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The NIST DSE Plant Identification challenge is a new periodic competition focused on

improving and generalizing remote sensing processing methods for forest landscapes. To

compete in the competition, I created a pipeline to perform three remote sensing tasks.

First, a NDVI- and height-thresholded watershed segmentation was performed to identify

individual tree crowns using LIDAR height measurements. Second, remote sensing data for

segmented crowns was aligned with ground measurements by choosing the set of pairings

which minimized error in position and in crown area as predicted by stem height. Third,

species classification was performed by reducing the dataset's dimensionality through PCA

and then constructing a set of maximum likelihood classifiers to estimate species

likelihoods for each tree. Of the three algorithms, the classification routine exhibited the

strongest relative performance, with the segmentation algorithm performing the least well.
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ABSTRACT8

The NIST DSE Plant Identification challenge is a new periodic competition focused on improving and

generalizing remote sensing processing methods for forest landscapes. To compete in the competition, I

created a pipeline to perform three remote sensing tasks. First, an NDVI- and height-thresholded water-

shed segmentation was performed to identify individual tree crowns using LIDAR height measurements.

Second, remote sensing data for segmented crowns was aligned with ground measurements by choosing

the set of pairings which minimized error in position and in crown area as predicted by stem height.

Third, species classification was performed by reducing the dataset’s dimensionality through PCA and

then constructing a set of maximum likelihood classifiers to estimate species likelihoods for each tree.

Of the three algorithms, the classification routine exhibited the strongest relative performance, with the

segmentation algorithm performing the least well.
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1 BACKGROUND11

Characterizing the structure and species makeup of forest systems is an essential step in many disciplines.12

These kinds of analysis are necessary for assessing the quality of a patch of habitat for conservation of13

particular target taxa(3)(8), for estimating system-level properties like primary productivity or capacity14

for carbon sequestration(11), and also for landowners interested in directly managing forests for wood or15

fruit production(10). Traditional methods of characterizing forests involved expensive, laborious, and16

time-consuming deployment of experts on foot to manually label individual trees with location, species,17

and structural data(1)(4). More recently, remote sensing technologies have emerged which show the18

potential to massively alter the scale and efficacy with which these characterizations can be performed.19

These technologies utilize cameras and LIDAR units mounted on aircraft (small planes or unmanned20

aerial vehicles) which can be flown over a forest collecting massive amounts of data on the height and21

spectral properties of the community(5)(10).22

Extracting useful ecosystem parameters from this mass of generated data involves three primary23

steps: segmentation, alignment, and classification(4). In the segmentation step, individual tree crowns24

are automatically extracted from the scene so that they can be counted and analyzed separately. During25

alignment, individual trees from the segmented scene are automatically paired with stems labeled during26

traditional ground-based methods to improve the richness of the remote sensing dataset. This also allows27

assignment of species labels to some crowns, which provides training data for the classification step.28

During classification, species labels are estimated for remaining trees which were not already assigned29

labels by experts on foot.30

In general the efficacy of different remote sensing processes depends strongly on the forest type31

being surveyed – in particular the degree of canopy openness and overall species diversity(6). When32

new methods are introduced in the literature there is often a lack of robust comparison to existing33

methods, and the comparisons which are included are difficult to apply broadly due to these inherent34
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differences in performance on different systems(4). As well, the formats in which remote sensing data are35

saved and processed vary hugely across platforms and research disciplines, and have proven difficult to36

standardize(4).37

The NIST DSE Plant Identification Challenge(4) was introduced this year to try to combat these38

problems and to increase standardization, methods benchmarking, and collaboration within the remote39

sensing research community. During this competition, the three tasks outlined above (segmentation,40

alignment, and classification) were performed on the same dataset by multiple competing teams. To keep41

the results of each task from limiting the performance of subsequent tasks the input data for each task was42

provided a priori by the competition organizers. In a real-world scenario the tasks could instead be arrayed43

in a single coherent pipeline to perform more meaningful automatic forest characterization. More detailed44

descriptions of the provided data will be provided in the task subsections below, and exact methods of45

input data collection and preprocessing can be found in the parent paper on the overall competition pilot,46

along with elaboration on the nature and goals of the competition.(4)47

2 METHODS48

2.1 Data Collection49

All data used were provided by NEON, and included, according to the competition organizers:50

