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An international data science challenge, called NEON NIST data science evaluation, was

set up in autumn 2017 with the goal to improve the use of remote sensing data in

ecological applications. The competition was divided into three tasks: 1) segmentation of

tree crowns; 2) data alignment; and 3) tree species classification. In this paper the

methods and results of team FEM in the NEON NIST data science evaluation challenge are

presented. The individual tree crown (ITC) segmentation (Task 1 of the challenge) was

done using a region growing method applied to a near-infrared band of the hyperspectral

images. The optimization of the parameters of the segmentation algorithm was done in a

supervised way on the basis of the Jaccard score using the training set provided by the

organizers. The alignment (Task 2) between the segmented ITCs and the ground measured

trees was done using an Euclidean distance among the position, the height, and the crown

radius of the ITCs and the ground trees. The classification (Task 3) was performed using a

Support Vector Machine classifier applied to a selection of the hyperspectral bands. The

selection of the bands was done using a Sequential Forward Floating Selection method and

the Jeffries Matusita distance. The results in the three tasks were very promising: team

FEM ranked first in Task 1 and 2, and second in Task 3. The segmentation results showed

that the proposed approach segmented both small and large crowns. The alignment was

correctly done for all the test samples. The classification results were good, even if the

accuracy was biased towards the most represented species.
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13 Abstract

14 An international data science challenge, called NEON NIST data science evaluation, was set up 

15 in autumn 2017 with the goal to improve the use of remote sensing data in ecological 

16 applications. The competition was divided into three tasks: 1) segmentation of tree crowns; 2) 

17 data alignment; and 3) tree species classification. In this paper the methods and results of team 

18 FEM in the NEON NIST data science evaluation challenge are presented. The individual tree 

19 crown (ITC) segmentation (Task 1 of the challenge) was done using a region growing method 

20 applied to a near-infrared band of the hyperspectral images. The optimization of the parameters 

21 of the segmentation algorithm was done in a supervised way on the basis of the Jaccard score 

22 using the training set provided by the organizers. The alignment (Task 2) between the segmented 

23 ITCs and the ground measured trees was done using an Euclidean distance among the position, 

24 the height, and the crown radius of the ITCs and the ground trees. The classification (Task 3) 

25 was performed using a Support Vector Machine classifier applied to a selection of the 

26 hyperspectral bands. The selection of the bands was done using a Sequential Forward Floating 

27 Selection method and the Jeffries Matusita distance. The results in the three tasks were very 

28 promising: team FEM ranked first in Task 1 and 2, and second in Task 3. The segmentation 

29 results showed that the proposed approach segmented both small and large crowns. The 

30 alignment was correctly done for all the test samples. The classification results were good, even 

31 if the accuracy was biased towards the most represented species.

32

33 1 Introduction

34 The NEON NIST data science evaluation challenge (Marconi et al., 2018) was an 

35 international competition with the goal to challenge international scientists on three tasks that are 
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36 central in converting remote sensing images into vegetation diversity and structure information 

37 traditionally collected by ecologists: 1) individual tree crown (ITC) segmentation, for identifying 

38 the location and size of individual trees; 2) alignment to match ground truth data on trees with 

39 remote sensing; and 3) species classification to identify trees to species.

40 There is a large amount of literature about crown segmentation (e.g. Popescu, Wynne & 

41 Nelson, 2003; Lee & Lucas, 2007; Ene, Næsset & Gobakken, 2012; Hung, Bryson & Sukkarieh, 

42 2012; Ferraz et al., 2012; Duncanson et al., 2015), and there have been many studies comparing 

43 segmentation methods on different data types (Ke & Quackenbush, 2011; Vauhkonen et al., 

44 2012; Eysn et al., 2015; Dalponte et al., 2015b). Many papers focus on light detection and 

45 ranging (LiDAR) data as these remote sensing data are very common in the forestry and ecology 

46 domains. Some studies exist on methods for crown segmentation of camera images, while fewer 

47 studies exist on segmentation of hyperspectral data (Dalponte et al., 2014).

