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Background. Biogeographers assess how species distributions and abundances affect the structure,

function, and composition of ecosystems. Yet we face a major challenge: it is difficult to precisely map

species across landscapes. Novel Earth observations could obviate this challenge. Airborne imaging

spectrometers measure plant functional traits at high resolution, and these measurements can be used

to identify tree species. Plant traits are often highly conserved within species, and highly variable

between species, which provides the biophysical basis for species mapping. In this paper I describe a

trait-based approach to species identification with imaging spectroscopy, CCB-ID, which was developed

as part of a NIST-sponsored ecological data science evaluation (ECODSE).

Methods. These methods were developed using NEON airborne imaging spectroscopy data. CCB-ID

classifies tree species using trait-based reflectance variation and decision tree-based machine learning

models, approximating a morphological trait and dichotomous key method traditionally used in botanical

classification. First, outliers were removed using a spectral variance threshold. The remaining samples

were transformed using principal components analysis and resampled by species to reduce common

species biases. Gradient boosting and random forest classifiers were trained using the transformed and

resampled feature data. Prediction probabilities were then calibrated using sigmoid regression, and

sample-scale predictions were averaged to the crown scale.

Results. This approach performed well according to the competition metrics, receiving a rank-1 accuracy

score of 0.919, and a cross-entropy cost score of 0.447 on the test data. Accuracy and specificity scores

were high for all species, but precision and recall scores were variable for rare species. PCA

transformation improved accuracy scores compared to models trained using reflectance data, but outlier

removal and data resampling exacerbated class imbalance problems.

Discussion. CCB-ID accurately classified tree species using NEON imaging spectroscopy data, reporting

the best classification scores among participants. However, it failed to overcome several well-known

species mapping challenges, like precisely identifying rare species. Key takeaways include (1) training

models to maximize metrics beyond accuracy (e.g. recall) could improve rare species predictions, (2)

within-genus trait variation may drive spectral separability, precluding efforts to distinguish between

functionally convergent species, (3) outlier removal and data resampling exacerbated class imbalance

problems, and should be carefully implemented, (4) PCA transformation greatly improved model results,

and (5) feature selection could further improve species classification models. CCB-ID is open source,

designed for use with NEON data, and available to support future species mapping efforts.
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Abstract

Background. Biogeographers assess how species distributions and abundances affect the 
structure, function, and composition of ecosystems. Yet we face a major challenge: it is difficult 
to precisely map species across landscapes. Novel Earth observations could obviate this 
challenge. Airborne imaging spectrometers measure plant functional traits at high resolution, and 
these measurements can be used to identify tree species. Plant traits are often highly conserved 
within species, and highly variable between species, which provides the biophysical basis for 
species mapping. In this paper I describe a trait-based approach to species identification with 
imaging spectroscopy, CCB-ID, which was developed as part of a NIST-sponsored ecological 
data science evaluation (ECODSE).

Methods. These methods were developed using NEON airborne imaging spectroscopy data. 
CCB-ID classifies tree species using trait-based reflectance variation and decision tree-based 
machine learning models, approximating a morphological trait and dichotomous key method 
traditionally used in botanical classification. First, outliers were removed using a spectral 
variance threshold. The remaining samples were transformed using principal components 
analysis and resampled by species to reduce common species biases. Gradient boosting and 
random forest classifiers were trained using the transformed and resampled feature data. 
Prediction probabilities were then calibrated using sigmoid regression, and sample-scale 
predictions were averaged to the crown scale.

Results. This approach performed well according to the competition metrics, receiving a rank-1 
accuracy score of 0.919, and a cross-entropy cost score of 0.447 on the test data. Accuracy and 
specificity scores were high for all species, but precision and recall scores were variable for rare 
species. PCA transformation improved accuracy scores compared to models trained using 
reflectance data, but outlier removal and data resampling exacerbated class imbalance problems.