1. Woody plant vegetation structure (NEON.DP1.10098);51

2. Spectrometer orthorectified surface directional reflectance - flightline (NEON.DP1.30008);52

3. Ecosystem structure (NEON.DP3.30015);53

4. High-resolution orthorectified camera imagery (NEON.DP1.30010).54

In plain speech, these datasets included hyperspectral and LIDAR-produced DSM images of the scenes in55

question, as well as hand-labeled tree species, height, diameter, location, and stem-crown correspondences.56

Again, more information regarding the data provided can be found in the parent paper (4).57

2.2 Segmentation58

2.2.1 Input Data59

For this task, I used only the canopy height model provided as an input by the competition organizers and60

the hyperspectral camera image of this same area. The dataset consisted of 30 training and 13 test plots,61

each a pair of CHM and hyperspectral camera images of the forest in an 80x80m area, including a 20m62

buffer on each edge of the 40x40m plot. Both rasters were gridded with 1x1m pixel sizes such that they63

contained 6400 points each. The hyperspectral image contained 426 bands between 350 and 2500nm,64

while the CHM image contained only a single band filled with height values. More details on the methods65

of collection for the input data can be found in the parent paper (4).66

2.2.2 Processing Overview67

My approach started with applying an NDVI filter to the cloud in order to remove points that had NDVI68

values too low to be plant matter. Then I applied a sliding linear window function to identify local maxima69

(presumptive treetops). Finally, I performed a watershed segmentation to create tree polygons around70

these top points.71

2.2.3 Vegetation Filtering72

The Normalized Difference Vegetation Index (NDVI) is an index used to determine the degree of plant

cover at a point in a spectral scene. It is given as:

NDV I =
NIR−RED

NIR+RED
,(5) (1)

where NIR and RED are reflectances of the scene in the red and near infrared bands. For this filter I used73

bands 50 and 70 of the hyperspectral image, which correspond to wavelengths of 628.1 and 728.3 nm74

(respectively in the red and near-red IR ranges). High positive values of NDVI indicate substantial plant75

cover. Low or negative NDVI indicates landcover by non-vegetative materials. I used a threshold of 0.576

for filtering because this removed most of the ground cover from the image while maintaining all of the77

canopy material - I confirmed this using manual inspection of the RGB imagery pre- and post-filtering.78
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2.2.4 Maxima Search79

A search for local maxima (treetops) was performed using the open source remote sensing package

ForestTools (7). I used the TreetopFinder() function with a linear sliding window using the function

f = 0.25x+1.2 (2)

The maximum search was thresholded to ignore maxima below 5m, because the great majority of crowns80

were above this height and no ground points were. A linear window function was selected based on the81

recommendations of the package documentation, and the two parameters of the function were manually82

tuned, starting from their default values and ending with those presented above, until the segmentation83

results on the test data appeared to be appropriately segmenting the canopies to individual trees. This84

manual testing and tuning was performed on several input image plots to ensure that performance would85

be acceptable across different tree sizes and degrees of canopy openness.86

2.2.5 Segmentation87

Following identification of treetops, watershed segmentation was performed, again using the ForestTools88

package (7). The SegmentCrowns() function was used with the treetops found above, with the minimum89

canopy height set to 3m. This means that while tree crown maxima were not permitted to occur below90

5m (in section 2.2.4), tree crown edges were allowed to extend down to as low as 3m. This height91

limit prevented inclusion of ground points while still retaining most of the canopy structure. The92

SegmentCrowns() function returns empty polygonal lines when the format parameter is set to “polygons,”93

and these were saved to a shapefile using the function writeOGR().94

2.3 Alignment95

2.3.1 Input Data96

Alignment was performed between the provided ground and individual tree crown (ITC) datasets. The97