48 The alignment to match ground truth data of trees with remote sensing was never explored 

49 in specific papers and usually only briefly mentioned on papers devoted to crown segmentation. 

50 This fact makes alignment very subjective because different approaches are used in every crown 

51 segmentation paper, and the alignment is adapted to the data used in the specific work.

52 Tree species classification with remote sensing data is a widely covered topic by the 

53 scientific literature (Fassnacht et al., 2016). The first studies on this topic were focusing on large 

54 categories of species as they were done using satellite multispectral data, but since the 2000s 

55 with the availability of airborne hyperspectral data many studies focused on the separation of tree 

56 species (Dalponte, Bruzzone & Gianelle, 2012; Dalponte et al., 2013; Budei et al., 2017). Indeed, 

57 hyperspectral data due to their dense sampling of the spectral signatures can separate many 
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58 different species with high level of accuracy. Moreover, the advances in the remote sensing 

59 community on development of hyperspectral image classifiers, and on band selection and 

60 reduction have significantly improved the possibility to detect tree species.

61 The objective of this paper is to present the methods and results of team FEM in the NEON 

62 NIST data science evaluation challenge. The FEM team belongs to the Forest Ecology and Bio-

63 geochemical cycles unit of the Research and Innovation Centre of the Edmund Mach Foundation 

64 in Italy. The research activities of the Forest ecology and Biogeochemical Cycles unit are 

65 focused on the interactions between the vegetation canopy and the atmosphere9s chemical-

66 physical layer in addition to the soil structure and functionality. In particular, energy and matter 

67 (carbon, water, nitrogen) fluxes between the atmosphere and the biosphere are analysed and 

68 models simulating vegetation systems and turbulent and radiative transfer are used. These data 

69 are up-scaled at a regional level to obtain a carbon balance integrating ground and remote 

70 sensing data bases. The remote sensing team of the unit is specialized in LIDAR and 

71 hyperspectral image processing both from airborne and satellite sensors, on the forest domain.

72 2 Materials

73 For a detailed description of the data used we recall to (Marconi et al., 2018). The data 

74 from NEON included the following data products: 1) Woody plant vegetation structure 

75 (NEON.DP1.10098); 2) Spectrometer orthorectified surface directional reflectance - flightline 

76 (NEON.DP1.30008); 3) Ecosystem structure (NEON.DP3.30015); and High-resolution 

77 orthorectified camera imagery (NEON.DP1.30010).
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78 3 Methods

79 3.1 Task 1: segmentation

80 The ITCs segmentation was performed on the hyperspectral data using the algorithm 

81 presented in (Dalponte et al., 2015b). In greater detail the steps of the segmentation method 

82 were:

83 1. the hyperspectral band closest to 810 nm was selected for the segmentation;

84 2. the normalized difference vegetation index (NDVI) was computed for each pixel, and all the 

85 pixels in the band selected at step 1 having NDVI below 0.6 were masked;

86 3. seeds points  was defined using a moving window. An image pixel  was ÿ = {ý1,&,ýý} ÿ(ý,ÿ)
87 a seed point if: ÿ(ý,ÿ) * ÿ  ÿÿ ÿ(ý,ÿ) = max (ÿýÿÿÿý ýÿÿýýý) (1)

88 4. initial regions were defined starting from the seed points. A label map  was defined:ÿ
{ÿÿ,ÿ = ý  ÿÿ  ÿ(ÿ,ÿ) * ÿÿÿ,ÿ = 0  ÿÿ  ÿ(ÿ,ÿ) + ÿ � (2)

89 5. starting from , regions grew according to the following procedure:ÿ
90 a. a label map point  was considered and its neighbor pixels ( ) in the image ÿÿ,ÿ b 0 ýÿ
91 were taken:ýÿ = {ÿ(ÿ,ÿ 2 1);H(ÿ 2 1,ÿ);H(ÿ,ÿ + 1);H(ÿ + 1,ÿ)} (3)

92 b. a neighbor pixel  was added to the region  if:ýÿ(ÿ'
,ÿ') ÿ

ýÿ(ÿ'
,ÿ') * {

ýÿýý(ýÿ(ÿ'
,ÿ'),ýÿ) < ÿÿýýýÿý   ýÿ(ÿ'