Discussion. CCB-ID accurately classified tree species using NEON imaging spectroscopy data, 
reporting the best classification scores among participants. However, it failed to overcome 
several well-known species mapping challenges, like precisely identifying rare species. Key 
takeaways include (1) training models to maximize metrics beyond accuracy (e.g. recall) could 
improve rare species predictions, (2) within-genus trait variation may drive spectral separability, 
precluding efforts to distinguish between functionally convergent species, (3) outlier removal 
and data resampling exacerbated class imbalance problems, and should be carefully 
implemented, (4) PCA transformation greatly improved model results, and (5) feature selection 
could further improve species classification models. CCB-ID is open source, designed for use 
with NEON data, and available to support future species mapping efforts.
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1 Introduction

2 When you get down to it, biogeographers seek to answer two key questions: where are 

3 the species, and why are they where they are? Answering these simple questions has proven 

4 remarkably difficult. The former reflects a data gap; we do not have complete or unbiased 

5 information on where species occur. This is known as the 8Wallacean shortfall9 (Whittaker et al., 

6 2005; Bini et al., 2006). Addressing the latter, however, does not necessarily require data; the 

7 drivers of species abundances and their spatial distributions can be derived from ecological 

8 theory (McGill, 2010). But evaluating these theoretical predictions does require data. Testing 

9 generalized theories of species distributions requires continuously-mapped presences and 

10 absences for many individuals across large areas. And while field efforts can assess fine-scale 

11 distribution patterns, they are often restricted to small extents. Mapping organism-scale species 

12 distributions over landscapes could help fill the data gaps that preclude addressing these key 

13 biogeographic questions. One remote sensing dataset holds the promise to do so: airborne 

14 imaging spectroscopy. 

15 Airborne imaging spectrometers measure variation in the biophysical properties of soils 

16 and vegetation at fine grain sizes across large areas (Goetz et al., 1985). In vegetation mapping 

17 contexts, imaging spectroscopy can map plant structural traits, like leaf area index and leaf angle 

18 distribution (Broge & Leblanc, 2001; Asner & Martin, 2008), and plant functional traits, like 

19 growth and defense compound concentrations (Kokaly et al., 2009; Asner et al., 2015). These 

20 traits tend to be highly conserved within tree species, and highly variable between species (i.e., 

21 interspecific trait variation is often much greater than intraspecific trait variation; (Townsend et 

22 al., 2007; Asner et al., 2011). This trait conservation provides the conceptual and biophysical 

23 basis for species mapping with imaging spectroscopy. Indeed, airborne imaging spectroscopy has 

24 been used to map crown-scale species distributions across large extents in several contexts 
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25 (Fassnacht et al., 2016). These approaches have been applied in temperate (Baldeck et al., 2014) 

26 and tropical ecosystems (Hesketh & Sánchez-Azofeifa, 2012), using multiple classification 

27 methods (Feret & Asner, 2013) and multiple sensors (Clark, Roberts & Clark, 2005; Colgan et 

28 al., 2012; Baldeck et al., 2015). However, this wide range of approaches has not yet identified a 

29 canonical best practice for tree species identification.

30 In this paper I describe an approach to tree species classification using airborne imaging 

31 spectroscopy data that builds on the above methods to advance the discussion on best practices. 

32 This approach was developed as a submission to a NIST-sponsored ecological data science 

33 evaluation competition (ECODSE; https://ecodse.org). This competition had participants use 

34 airborne imaging spectroscopy data, collected by the National Ecological Observatory Network9s 

35 Airborne Observation Platform (NEON AOP), to identify tree crowns to the species level. The 

36 work described below was submitted under the team name of the Stanford Center for 

37 Conservation Biology (Stanford CCB), and has since been formalized under the moniker CCB-

38 ID (https://github.com/stanford-ccb/ccb-id). First, I describe the CCB-ID approach to tree 

39 species classification using airborne imaging spectroscopy data. Next, I review its successes and 

40 shortcomings in the context of this competition. Finally, I highlight key opportunities to improve 

41 future imaging spectroscopy-based species classification approaches. The goals of this work are 

42 to improve NEON9s operational tree species mapping efforts and to reduce barriers for 

43 addressing key data gaps in biogeography.

44 Materials & Methods

45 The CCB-ID approach was inspired by botanical and taxonomic approaches to species 

46 classification. In the field, botanists can use plant morphological features and a dichotomous key 

47 to identify tree species. These features often include variations in reproductive traits (e.g., 
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48 flowering bodies, seeds), vascular traits (e.g., types of woody and non-woody tissue), and foliar 

49 traits (e.g., waxy or serrated leaves). The dichotomous key approach hierarchically partitions 

50 species until each can be identified using a specific combination of traits. 

