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Bacterial small non-coding RNAs (sRNAs) are involved in the control of several cellular

processes. Hundreds of putative sRNAs have been identified in many bacterial species

through RNA sequencing. The existence of putative sRNAs is usually validated by Northern

blot analysis. However, the large amount of novel putative sRNAs reported in the literature

makes it impractical to validate in the wet lab each of them. In this work, we applied five

machine learning approaches to construct twenty models to discriminate bona fide sRNAs

from random genomic sequences in five bacterial species. Sequences were represented

using seven features including free energy of their predicted secondary structure, their

distances to the closest predicted promoter site and Rho-independent terminator, and

their distance to the closest open reading frames (ORFs). To automatically calculate these

features, we developed an sRNA Characterization Pipeline (sRNACharP). All sevens

features used in the classification task contributed positively to the performance of the

predictive models. The five best performing models obtained a median precision of 100%

at 10% recall and of 60% at 40% recall across all five bacterial species. Our results suggest

that even though there is limited sRNA sequence conservation across different bacterial

species, there are intrinsic features of sRNAs that are conserved across taxa. We show that

these features are exploited by machine learning approaches to learn a species-

independent model to prioritize bona fide bacterial sRNAs.
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ABSTRACT11

Bacterial small non-coding RNAs (sRNAs) are involved in the control of several cellular processes.

Hundreds of putative sRNAs have been identified in many bacterial species through RNA sequencing.

The existence of putative sRNAs is usually validated by Northern blot analysis. However, the large

amount of novel putative sRNAs reported in the literature makes it impractical to validate in the wet lab

each of them. In this work, we applied five machine learning approaches to construct twenty models to

discriminate bona fide sRNAs from random genomic sequences in five bacterial species. Sequences

were represented using seven features including free energy of their predicted secondary structure, their

distances to the closest predicted promoter site and Rho-independent terminator, and their distance

to the closest open reading frames (ORFs). To automatically calculate these features, we developed

an sRNA Characterization Pipeline (sRNACharP). All sevens features used in the classification task

contributed positively to the performance of the predictive models. The five best performing models

obtained a median precision of 100% at 10% recall and of 60% at 40% recall across all five bacterial

species. Our results suggest that even though there is limited sRNA sequence conservation across

different bacterial species, there are intrinsic features of sRNAs that are conserved across taxa. We show

that these features are exploited by machine learning approaches to learn a species-independent model

to prioritize bona fide bacterial sRNAs.
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INTRODUCTION28

Bacterial small non-coding RNAs (sRNAs) are regulatory RNAs (usually between 50 to 250 nucleotides)29

that are known to play a role in the control of several cellular processes (Storz et al., 2011; Michaux30

et al., 2014). A multitude of putative sRNAs has been identified in many bacterial species through RNA31

sequencing (e.g., Grüll et al. (2017); Thomason et al. (2015); Zeng and Sundin (2014); McClure et al.32

(2014)). The existence of putative sRNAs is usually validated by Northern blot analysis. However, the33

large amount of novel putative sRNAs reported in the literature makes it impractical to validate each of34

them in the wet lab. To optimize resources, one would like to first investigate those putative sRNAs which35

are more likely to be bona fide sRNAs. To do that, we need to computationally prioritize sRNAs based36

on their likelihood of being bona fide sRNAs. As the inter-species sequence conservation of sRNAs is37

very limited and most sRNAs are species-specific (Gómez-Lozano et al., 2015; Grüll et al., 2017), sRNA38

prioritization based on sequence similarity to known sRNAs has a low recall rate. However, predictive39

models generated by machine learning approaches may be able to detect intrinsic features of sRNA40

sequences common to a number of bacterial species.41

We comparatively assessed the performance of five machine learning approaches for quantifying the42

probability of a genomic sequence encoding a bona fide sRNA. The machine learning approaches applied43

were: logistic regression (LR), multilayer perceptron (MP), random forest (RF), adaptive boosting (AB)44

and gradient boosting (GB). We used data from five bacterial species including representatives from the45

phyla Firmicutes (Streptococcus pyogenes), Actinobacteria (Mycobacterium tuberculosis), and Proteobac-46
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teria (Escherichia coli, Salmonella enterica, and Rhodobacter capsulatus). As input to the machine learn-47

ing approaches, we provided a vector of seven features per sequence. These features are: the free energy of48

the predicted secondary structure, distance to their closest predicted promoter site, distance to their closest49

predicted Rho-independent terminator, distances to their two closest open reading frames (ORFs), and50

whether or not the sRNA is transcribed on the same strand as their two closest ORFs. Obtaining these sRNA51

features requires the use of numerous different bioinformatics tools which may be challenging for the av-52

erage user. To facilitate sRNA characterization, we have developed sRNACharP (sRNA Characterization53