,ÿ') > (ýÿ 7 ÿÿÿýÿ/ÿÿý/) ÿÿ',ÿ' b 0                                           � (4)

93 where , and ;ÿÿÿýÿ/ÿÿý/ * (0;1) ÿÿýýýÿý > 0
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94 c. this procedure was iterated over all pixels that have , and was repeated until ÿÿ,ÿ b 0

95 no pixels were added to any region;

96 6. from each region in  the central coordinates of each pixel were extracted, and a 2D convex ÿ
97 hull was applied to these points;

98 7. the resulting polygons were the final ITCs.

99 The raster image used in this paper was the hyperspectral band at 810 nm, already used in 

100 previous studies for this purpose (Clark, Roberts & Clark, 2005; Dalponte et al., 2014). The 

101 parameters of the segmentation (i.e. the size of the moving window, , and ) ÿÿÿýÿ/ÿÿý/ ÿÿýýýÿý
102 were optimized in a supervised way using a training set made available by the organizers of the 

103 challenge: the set of parameters that provided the highest Jaccard score (Real & Vargas, 1996) 

104 on the training set was chosen. The parameters used for the delineation on the test set were: a 

105 moving window a size of 3x3 pixels, a  of 0.4, and a  of 4. The ÿÿÿýÿ/ÿÿý/ ÿÿýýýÿý
106 implementation used is the one in itcIMG of the itcSegment R package (Dalponte, 2016).

107 3.2 Task 2: alignment

108 The alignment between ground measured trees and the delineated ITCs was done using a four 

109 step procedure: 1) prediction of missing ground measured crown radius; 2) prediction of missing 

110 ITC heights; 3) linking ITCs and ground measured trees using an Euclidean distance based on X 

111 and Y coordinates, and height and crown radius; and 4) visual inspection of the results.

112 The crown radius of ground measured trees, for which this attribute was not measured on 

113 the ground, was predicted using a relationship linking the field measured crown radius ( ) ýýýýÿÿ
114 with the tree height ( ) and the stem diameter ( ):ÿýýýÿÿ ÿýýýÿÿ
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ýýýýÿÿ = ÿ × (ÿýýýÿÿ × ÿýýýÿÿ)ÿ
(5)

115 Eqn. 5 was fitted using the function nls of the package stats of the R software (R Development 

116 Core Team, 2008).

117 The height of the ITCs, for which this attribute was missing, was predicted using a 

118 relationship linking the ITCs height ( ) and the ITCs crown radius ( ):ÿýÿÿ ýýÿÿ
ÿýÿÿ = ÿ × ýýÿÿÿ

(6)

119 Eqn. 6 was fitted using the function nls of the package stats of the R software (R Development 

120 Core Team, 2008).

121 Each ITC was linked to the closest ground measured tree according to the Euclidean 

122 distance between their position and their attributes (height, and crown radius):

+ÿ = (ÿýÿÿ 2 ÿýýýÿÿ)2
+ (ýýÿÿ 2 ýýýýÿÿ)2 (ÿýÿÿ 2 ÿýýýÿÿ)2

+ (ýýÿÿ 2 ýýýýÿÿ)2
(7)

123 After the linking, a visual inspection of the results on a GIS software was done and some 

124 trees were manually realigned.

125 Task 3: classification

126 The classification of the tree species was done with a four step procedure: 1) data normalization; 

127 2) feature selection; 3) classification; and 4) aggregation.

128 Data normalization was done to ensure that the pixel values were uniformly distributed 

129 across all the crowns. Each pixel value was divided by the sum of the values of that pixel in all 

130 the bands (Yu et al., 1999). In this way, we reduced the difference in radiance due to the fact that 

131 the samples are distributed on multiple images.
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132 The feature selection is necessary in order to select only the bands that are useful to 

133 separate the analysed species. A feature selection method is made up of a searching strategy and 

134 a separability criterion. In this study, the search strategy we used was the Sequential Forward 

135 Floating Selection (SFFS) (Pudil, Novovi
ová & Kittler, 1994), and the separability criterion 

136 was the Jeffries Matusita distance (Bruzzone, Roli & Serpico, 1995). These methods were used 

137 successfully in many previous studies (Dalponte, Bruzzone & Gianelle, 2008, 2012, Dalponte et 

138 al., 2009, 2013, 2014). The feature selection was applied on the training data, and we used the 

139 function varSelSFFS in the R package varSel.

