on next page)

Properties of data sets

Id numbers, authors, URLs and main topics/themes for 18 data sets.
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1 Table 1 

2 Properties of data sets

3

ID First 

Author

Project URL Topic 

002 Morris HTTPS://OSF.IO/RMVK5/ Repetition blindness for nonwords

003 Liefooghe HTTPS://OSF.IO/4DVZB/ Working memory costs of task 

switching

004 Storm HTTPS://OSF.IO/8J9CG/ Fast relearning, retrieval-induced 

forgetting

005 Mitchell HTTPS://OSF.IO/4XDKK/ Intermixed-blocked effect in perceptual 

learning

007 Beaman HTTPS://OSF.IO/6N3BM/ Strategies & distributions of immediate 

memory

008 Dodson HTTPS://OSF.IO/C5PBG/ Stereotypes & retrieval of illusory 

recollections

012 Marsh HTTPS://osf.io/7rtcz/ Sequence phonological similarity, 

sound disruption

015 Schmidt HTTPS://osf.io/bscfe/ Stroop, proportion congruence, and 

contingency

020 Sahakyan HTTPS://OSF.IO/BZDR2/ Intentional forgetting after 1 or 2 

"shots"

022 Colzato HTTPS://OSF.IO/P9THW/ Bilingualism, executive control, 

inhibition

025 Couture HTTPS://OSF.IO/K9GP6/ Corrects and errors in Hebb repetition 

effect

029 Turk-

Browne

HTTPS://OSF.IO/UJHLW/ Multidimensional visual statistical 

learning

036 Pacton HTTPS://OSF.IO/VMZ2E/ Attention-based account dependency 

learning

037 Makovski HTTPS://OSF.IO/0PXRO/ Orienting attention, memory probe 

interference

106 Dessalegn HTTPS://OSF.IO/IAJP5/ Language role  in binding feature 

conjunctions

133 Nairne HTTPS://OSF.IO/JHKPE/ Adaptive memory & value of survival 

processing

136 Vohs HTTPS://OSF.IO/I29MH/ Determinism belief, cheating

158 Goschke HTTPS://OSF.IO/BK53T/ Response conflict, prospective memory, 

cue monitor

4
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Table 2(on next page)

Goodness of Fit for 18 data sets

Design, number of participants, maximum number of opportunities and BIC Goodness of Fit

for probit and logit link analyses.
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1 Table 2 

2 Goodness of Fit for 18 data sets

3

ID Design N 

participant

N 

max

Probit 

BIC

Logit 

BIC

Logit 

/Probit

002 r4r2    24   24   202   306 1.51

003 r4    32   72       8   125 15.63

004 b3b2r2r2    30   24   946 1732 1.83

005 b2r2r2    24     8   335   518 1.55

007 Hr2   15 320     14     40 2.86

008 b2r2r2   24   32    512   686 1.34

012 b2r2r3   59   15 1202 2038 1.70

015 r3 242 144  -169   537 -3.18

020 b2r2   47    8   322   538 1.67

022 r2r2   32   30  139   262 1.88

025 r4   16   16     51   120 2.35

029 r2   30   16     57     84 1.47

036 b2r2r2   12     4   256   346 1.35

037 r2r2r2   24     4   166   371 2.23

106 b2   16   30     53     96 1.81

133 b2r2   19    16   123   191 1.55

136 b2   29   20   416   472 1.13

158 b2r2r2     7   18   803 1228 1.53

4

5 Notes. BIC = Bayesian Information Criterion, Logit/Probit = (logit BIC)/(probit BIC)

6 r is repeated, b is between factor, numbers after b/ or r are number of levels

7
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