ITCs present in the dataset were divided up into training and test data as described in the parent paper98

(4). The ground data consisted of stem IDs, locations in latitude and longitude, stem heights, and stem99

diameters. The remote sensing ITC data consisted of crown IDs, location in latitude and longitude, crown100

area, and plot IDs.101

2.3.2 Algorithm102

First, stems were divided into plots. This information was not provided in the input data, but because the103

plots were small relative to the distance between plots, it was possible to cluster stem data into plots by104

simply iterating through the list and assigning each stem to the plot containing its nearest crown neighbor105

in latitude and longitude. In order to correct for the possibility of systematic error in ground-based106

estimation of location, all the stems in each plot were transformed by the difference in average coordinates107

between stem and crown groups within the plot.108

Next, for each crown an estimate of crown diameter was formed using the known crown area and the

assumption that crowns are roughly circular:

D = 2

(

A

π

)0.5

(3)

A linear regression was performed to find the relationship between the crown and stem diameter. A similar109

regression was run to test the relationship between stem height and crown diameter, but this relationship110

was found to be weaker, and a multiple regression model including both stem diameter and height was not111

found to predict crown diameter meaningfully better than stem diameter alone. The RMS error between112

all crown diameter predictions based on this equation and all actual crown diameter values was determined113

across the training dataset. Analogously, the RMS error in latitude and longitude was found for all training114

crowns versus the corresponding values for their paired stems.115

Within each plot, a list of all possible pairings of stems and crowns was created and iterated through,116

with every pairing possibility being given a cost which was determined as follows:117

C =

(

D− D̂

Drms

)2

+

(

X − X̂

Xrms

)2

+

(

Y − Ŷ

Yrms

)2

(4)
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where C is the cost, D is crown diameter estimated from crown area, D̂ is crown diameter predicated118

from the stem using the regression equation, Drms is the RMS error in diameter predictions, X is crown119

longitude, X̂ is stem longitude, Xrms is the longitude prediction RMS error, Y is crown latitude, Ŷ is120

stem latitude, and Yrms is the latitude prediction RMS error. The RMS error values were used to create121

dimensionless costs across the three variables, scaled by the overall noise in each signal. Within each plot,122

the set of pairings which minimized the total cost across all pairs was taken as the best alignment.123

2.4 Classification124

2.4.1 Input Data125

The input data for this task consisted of a dataframe of individual pixel observations within each scene.126

Each pixel was labelled with its associated crown ID and also contained the height within the CHM at that127

point and the response in all the hyperspectral bands. Species labels were also provided for each crown128

ID within the training set. Again, see (4) for more information on the input dataset.129

2.4.2 Algorithm130

First, all the pixels in each tree were aggregated into a single observation of that tree, containing the131

average reflectance value in each band, the average height, the minimum height, the maximum height,132

and the square root of the total number of pixels in the tree (as an approximation of crown diameter, since133

each pixel is 1x1m).134

The resulting tree vectors within the training set were grouped by species class. Two separate principle135

component analysis routines were run on the structural and spectral parameters. The dimensionality of136

the set was reduced by retaining only the three most informative dimensions from the PCA result for137

the structural matrix and the ten most informative dimensions from the spectral PCA result. The vectors138

within each class group were assembled into a prediction matrix for that class.139

A set of maximum likelihood classifiers was built on the training data for each species class. Maximum

likelihood methods work by assigning likelihoods L based on the following equation:

L = (2π)−
N
2 |Y |−0.5

exp
(

−0.5(t −T )T
)