51 Species classification with imaging spectroscopy is rather restricted, in comparison; 

52 imaging spectrometers can only measure a subset of plant traits. Furthermore, the inter- and 

53 intraspecific variation in this subset of traits is rarely known a priori, precluding the use of a 

54 standard dichotomous key. Imaging spectroscopy approaches to species classification instead 

55 rely on distinguishing species-specific variations in canopy reflectance signal. However, several 

56 confounding factors drive variation in canopy reflectance data, including (1) measurement 

57 conditions (e.g., sun and sensor angles), (2) canopy structure (e.g., leaf area index or leaf angle 

58 distribution), (3) leaf morphology and physiology (i.e., plant functional traits), and (4) sensor 

59 noise. Measurement conditions and canopy structure tend to drive the majority of variation; up to 

60 79-89% of spectral variance is driven by within-crown variation (Baldeck & Asner, 2014; Yao et 

61 al., 2015). Unfortunately, this variation does not help distinguish between species. Interspecific 

62 spectral variation is instead driven by functional trait variation (Asner et al., 2011). 

63 Disentangling trait-based variation from measurement and structure-based variation is thus 

64 central to mapping species with airborne imaging spectroscopy.

65 CCB-ID classifies tree species using trait-based reflectance variation with decision tree-

66 based machine learning models. This approach approximates a morphological trait and 

67 dichotomous key model, and is described in the following sections. The first section describes 

68 the outlier removal and data transformation procedures. The second section describes how the 

69 training data were resampled to reduce biases towards common species. The third section 

70 describes model selection, training, and probability calibration. The fourth section describes the 
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71 model performance metrics, and the final section describes two analyses performed post-

72 ECODSE submission.

73 The data from NEON included the following data products: 1) Woody plant vegetation 

74 structure (NEON.DP1.10098); 2) Spectrometer orthorectified surface directional reflectance - 

75 flightline (NEON.DP1.30008); 3) Ecosystem structure (NEON.DP3.30015); and High-resolution 

76 orthorectified camera imagery (NEON.DP1.30010). These data were provided by the ECODSE 

77 group (2017; https://ecodse.org). All analyses were performed using the Python programming 

78 language (Oliphant, 2007; https://python.org) and the following open source packages: NumPy 

79 (der Walt, Colbert & Varoquaux, 2011; http://numpy.org), scikit-learn (Pedregosa et al., 2011; 

80 http://scikit-learn.org), pandas (McKinney et al., 2010; https://pandas.pydata.org), and matplotlib 

81 (Hunter, 2007; https://matplotlib.org). The python scripts used for these analyses have been 

82 uploaded to a public GitHub repository (https://github.com/stanford-ccb/ccb-id), including a 

83 build script for a Singularity container to ensure computational replicability (Kurtzer, Sochat & 

84 Bauer, 2017).

85 Data preprocessing

86 The canopy reflectance data were preprocessed using two steps: outlier removal and 

87 dimensionality reduction. In the outlier removal step, the reflectance data were spectrally subset, 

88 transformed using PCA, then thresholded to isolate spurious values. First, reflectance values 

89 from the blue region of the spectrum (0.38-0.49 ¿m) and from noisy bands (1.35-1.43 ¿m, 1.80-

90 1.96 ¿m, and 2.48-2.51 ¿m) were removed. These bands correspond to wavelengths dominated 

91 by atmospheric water vapor, and do not track variations in plant traits (Gao et al., 2009; Asner et 

92 al., 2015). Next, these spectrally-subset samples were transformed using PCA. The output 

93 components were whitened to zero mean and unit variance, and outliers were identified using a 
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94 three-sigma threshold. Samples with values outside of +/- three standard deviations from the 

95 means (i.e., which did not fall within 99.7% of the variation for each component) for the first 20 

96 principal components were excluded from analysis. These samples were expected to contain 

97 non-vegetation spectra (e.g., exposed soil), unusually bright or dark spectra, or anomalously 

98 noisy spectra (Féret & Asner, 2014). The outlier-removed reflectance profiles for each species 

99 are shown in Figure 1.

100 Once the outliers were removed, the remaining spectra were transformed using PCA. 

101 This was not performed on the already-transformed data from the outlier removal process, but on 

102 the outlier-removed, spectrally-subset reflectance data. PCA transformations are often applied to 

103 airborne imaging spectrometer data to handle the high degree of correlation between bands, and 

104 these transformations are highly sensitive to input feature variation (Jia & Richards, 1999). 

105 Furthermore, transforming reflectance data into principal components can isolate the variation 

106 driven by measurement conditions from variation driven by functional traits, which is critical for 

107 distinguishing between species. And though trait-based variation drives a small proportion of 

108 total reflectance signal, a single trait can be expressed in up to 9 orthogonal components (Asner 

109 et al., 2015). After the transformation, the first 100 components were used as feature vectors for 

110 the species classification models. This threshold was arbitrary; it was set to capture the majority 

111 of biologically-relevant components and to exclude noisy components.