140 The classification was performed using a Support Vector Machine (SVM) classifier, 

141 having as input the features selected at step 2 and the value of the CHM corresponding to each 

142 ITC. We used the SVM implemented in the R package kernlab.

143 The predicted species labels of each pixel were aggregated at crown level with a majority 

144 rule.

145 4 Results

146 4.1 Task 1: segmentation

147 The Jaccard score for the delineated ITCs over all the plots was 0.3402. The overall 

148 confusion matrix (OCM) is showed in Table 1. To analyze the performance over each plot, the 

149 confusion matrix for each plot was visualized as a bar chart (see Figure 1). The Jaccard score by 

150 crown area is shown in Figure 2. Variability in the crown size did not change the Jaccard score, 

151 showing that the method used is behaving in the same way for all crown sizes. The top-6 best 

152 and worst delineations of the system are shown in Figure 3 and 4, respectively. 
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153 4.2 Task 2: alignment

154 All the test ITCs were aligned with the respective ground measured tree.

155 4.3 Task 3: classification

156 In Table 2 a summary of the overall performances is provided. Performance metrics at the 

157 class level are also shown: accuracy and specificity (Figure 5), F1 score (Figure 6), precision 

158 (Figure 7), and recall (Figure 8). From the overall performances, it is clear that the classification 

159 method used was effective, as all the performance metrics are quite good. Looking at the results 

160 per class (Table 3) it can be seen that for some classes the performance metrics are really low 

161 (e.g. ACRU), while others are really good (e.g. PIPA).

162 5 Discussion

163 Team FEM ranked first for Task 1. As explained in the methods, we chose to segment a 

164 hyperspectral band instead of the LiDAR point cloud. This choice was motivated by the fact that 

165 looking at the training ITCs provided by the organizers, the hyperspectral data seemed more 

166 suitable for this task. The comparison of results across teams showed that the FEM approach 

167 outperforms the other approaches in the delineation of the small trees, while it was less efficient 

168 for the large trees. This is due to the fact that we decided to use a small moving window (3x3). 

169 The use of a variable size moving window, like the one that is implemented for LiDAR data in 

170 the itcSegment library and used in (Dalponte et al., 2018), would have probably improved the 

171 final results. The segmentation method used was compared in a previous study with three 

172 segmentation methods based on LiDAR data (Dalponte et al., 2015b) and it was shown that this 

173 method outperformed the LiDAR based methods on the delineation of broadleaf trees. This fact 

174 can also explain the very good performances of team FEM delineations in the NEON NIST data 
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175 science evaluation challenge because in the study area species were mainly broadleaf or pine 

176 trees. The crown shape of pine trees is quite close to the ones of many broadleaf trees.

177 In Task 2 FEM team ranked again in the first place with all the trees correctly aligned. 

178 Surely the choice to consider not only the position, but also the tree characteristics (i.e. height, 

179 and crown radius) was the winning choice. Moreover, after the automatic matching a visual 

180 inspection of the results helped make the final improvements, as two trees were reassigned after 

181 this inspection. A visual inspection of the alignment is not doable over large datasets, even if, in 

182 our experience, it is always suggested as it helps in finding macroscopic errors. As mentioned in 

183 the introduction, the choice of alignment strategy can depend also on the type of data that can be 

184 used for this purpose. The fact that each crown delineation paper uses a different alignment 

185 method specific to the dataset is not a good approach. Indeed, there is the need to have a 

186 reference alignment method that could be used in every crown segmentation paper that allows a 

187 fair comparison among delineation results.