Pipeline), a pipeline to automatically compute these seven features (available at https://github.54

com/BioinformaticsLabAtMUN/sRNACharP). Results from our comparative assessment indi-55

cate that it is possible to create a highly accurate and general (i.e., species-independent) model for priori-56

tizing bona fide bacterial sRNAs. To enable other researchers to use one of the best species-independent57

sRNA predictive models we evaluated, we introduce sRNARanking, a freely available species-independent58

predictive model aimed at computationally prioritizing putative sRNAs based on their likelihood to be59

bona fide sRNAs (https://github.com/BioinformaticsLabAtMUN/sRNARanking). We60

expect that together these two tools (sRNACharP and sRNARanking) will facilitate and accelerate the61

characterization and prioritization of putative sRNAs helping researchers in the field of RNA-based62

regulation in bacteria to focus in the putative sRNAs most likely to be bona fide sRNAs.63

METHODS64

Data sets65

Published positive instances of bona fide sRNAs were collected for R. capsulatus (Grüll et al., 2017),66

S. pyogenes (Le Rhun et al., 2016), and S. enterica (Kröger et al., 2012). S. pyogenes and S. enterica67

positive instances have all been verified by Northern blot analysis; while, R. capsulatus positive instances68

included, in addition to four experimentally verified sRNAs, 41 homologous sRNAs (i.e., sRNAs that69

have high sequence similarity to known sRNAs in other bacterial species or were found to be conserved70

in the genome of at least two other bacterial species). We randomly selected 80% of the positive instances71

for training, while setting aside the other 20% for validating the models. Ten random genomic sequences72

(negative instances) were generated using shuffleBed (Quinlan and Hall, 2010) for each of the positive73

instances. These negative instances were of the same length as the positive instances. We then randomly74

selected n random sequences for training, where n is three times the number of positive instances in the75

corresponding training set. All remaining random sequences were used for validating the models.76

Additionally, we collected E. coli sRNAs, supported by literature with experimental evidence from77

RegulonDB (release 9.3) (Gama-Castro et al., 2016), and M. tuberculosis sRNAs verified by Northern blot78

analysis from Miotto et al. (2012). We generated negative instances for these two species as previously79

mentioned. E. coli and M. tuberculosis data was used exclusively for validating the predictive models.80

The number of positive and negative instances per bacterial species used for training and validating the81

machine learning models is shown in Table 1. Data sets are provided in Additional File 1.82

Table 1. The number of positive (bona-fide sRNAs) and negative (random genomic sequences) instances

in the data sets used for training and validating the classification models. The NCBI accession number of

the genome sequence used is indicated in the first column between brackets. The “Combined” data is

made by putting together the training data of S. enterica, S. pyogenes and R. capsulatus.

Training Validation

Positive

Instances

Negative

Instances

Positive

Instances

Negative

Instances

R. capsulatus (NC 014034.1) 36 108 9 342

S. pyogenes (NC 002737.2) 37 110 9 350

S. enterica (NC 016810.1) 90 271 23 859

Combined 163 489 N/A N/A

E. coli (NC 000913.3) N/A N/A 125 1250

M. tuberculosis (NC 000962.3) N/A N/A 19 190

2/13

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26974v1 | CC BY 4.0 Open Access | rec: 2 Jun 2018, publ: 2 Jun 2018



sRNA Characterization83

Each sRNA is represented as a vector of seven numerical features or attributes, as in Grüll et al. (2017).84

These attributes are:85

1. free energy of the sRNA predicted secondary structure,86

2. distance to the -10 predicted promoter site in the range of [-150, length of the sequence] nucleotides87

(nts) (if no promoter site is predicted in that range a value of -1000 is used),88