Y−1(t −T )(9) (5)

where N is the total number of variables used in the classifier (here bands and structural parameters of140

trees), Y is the covariance matrix of the entire set of training vectors for the target class, t is the vector of141

parameters for the tree to be classified, and T is the average vector from the set of training vectors for the142

target class.143

Each individual tree vector in the test set was transformed by the PCA parameters found above and144

used to determine a likelihood of assignment to each class. Trees were then assigned to the class with the145

highest likelihood score.146

3 RESULTS147

3.1 Segmentation148

The segmentation routine had the weakest results out of the three algorithms implemented here. The149

scoring used by the competition was based on the Jaccard index, which measures the overlap between150

two sets, and is given as follows:151

J(A,B) =
|A∩B|

|A∪B|
=

|A∩B|

|A|+ |B|+ |A∪B|
(6)

This index ranges between 0 and 1, with 0 representing a complete lack of overlap and 1 representing152

complete overlap. The index was calculated on the output trees compared to models of tree crowns153

produced by the competition coordinators hand-drawing crown segmentations on the data (4). My154

algorithm yielded J = 0.184, compared to the baseline score found by the organizers of J = 0.0863 which155

used a simpler segmentation routine.156

An example segmentation of a plot scene is given in Figure 1 below. Note the robustness of the routine157

to areas that do not contain tree crowns, with bare soil or vegetative ground cover visible.158
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Figure 1. Segmentation results for one plot. a) Raw RGB image of the plot scene. b) CHM of the scene,

filtered to exclude points with NDVI < 0.5 and height < 3m. Local maxima associated with presumptive

treetops are shown in black marks. c) Output of the watershed segmentation routine showing polygonal

crowns. d) Crown segmentations overlaid in red on the input RGB image.

3.2 Alignment159

The regression equation found between crown diameter (as estimated by crown area) and stem diameter160

is given by ˆDcrown = 0.148Dstem +0.549. This equation was found to be significant (p < 0.0001) with161

R2 = 0.730. A plot of crown diameters vs. stem diameters is given in Figure 2.162

Figure 2. Linear regression for stem diameter (mm) versus crown diameter (m) as estimated from crown

area. The point at far right in the plot was excluded from the regression as an outlier.

The alignment routine performed better overall than segmentation, and was able to correctly align163

48% of the input crowns to the associated trees. However, an identical performance was yielded by164

the benchmark routine used by the competition organizers. That routine was very similar to the one I165

implemented, but used only latitude and longitude to align trees and ignored stem and crown diameters.166
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3.3 Classification167

The classification performance of algorithms in the competition was measured by two metrics - rank-168

1 score (the percentage of all test trees correctly classified) and cross-entropy score (which rewards169

participants for expressing uncertainty about predictions). Higher rank-1 scores and lower cross-entropy170

scores are associated with “better” classification results.171

The classification yielded a rank-1 score of 0.8226, indicating that it correctly classified 82% of all the172

trees in the set, and had a cross-entropy score of 1.2247. This can be compared to the ’baseline’ method173

implemented by the competition organizers, which yielded a rank-1 score of 0.6667 and cross-entropy174

score of 1.1306.175

My algorithm was the only method other than the baseline which had a 100% success rate at correctly176

identifying the most common tree in the dataset (the Longleaf Pine, Pinus palustris). It also yielded a177

very high success rate at identifying the second most common species (the Turkey Oak, Quercus laevis),178

at nearly 90%. However, it did not correctly identify any tree of any species other than these two most179

common species. Despite this, the two most common species represent a huge majority of the overall180

canopy in this system, covering 82.3% of all the trees in the training dataset.181

4 DISCUSSION182

4.1 Segmentation183

Segmentation appears to be a major challenge within the remote sensing community, and no group184

participating in this competition was able to yield a segmentation Jaccard score of higher than 0.34. This185

problem is likely exacerbated by the heterogeneity of canopy structure between test plots in this test186

system. Segmentation algorithms are often sensitive to canopy structure differences such as degree of187

openness(6), and so in the future it might be beneficial to focus efforts on testing more algorithms which188

can automatically adjust their tuning based on the local openness and tree size within different areas189

of the canopy. My approach used only manual tuning, and work to automatically learn more effective190

parameters using training data represents a potential area for future improvement.191