188 The classification task (Task 3) had the most participants and team FEM ranked at the 

189 second place. In this case the architecture that we used was effective, even if the results showed a 

190 serious problem in distinguishing minority species. This is a limitation of many other works 

191 proposed in the literature as many classifiers tend to give priority to highly represented species. 

192 A better balance in the training set could have achieved higher classification accuracies. As an 

193 example, the use of a semi-supervised classification approach (Dalponte et al., 2015a) could have 

194 improved the classification of minority species. Moreover, a feature selection specifically 

195 devoted on the identification of the best features to separate minority species cloud have helped.
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196 6 Conclusions

197 In this paper the results of team FEM of the NEON NIST data science evaluation challenge were 

198 presented. The methods applied were effective as team FEM ranked first in Task 1 and 2, and 

199 second in Task 3. The delineation method proposed was based on hyperspectral images, showing 

200 that LiDAR data are not always the best data source for ITC delineation. The alignment strategy 

201 was based on both location and tree characteristics, and this combination of different information 

202 provided the added value to the perfect alignment of the crowns. The classification architecture 

203 adopted was quite standard, and it failed to classify more rare species. As a future development, 

204 it may be interesting to combine both hyperspectral and LiDAR information in the crown 

205 segmentation, and to consider classifiers, like for example semi-supervised ones, that can 

206 improve the classification of more rare species.
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301 Tables captions

302 Table 1. Task 1: overall confusion matrix. The values in the table are in square meters.

303 Table 2. Task 3: overall performances.

304 Table 3. Task 3: confusion matrix.

305

306 Figures captions

307

308 Figure 1. Task 1: plot level confusion matrix as a bar chart.

309 Figure 2. Task 1: Jaccard score versus crown area.

310 Figure 3. Task 1: the best 6 segmentations. Green annotations represent ground truth polygons, 

311 and red annotations are predicted ones.

312 Figure 4. Task 1: the worst 6 segmentations. Green annotations represent ground truth polygons, 

313 and red annotations are predicted ones.

314 Figure 5. Task 3: Accuracy and Specificity Scores (Per-Class).

315 Figure 6. Task 3: F1 Score (Per-Class).

316 Figure 7. Task 3: Precision (Per-Class).

317 Figure 8. Task 3: Recall (Per-Class).
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Table 1(on next page)

Task 1: overall confusion matrix. The values in the table are in square meters.
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1

Positive Negative

True 2022.8 -

False 2416.6 1293.1

2

3
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Table 2(on next page)

Task 3: overall performances.
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1

2

Performance metric Value

Cross-entropy cost 0.8769

Rank-1 accuracy 0.8800

Classification accuracy 0.9809

Average F1 score 0.5933

Average Specificity 0.4129

3

4

5
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Table 3(on next page)

Task 3: confusion matrix.
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1

2

ACRU LIST OTHER PIEL PIPA PITA QUGE QULA QUNI

ACRU 0 0 0. 0 1.29 0 0 0 0

LIST 0 0.67 0 0.54 0 0 0 0 0

OTHER 0 0 0.74 0 0 0 0 0 0

PIEL 0 1.00 0.46 0 0 0 0 0.64 0

PIPA 0.58 0 0 0 79.14 0 0 0 0.57

PITA 0 0 0 0 2.90 0.85 0 0.50 0

QUGE 0 0 0 0 0 0 0.50 0 0

QULA 0 0 0 0 0 0 0 3.74 0

QUNI 0 0 0 0 1.39 0 0 0 19.32

3

4

5
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Figure 1

Task 1: plot level confusion matrix as a bar chart.
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Figure 2

Task 1: Jaccard score versus crown area.
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Figure 3

Task 1: the best 6 segmentations. Green annotations represent ground truth polygons,

and red annotations are predicted ones.
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Figure 4

Task 1: the worst 6 segmentations. Green annotations represent ground truth polygons,

and red annotations are predicted ones.
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Figure 5

Task 3: Accuracy and Specificity Scores (Per-Class).
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Figure 6

Task 3: F1 Score (Per-Class).
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Figure 7

Task 3: Precision (Per-Class).
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Figure 8

Task 3: Recall (Per-Class).
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