3. distance to the closest predicted rho-independent terminator in the range of [0,1000] nts (if no89

terminator is predicted within this distance range a value of 1000 is used),90

4. distance to the closest left ORF, which is in the range of (-∞, 0] nts,91

5. a Boolean value (0 or 1) indicating whether the sRNA is transcribed on the same strand as its left92

ORF,93

6. distance to the closest right ORF, which is in the range of [0, +∞), and94

7. a Boolean value indicating whether the sRNA is transcribed on the same strand as its right ORF.95

A “left” ORF is an annotated ORF located at the 5’ end of a genomic sequence on the forward strand or96

located at the 3’ end of a genomic sequence on the reverse strand (Fig.1). A “right” ORF is an annotated97

ORF located at the 3’ end of a genomic sequence on the forward strand or located at the 5’ end of a98

genomic sequence on the reverse strand.99

sRNALeft ORF Right ORF

5'

3' 5'

3'

Figure 1. Left and right ORFs. Left ORFs are located at the 5’ end of a sRNA on the forward strand or

at the 3’ end of a sRNA on the reverse strand. Right ORFs are located at the 3’ end of a sRNA on the

forward strand or at the 5’ end of a sRNA on the reverse strand.

To automatically calculate these seven features for a set of sRNAs from a given bacterial species, we100

developed sRNACharP. As input, sRNACharP requires only a BED file (UCSC website, 2018) with the101

genomic coordinates of the sRNAs, a FASTA file with the corresponding genome sequence, and a BED file102

with the genomic coordinates of the annotated protein coding genes (ORFs). sRNACharP is implemented103

in Nextflow (Di Tommaso et al., 2017) and available at github.com/BioinformaticsLabAtMUN/104

sRNACharP. To ensure reproducible results and reduce installation requirements to the minimum,105

sRNACharP is distributed with a Docker container (Di Tommaso et al., 2015). sRNACharP uses the106

following bioinformatics tools (the versions listed within brackets are the ones installed in the Docker107

container). CentroidFold (Hamada et al., 2009) (version 0.0.15) with parameters -e ‘‘CONTRAfold’’108

and -g 4 is used to predict the secondary structure of the sequences given. Bedtools’ slopBed and109

fastaFromBed (Quinlan and Hall, 2010) (version 2.26) are used to extract the sRNA sequences, and the110

sequences including 150 nts upstream of the 5’ end of the sRNAs in FASTA format. Promoter sites on the111

sequences including 150 nts upstream of the 5’ end of the sRNAs are predicted using BPROM (Solovyev112

and Salamov, 2011) with default values. Rho-independent terminators are predicted using TransTermHP113

(Kingsford et al., 2007) (version 2.09) with default values. Alternatively, sRNACharP can take as114

input, files from the TransTermHP website (http://transterm.cbcb.umd.edu/cgi-bin/115

transterm/predictions.pl). For this study, we downloaded the predicted rho-independent116

terminators for S. pyogenes and M. tuberculosis from the TransTermHP website on March 2017. The117

distances to the closest terminator and the closest ORFs are obtained using bedtools’ closest. Finally, R118

(version 3.4.4) is used to generate the features table.119
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Machine Learning Approaches120

We assessed the performance of logistic regression (Cox, 1958; Walker and Duncan, 1967), multilayer121

perceptron (Bishop, 1995; Fahlman, 1988), random forest (Ho, 1995; Dietterich, 2000a; Breiman, 2001)122

and boosting models (Schapire, 1990) for the task of quantifying the probability of a genomic sequence123

encoding a bona fide sRNA. Random forest and boosting classifiers are both examples of ensemble124

learning algorithms (Dietterich, 2000b). The core of the boosting methods lies in iteratively combining125

outputs of so-called “weak learners”, converging to an overall strong learner. Logistic regression (LR) was126

used in Grüll et al. (2017) and showed to outperform linear discriminant analysis (LDA) and quadratic127

discriminant analysis (QDA) for this task. We decided to use LR as a baseline to compare the performance128

of the other classifiers. We chose to compare the other four machine learning approaches (classifiers)129

because they have shown to perform well on small data sets and they are generally robust to noise (Liaw130

and Wiener, 2002; Kerlirzin and Vallet, 1993; Ridgeway, 1999).131

All the machine learning classification approaches were implemented in the Python programming lan-132