Because most of the classification results submitted were fairly powerful, it might be possible to192

perform pixel-wise classification to species first, and use this information to help inform the aggregation193

of those pixels into crowns (ie, trees of different species cannot be part of the same crown). An alternative194

possibility is an iterative process which first segments and classifies crowns at the pixel level and then195

splits crowns that appear to be combinations of two trees of differing species, or lumps adjacent crowns of196

the same species which might be different subcrowns within the same tree. It may also be worthwhile to197

try pulling in more data for the segmentation routine than just CHM results - especially the hyperspectral198

information.199

4.2 Alignment200

I was surprised that my alignment algorithm did not perform more strongly, especially because the201

strongest alignment algorithm implemented by another team used a method very similar to mine.(Dalponte and Gianelle)202

I think that there may have been a problem in my implementation of the crown area predictions, because203

my results were identical to those produced by the ’benchmark’ algorithm which ignored crown area.204

Further investigation will be warranted in future work.205

However, the broader applicability of these alignment algorithms is limited, because they rely on206

one-to-one datasets of perfectly labelled crowns and stems. They cannot perform on datasets in which not207

every stem is labelled, which is likely the case in a real forestry application. As well, the pairing algorithm208

I implemented scales very poorly with larger plot sizes - if it were to be implemented on a forest scale209

it would take an extremely long time to process all the potential pairings. Algorithms to automatically210

section the forest for alignment analysis into plots like those used here may be an area of potential interest211

for future work. Alternatively, it may be beneficial to rely instead on algorithms in which each target stem212

is compared to all of its nearest neighbor crowns, possibly with some cost to penalize multiple stems213

being mapped to the same crown.214

4.3 Classification215

My classification routine was extremely effective at identifying common species. In some contexts, this216

may be all that matters. For example, this would be entirely sufficient if the primary intent is to quantify217

the numbers in a community of a few very common ”dominant” species. This would be the case for218
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efforts to take inventory of a wood production forest, or to calculate parameters related to gross system219

function like primary productivity, water filtration, or carbon sequestration. In these cases, the small220

number of misidentified rare species may not be important.221

In other cases, this kind of result would not be acceptable. If the goal is to identify rare species in a222

community so that they can be managed for conservation, ability to recognize uncommon species may be223

important! However, while my algorithm was aimed primarily at identifying the most common species, it224

should be noted that no algorithm was able to yield strong performance on all the uncommon species. In225

fact, the best other submission for uncommon species identification was still only able to recognize four226

of the seven uncommon classes with greater than a 50% success rate - and this came at a loss in accuracy227

of about 10% at identifying the second most common species. It is clear that further work is warranted to228

develop algorithms that are capable of robustly recognizing rare species based on sparse training data.229

5 CONCLUSION230

My submission to the competition includes a tree segmentation, alignment, and classification pipeline231

which performs most strongly for common tree species. Consequently, it may be appropriate for appli-232

cations such as maintenance of highly managed forestry plantations and efforts to estimate gross forest233

parameters in natural systems. Future work will focus primarily on improving the results of the segmenta-234

tion algorithm, with emphasis also on improving the alignment of remotely collected and hand-labelled235

ground data. The latter will become especially important as the competition moves towards more realistic236

tree selection, potentially with overlapping plots and incomplete correspondence between the aerial and237

ground datasets.238

As remote sensing methods continue to develop and the cost of deployment continues to decrease (with239

more and cheaper small aircraft), the technologies targeted by this competition may become increasingly240

important in a diverse array of disciplines, from agriculture to forestry to ecological research(5). The241

newly introduced NIST DSE Plant Identification Challenge may help to foster the development of systems242

for remote sensing analysis that are more streamlined and generalized across applications, which should243

aid their wider deployment across these fields. It is hoped that future competitions will continue to244

elaborate further on the methods developed here, and that this will aid in the expansion of remote sensing245

approaches into even more real world applications and fields.246
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7 SOFTWARE255

The code developed for this analysis is available at: https://github.com/conormcmahon/256

canopy_segmentation257
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