112 Class imbalance

113 Class imbalance refers to datasets where the number of samples per-class are not evenly 

114 distributed among classes. Imbalanced data sets are common in classification contexts, but can 

115 lead to problems if this imbalance is not addressed. Training classification models with 

116 imbalanced data can select for models that overpredict common classes when model 
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117 performance is based on metrics like accuracy. The ECODSE data were imbalanced: after outlier 

118 removal, these data contained a total of 6,034 samples from 9 classes (8 identified species, one 

119 8other species9 class). The most common species, Pinus palustris, contained 4,026 samples (66% 

120 of the samples) and the rarest species, Liquidambar styaciflua, contained 62 samples (1% of the 

121 samples). 

122 These data were resampled prior to analysis to reduce the likelihood of overpredicting 

123 common species. Resampling was performed by setting a fixed number of samples per class, 

124 then undersampling or oversampling each class to that fixed number. This fixed number was set 

125 to 400 samples to split the difference of two orders of magnitude between the rarest and the most 

126 common classes. This number was arbitrary, but it approximates the number of per-species 

127 samples recommended in Baldeck & Asner (2014). To create the final training data, classes with 

128 fewer than 400 samples were oversampled with replacement, and classes with more than 400 

129 samples were undersampled without replacement. The final training data included 400 samples 

130 for each of the 9 classes (3,600 samples total), where each sample contained a feature vector of 

131 the principal components derived from the outlier removed, spectrally subset canopy reflectance 

132 data. 

133 Model selection, training, and probability calibration

134 Th CCB-ID approach used two machine learning models: a gradient boosting classifier 

135 (GBC) and a random forest classifier (RFC; (Friedman, 2001; Breiman, 2001). These models can 

136 fit complex, nonlinear relationships between response and feature data, can automatically handle 

137 interactions between features, and have built-in mechanisms to reduce overfitting. They were 

138 selected because they perform well in species mapping contexts (Elith, Leathwick & Hastie, 

139 2008), in remote sensing contexts (Pal, 2005), and in conjunction with PCA transformations 
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140 (Rodríguez, Kuncheva & Alonso, 2006). Furthermore, these models are built as ensembles of 

141 decision trees, resembling the dichotomous key employed by botanists. Unlike a dichotomous 

142 key, these models were trained to learn where to split the data since the trait variation that 

143 distinguishes species was not known a priori. 

144 These models were fit using hyper-parameter tuning and probability calibration 

145 procedures. Model hyper-parameters were tuned by selecting the parameters that maximized 

146 mean F1 scores in 5-fold cross-validation using an exhaustive grid search. The following 

147 parameters were tuned for both models: number of estimators, maximum tree depth, minimum 

148 number of samples required to split a node, and minimum node impurity split threshold. The 

149 learning rate and node split quality criterion were also tuned for GBC and RFC, respectively. All 

150 samples were used for hyper-parameter tuning, and the best model hyper-parameters (i.e., the 

151 hyper-parameters that maximized mean F1 scores in cross validation) were used to fit the final 

152 models.

153 Accurately characterizing prediction probabilities is essential for error propagation and 

154 for assessing model reliability, and prediction probabilities were calibrated once the final hyper-

155 parameters were selected. Well-calibrated probabilities should scale linearly with the true rate of 

156 misclassification (i.e., should not be under or overconfident in predictions). Some ensemble 

157 methods, like RFC, tend to be poorly calibrated; their variance can skew high probabilities away 

158 from one, and low probabilities away from zero, since they average their predictions from a set 

159 of weak learners, which individually have high misclassification rates but gain predictive power 

160 post-ensemble. This results in sigmoid-shaped reliability diagrams (DeGroot & Fienberg, 1983; 

161 Niculescu-Mizil & Caruana, 2005). 
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162 To reduce these probability biases, prediction probabilities were calibrated using sigmoid 

163 regression for both RFC and GBC. The data were first randomly split into three subsets: model 

164 training (50%, or 200 samples per class), probability calibration training (25%, or 100 samples 

165 per class), and model testing (the remaining 25%). Each classifier was fit using the model 

166 training subset and the tuned hyper-parameters. Prediction probabilities were calibrated with 

167 sigmoid regression, using the probability training subset and internal 3-fold cross validation to 

168 assess the calibration. Calibrated model performance was assessed using the holdout test set. 