guage version 3.6. Scikit-learn (version 0.19.1) (Pedregosa et al., 2011) was used for the implementation133

of the logistic regression, boosting and random forest classifiers. The multilayer perceptron classifier was134

implemented following the pseudoalgorithms provided by Bishop (1995). All the Python scripts were135

executed on a MacBook Air 2Ghz Intel Core i7 with 8GB of RAM and OS X (version 10.9.5). For each136

classifier, the “best” parameters were obtained by optimizing the area under the ROC curve (AUC) when137

performing leave-one-out cross-validation (LOO CV) on the training data.138

Logistic Regression139

Logistic Regression (LR) learns the parameters β of the logistic function,140

p(X) = eβ0+β1X1+...+βnXn

1+eβ0+β1X1+...+βnXn
,141

where p(X) is the probability of an sRNA with feature vector X of being a bona fide sRNA, e is the base142

of the natural logarithm, n is the number of features, and Xi is the value of feature i. To fit the model,143

usually the maximum likelihood approach is used. We used the “balanced” mode that automatically adjust144

class weights inversely proportional to class frequencies in the input data. All other parameters were left145

to their default values.146

Multilayer Perceptron147

Multilayer Perceptrons (MPs) are fully connected feed-forward neural networks, with one or more layers148

of hidden nodes between the input and output nodes (Bishop, 1995; Fahlman, 1988). Except for the input149

node(s), each node is a neurone with a nonlinear activation function. Each neurone combines weighted150

inputs by computing their sum to determine its output based on a certain threshold value and the activation151

function. The output y of the system can be described as152

y = f (∑N
i=0 wixi),153

where x1, ...,xN represent the input signals, w1, ...,wN are the synaptic weights and f is the activation154

function. MPs learn through an iterative process of changing connection weights after processing each155

part of the data. The most common learning algorithm used for this process is backpropagation (Fahlman,156

1988).157

The activation function that lead to the largest AUCs on the training data was the logistic sigmoid158

function. We used the standard backpropagation algorithm with an initial random generation of weights159

([-1,1]). As using multiple hidden layers decreased the performance, we decided to use only one hidden160

layer. The number of hidden nodes explored was in the range from 1 (in that case the model behaves the161

same as logistic regression) to 1000 with steps of 50. The optimal number of hidden nodes was found to162

be 400. Learning rates ranging from 0.1 to 1.0 were explored in steps of 0.1. The chosen learning rate163

was a constant learning rate of 0.9, because an adaptive learning rate was observed to decrease AUCs.164

The L2 penalty was set to the default value of 0.0001.165

Random Forest166

A random forest (RF) is constructed by combining multiple decision trees during training (Dietterich,167

2000a; Ho, 1995; Breiman, 2001). All decision trees in the random forest contribute to the determination168

of the final output class. The output class is determined by averaging the probabilities produced by the169
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individual trees. The range of number of estimators (decision trees) explored was from 1 to 1000 in steps170

of 100. The optimal setting was found to be 400. The largest AUC results were obtained when the nodes171

are expanded until almost all leaves are pure. We tested our model with the maximum depth of the tree172

ranging from 15 to 25 and found that the maximum AUC was obtained at a depth of 20. All features were173

used in every tree. To measure the quality of a split we used the default Gini index (Strobl et al., 2007)174

and the maximum number of features to consider when looking for the best split in a node was set to 2, as175

calculated by the function tuneRF available in the R package randomForest (version 4.6-12).176

Adaptive Boosting177

Adaptive Boosting or AdaBoost (AB) was developed for binary classification problems and tweaks178

“weak learners” by focusing on the instances that were wrongly classified by previous classifiers (Freund179

and Schapire, 1997). Therefore the training error decreases over the iterations. The additive model of180

AdaBoost can be formulated as following. The output of each weak learner is described by:181

LK(x) = ∑
K
k=1 lk(x).182

where K is the total number of iterations and lk(x) is the output function of the weak learner when taking183

the instance x as input. To minimize the training error Ek for each iteration k, AdaBoost uses:184

Ek = ∑
N
i=1 E(Lk−1(xi)+αkh(xi)),185

where h(xi) is the predicted output of a weak learner for every instance xi in the training set, αk is the186

assigned coefficient that minimizes the training error, and N is the total number of instances in the training187

set.188

We used AdaBoost on a random forest (RF) classifier that performed just better than chance on the189

training data. The optimal parameters of this RF were found to be 100 decision trees (estimators) and a190

maximum depth of 1. This means all of the trees were decision stumps. The number of estimators was191

established at 100 after exploring a range from 1 to 1000 estimators with steps of 50. A maximum depth192

of 1 was chosen because AdaBoost is known to perform better with decision stumps (Ridgeway, 1999).193

Gradient Boosting194

In gradient boosting (GB) an initial poor fit on the data is improved by fitting base-learners (e.g. decision195

trees) to the negative gradient of a specified loss function (Friedman, 2001). Gradient boosting can be196

described by:197

f̂ = argmin f Ex,y[ρ(Y, f (X)],198

where X = {x1, ...,xn} and Y = {y1, ...,yn}, forming the training set {(x1,y1), ...,(xn,yn)}. f̂ minimizes199

expectation E of the loss function ρ over all prediction functions f that take X as input.200

We used gradient boosting on 50 estimators (decision trees) with a maximum depth of 15. We201

established the number of estimators by exploring a range of 1 to 1000 estimators with steps of 50. We202

tested our model with the same maximum depth of the tree as for the decision tree classifiers. We then203

gradually decreased the maximum depth taking steps of 1, arriving at 15 as the best setting. The minimum204

number of samples at a leaf node was set to 5, as this was the number found to maximize AUC. Stochastic205

gradient boosting was performed with a subsampling of 0.9.206

Performance Assessment207

Model performance was assessed in terms of AUC and precision at different recall rates (10%, 40% and208

60% recall was used). As the classifiers used construct models stochastically, five training runs were209

carried out for each of the 20 models (five machine learning approaches times four training sets). The five210

training runs were done after optimizing the classifiers’ parameters with LOO CV. Models were evaluated211

on five validation sets. Each validation set corresponds to data from one bacterial species. Data of R.212

capsulatus, S. pyogenes and S. enterica was also used for training, while E. coli and M. tuberculosis data213

was used exclusively for validating the models (Table 1). The species for validation were chosen to be one214

species of the same taxa as and one of a different taxa from the species used for training. Median, mean215

and standard deviation of the performance measurements across the five training runs were calculated.216

Additionally, to highlight the difference in performance between the models, we used a “winner-217

gets-all” comparison by ranking the methods based on their precision at different recall rates for each218
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validation set. The model(s) with the highest precision at a given recall for a specific validation set were219

ranked 1 for that validation set. Ties were all given the same rank. At the end of the ranking process, each220

model has 15 ranks corresponding to one rank per validation set × recall rate combination.221

Statistical significance of the difference in performance between models was estimated using a pair-222

wise Wilcoxon signed rank sum (also called Mann-Whitney) tests on precision vectors, and p-values were223

corrected for multiple comparison using False Discovery Rate (FDR). The training data and the classifier224

used were considered factors to group the models. Analysis of variance (ANOVA) was performed225

to explore the effects of classifier and training data on the precision values, and the Tukey’s Honest226

Significant Difference (HSD) (Tukey, 1949) method was used to asses the significance on the differences227

between the mean precision of classifiers, training data, and models. All statistical analyses were carried228

out using R (version 3.4.1).229

Attribute Importance230

To gain insight on how important each attribute is in inferring whether or not a sequence encodes a bona231

fide sRNA, we used the function varImp available in the R package randomForest (version 4.6-12). To232

use this function, we first created a RF classifier using the randomForest function with ntree set233

to 400 and mtry set to 2. These were the optimal parameters found when tuning the RF classifier (see234

above). We generated the RF model using the combined training data (Table 1). Attribute importance was235

measured in terms of the mean decrease in accuracy caused by an attribute during the out of bag error236

calculation phase of the RF algorithm (Breiman, 2001). The more the accuracy of the RF model decreases237

due to the exclusion (or permutation) of a single attribute, the more important that attribute is deemed for238

classifying the data.239

RESULTS240

In this section models are identified by the classifier and the training data used. Training and validation241

data sets are labelled with the corresponding bacterial species: Ec = Escherichia coli, Mt = Mycobacterium242

tuberculosis, Se = Salmonella enterica, Sp = Streptococcus pyogenes, and Rc = Rhodobacter capsulatus.243

AUC scores for all the models per validation set are shown in Fig. 2. Fifteen out of the twenty models244

have an averaged AUC above 0.75 on all the validation data sets. Only one model (LR-Sp) performed245

worse than a random classifier on two validation data sets (Mt and Rc). Models generated by LR had246

lower AUCs than models generated by the other classifiers used. There was low variance of AUC between247

training runs: standard deviations of the AUCs ranged from 0.00 to 0.05 for all the models.248

As validation sets are unbalanced (i.e., there are much more negative instances than positive instances),249

AUC scores are over-optimistic on the model performance. Thus, we looked at precision values at different250

recall rates. Fig. 3 shows the distribution of precision values for each classifier at three different recall251

values. LR models have significantly lower precision values than models obtained by the other four252

classifiers (p-values < 2e−16 as per the Mann-Whitney test and Tukey’s HSD test). On the other hand, RF253

models have significantly higher precision values than models obtained by all other classifiers. Significant254

differences in precision values among the five classifiers are indicated in Table 2.255

ANOVA results indicated that the classifier and the training data are both significant factors to explain256

variance in precision values (F-statistic = 118.98, p-value < 2e−16 and F-statistic = 19.03, p-value257

4.13e−12, respectively). A significant interaction between these two factors (F-statistic = 3.90, p-value258

6.46e−6) was also found by ANOVA. Models trained on the Rc training data have significantly lower259

precision values than models trained on the other three training sets (p-values < 5e−6 as per the Mann-260

Whitney test and the Tukey’s HSD test). According to the Mann-Whitney test, models trained on the261

Sp data have significantly lower precision values than models trained on the Se training data or on the262

combined data (p-values < 5e−5).263

The standard deviations of the precision values was higher than those of the AUCs. At 10% recall, the264

standard deviation of the precision values across all models varied from 0.00 to 0.39 with a mean standard265

deviation of 0.06. At 40% recall, the standard deviation of the precision values across all models varied266

from 0.00 to 0.21 with a mean standard deviation of 0.03. At 60% recall, the standard deviation of the267

precision values ranged from 4.77e−5 to 0.17 with a mean standard deviation of 0.03. The classifiers268

producing the most variable models were MP and GB (Figs. 3 and 4) with average standard deviations269

above the overall mean standard deviation. For example, MP and GB models have an average standard270

deviation of the precision values at 40% recall of 0.056 and 0.051, respectively.271
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Figure 2. Average Area under the ROC curve (AUC) per model on each validation data set. Models are

colour coded by the classifier used to generate them: AB = Adaptive Boosting (brown gradient), GB =

Gradient Boosting (green gradient), LR = Logistic Regression (pink gradient), MP = Multilayer

Perceptron (blue gradient), RF = Random Forest (red gradient). Training and validation data sets are

labelled with the corresponding bacterial species: Ec = Escherichia coli, Mt = Mycobacterium

tuberculosis, Se = Salmonella enterica, Sp = Streptococcus pyogenes, and Rc = Rhodobacter capsulatus.

The combined data is the training data of S. enterica, S. pyogenes and R. capsulatus together. Error bars

are not plotted as the range of the standard deviations across all models is 0.00 to 0.05.

Table 2. Pair-wise statistically significant differences in precision values between classifiers (AB =

Adaptive Boosting, GB = Gradient Boosting, LR= Logistic Regression, MP = Multilayer Perceptron, RF

= Random Forest). Acronyms in the cells indicate that a given row classifier has significantly lower

precision values (p-values < 0.005) than a column classifier according to the Tukey’s HSD test and/or

Mann-Whitney test (MW).

MP GB AB RF

LR Tukey’s HSD / MW Tukey’s HSD / MW Tukey’s HSD / MW Tukey’s HSD / MW

MP MW Tukey’s HSD / MW Tukey’s HSD / MW

GB MW Tukey’s HSD / MW

AB MW

To emphasize differences in performance among the models, we ranked each model based on the272

precision values obtained on each validation set at three fixed recall rates. Ties were assigned the same273

rank. As LR was clearly outperformed by the other four classifiers, we excluded LR results from this274

analysis. Fig. 4 depicts the mean rank of the models obtained by each classifier as a function of the275

interaction between classifier and training set used. AB is the classifier least susceptible to variations in276

rank due to the training data; while, MP is the classifier with more variation in rank due to the training277

data (Fig. 4).278
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A

B

C

Figure 3. Distribution of precision values at different recall rates per classifier. A. Violin plot illustrating

the distribution of precision values at 10% recall for all models obtained with each classifier. Inside the

distribution shape a box indicates the range from the 25 percentile to 75 percentile of the precision values.

B. Same as A, but at 40% recall. C. Same as A, but at 60% recall. AB = Adaptive Boosting, GB =

Gradient Boosting, LR = Logistic Regression, MP = Multilayer Perceptron, RF = Random Forest.

8/13

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26974v1 | CC BY 4.0 Open Access | rec: 2 Jun 2018, publ: 2 Jun 2018



AB

GB

MP

RF

0 5 10 15

Mean rank

C
la
s
s
if
ie
r

Figure 4. Effect of training data on classifier mean rank. The average rank of the models obtained with

each classifier is depicted as a function of the training data used to create the model. The dot represents

the mean rank and bars represent standard error. Colour indicates the training data used: Red = Combined

data, Green = R. capsulatus data, Blue = S. enterica data, Purple = S. pyogenes data. Classifiers are

indicated by AB = Adaptive Boosting, GB = Gradient Boosting, MP = Multilayer Perceptron, RF =

Random Forest.

The best performing models (in terms of rank and precision values) were RF-Se, RF-Sp and RF-279

Combined. These three models obtained significantly higher precision values (p-values < 0.05, Mann-280

Whitney test) than all other models but the MP-Combined model and the AB-Sp model. Fig. 5 shows the281

precision-recall curves of these five models (RF-Se, RF-Sp, RF-Combined, AB-Sp, and MP-Combined)282

on the validation data sets. These five models can be considered as comparable in terms of precision283

values at different recall rates. To facilitate other researchers to rank their own sRNAs, we have cre-284

ated sRNARanking, an R script that produces the predictions generated by the RF-Combined model.285

sRNARanking takes as input the feature table produced by sRNACharP and calculates the probability286

of being a bona fide sRNA for each sRNA included in the feature table. sRNARanking is available at287

https://github.com/BioinformaticsLabAtMUN/sRNARanking.288

Based on the mean decrease in accuracy estimated by the random forest algorithm, all attributes289

contribute positively to obtain a more accurate model (Fig. 6). The seven attributes clustered in three290

levels of importance: those with a mean decrease in accuracy greater than 20; those with a mean decrease291

in accuracy between 10 and 15, and those with a mean decrease in accuracy lower than 10. The most292

important attributes are the distance to the closest ORFs and the distance to the closest predicted rho-293

independent terminator. The two attributes that seem to contribute the least to the accuracy of a model are294

the Boolean features indicating whether or not a genomic sequence is transcribed on the same strand as295

its closest ORFs.296
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Figure 5. Precision-Recall curves of the best performing models on each validation set. Median

precision values across the five training runs are shown at 10%, 40% and 60% recall rate. Training and

validation data sets are labelled with the corresponding bacterial species: Ec = Escherichia coli, Mt =

Mycobacterium tuberculosis, Se = Salmonella enterica, Sp = Streptococcus pyogenes, and Rc =

Rhodobacter capsulatus. The combined data is the training data of S. enterica, S. pyogenes and R.

capsulatus together. The horizontal grey line is drawn at 0.5 precision.

DISCUSSION297

We believe that the distances to the closest ORFs are the most important attributes partially due to a bias298

in the training data. 93% of the negative instances (random genomic sequences) in the combined training299

data overlap the two neighbouring ORFs (i.e., their distances to their closest ORFs are zero), while 70%300

of the positive instances (bona fide sRNAs) are intergenic (i.e., their absolute distances to their closest301

ORFs are greater than zero). This bias in the data may be corrected as more antisense sRNAs (asRNAs)302

and partially overlapping sRNAs are experimentally verified as bona fide sRNAs.303

We hypothesize that R. capsulatus training data produced worse performing models because it includes304

as positive instances a higher number of non-intergenic sRNAs (18 or 50%). In fact, the best performing305

models obtained consistently lower precision values for R. capsulatus and E. coli validation data sets306

(Fig. 5). These two bacterial species have the higher proportion of non-intergenic bona fide sRNAs: 51%307

and 40% of the bona fide sRNAs of R. capsulatus and E. coli, respectively, overlap neighbouring ORFs;308

while 17.4%, 26.5% and 36.8% of the bona fide sRNAs of S. pyogenes, S. enterica and M. tuberculosis,309

respectively, overlap neighbouring ORFs. Additionally, 17 R. capsulatus putative sRNAs included as310

positive instances were found to be conserved in the genome of at least two other bacterial species but311
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Figure 6. Attribute importance. Mean decrease in accuracy per attribute as estimated by the random

forest algorithm. Attribute importance is plotted on the x-axis. Attributes are ordered top-to-bottom as

most- to least-important. Three levels of importance are observed: high importance attributes (distances

to closest ORFs and distance to terminator); medium importance attributes (free energy of secondary

structure and distance to promoter), and low importance attributes (same strandness as closest ORFs).

have not been verified in the wet lab. Some of these 17 putative R. capsulatus sRNAs chosen as positive312

instances based on sequence conservation may actually be false positives.313

With respect to the different machine learning approaches assessed, RF seems to be better suited for314

the task of prioritizing bona fide sRNAs than the other four classifiers (AB, GB, MP and LR). To be able315

to use deep learning for sRNA prioritization, data sets at least one order of magnitude larger than the ones316

currently available are required.317

To demonstrate the ability of the models to generalize to other bacterial species, we validated the318

models on data from bacterial species that were not part of the training set. In fact, using data from the319

same bacterial species on the training and validation sets was not a factor to explain variance in model320

performance. This indicates that models are able to learn sRNAs features that are species independent,321

and even taxa independent as the precision values obtained in the M. tuberculosis validation set suggest322

(Fig. 5). Using data from different bacterial species and experimental conditions is expected to lead to323

improved predictive models. In fact, training the classifiers with the combined data generated models that324

either outperform, or were comparable to, the models obtained from training the classifiers with data from325

a single bacterial species (Fig. 2 and Fig. 4). To allow other researchers to rank their own sRNAs, we326

have implemented sRNARanking, an R script containing the RF-Combined model.327

CONCLUSION328

A multitude of sRNAs have been detected in many bacterial species. The sheer number of novel putative329

sRNAs reported in the literature makes it infeasible to validate in the web lab each of them. Thus, there is330

the need for computational approaches to characterize putative sRNAs and to rank these sRNAs on the331

basis of their likelihood of being bona fide sRNAs. In this study we have applied five machine learning332

approaches to obtain models for predicting whether or not a given genomic sequence (represented with333

seven numerical attributes) encodes a bona fide sRNA. Attributes were chosen based on the feasibility of334

calculating them computationally while only requiring the sRNA and genome sequences, and a genome335
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annotation file. The most important attributes are the distance to the closest ORFs and the distance to the336

closest predicted rho-independent terminator. To enable other researchers to easily obtain these seven337

features for their own putative sRNAs, we have developed sRNACharP.338

We used five machine learning methods and four different training sets which produced twenty models339

to rank putative sRNAs on the basis of their likelihood of being bona fide sRNAs. The best performing340

models were obtained with RF; while LR models behaved less effectively. To assess the ability of the341

models to generalize to other bacterial species, we validated the models in data from bacterial species that342

were not part of the training set. Our results demonstrate that machine learning approaches are indeed343

able to detect intrinsic features of sRNAs common to a number of bacterial species, overcoming the344

challenge of the low sequence conservation of sRNAs. As the number of detected sRNAs continues to345

raise, computational predictive models as the ones here generated will become increasingly valuable to346

guide further investigations.347

ABBREVIATIONS348

LR: logistic regression; MP: multilayer perceptron; AB: adaptive boosting; GB: gradient boosting; RF:349

random forest; FDR: false discovery rate; AUC: area under receiver operating characteristic curve; LOO350

CV: leave-one-out cross-validation; ORF: open reading frame; nts: nucleotides; sRNA: small non-coding351

RNA.352
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