169 After these assessments, the final models were fit using the model training data, then calibrated 

170 using the full probability training and testing data (i.e., the full 50% of samples not used in initial 

171 model training). 

172 Model assessment

173 During model training, performance was assessed on a per-sample basis using model 

174 accuracy and log loss scores. Model accuracy calculates the proportion of correctly classified 

175 samples in the test data (Figure 2). High model accuracy scores are desirable. Log loss assesses 

176 whether the prediction probabilities were well calibrated, penalising incorrect and uncertain 

177 predictions. Low log loss scores indicate that misclassifications occur at rates close to the rates 

178 predicted by the reported probabilities. During model testing, performance was assessed using 

179 rank-1 accuracy and cross entropy cost (Marconi et al., 2018). Rank-1 accuracy was calculated 

180 based on which species ID was predicted with the highest probability. The cross entropy score is 

181 similar to the log loss function, but was scaled using an indicator function. These can be 

182 interpreted in similar ways to accuracy and log loss; high rank-1 accuracy and low cross entropy 

183 scores are desirable.
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184 Secondary model testing metrics were calculated for each species using the test data. 

185 These included model specificity, precision, and recall (Figure 2). These metrics reveal model 

186 behavior that accuracy scores may obscure. Specificity assesses model performance on non-

187 target species, penalizing overprediction of the target species (i.e., a high number of false 

188 positives). Precision also penalizes overprediction, but assesses the rate of overprediction relative 

189 to the rate of true positive predictions. Recall calculates the proportion of true positive 

190 predictions to the total number of positive observations per species. Higher values are desirable 

191 for each. These metrics were calculated to aid interpretation, but were not used to formally rank 

192 model performance.

193 Performance during model training was assessed at the sample scale, but the competition 

194 evaluation metrics were calculated using crown-scale prediction probabilities. To address this 

195 scale mismatch, prediction probabilities were first calculated for each sample in a crown using 

196 both GBC and RFC models. These sample-scale probabilities were then averaged by crown. 

197 Further analyses

198 Two post-submission analyses were performed to assess how PCA transformations 

199 affected model performance. Prior to these analyses, I bootstrapped the original model fits to 

200 assess their variance. I then compared these bootstrapped fits to models trained with the 

201 spectrally-subset reflectance data instead of the PCA transformed data. Next, I compared models 

202 trained using a varying number of principal components. These models were trained using npcs 

203 * {10, 20, &, 345} as the input features, with 345 being the maximum number of potential 

204 components after spectral subsetting. These comparisons assessed whether the PCA 

205 transformations improved model performance, and how changing the amount of spectral 
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206 variation in the feature data affected performance. These analyses were each bootstrapped 50 

207 times. 

208 Results

209 CCB-ID performed well according to the ECODSE competition metrics, receiving a 

210 rank-1 accuracy score of 0.919, and a cross-entropy cost score of 0.447 on the test data. These 

211 were the highest rank-1 accuracy and the lowest cross-entropy cost scores among participants. A 

212 confusion matrix with the classification results is reported in Table 1. In addition to the high 

213 rank-1 accuracy and low cross entropy cost scores, the CCB-ID model performed well according 

214 to the secondary crown-scale performance metrics. These secondary metrics calculated a mean 

215 accuracy score of 0.979, mean specificity score of 0.985 , mean precision score of 0.614, and 

216 mean recall score of 0.713 across all species. The per-species secondary metrics are summarized 

217 in Figure 3. These results were calculated using the categorical classification predictions (i.e., 

218 after assigning ones to the species with the highest probabilities, and zeros to all other species). 

219 The probability-based confusion matrix and classification metrics are reported in Table S1 and 

220 Figure S1, respectively.

221 During model training, outlier removal excluded 797 samples from analysis. After 

222 removal, the first principal component contained 78% of the explained variance. However, this 

223 component did not drive model performance; it ranked 7th and 11th in terms of ranked feature 

224 importance scores for GBC and RFC. Model accuracy scores, calculated on the 25% training 

225 data holdout, were 0.933 for GBC and 0.956 for RFC. Log loss scores, calculated prior to 

226 probability calibration, were 0.19 for GBC, and 0.47 for RFC. After probability calibration, log 

227 loss scores were 0.24 for GBC and 0.16 for RFC. The per-class secondary metrics reported a 
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228 mean specificity score of 0.987, mean precision score of 0.908, and mean recall score of 0.907 

229 across all species.

230 The post-submission analyses found PCA transformations improved model accuracy. 

231 Models fit using the original methods calculated mean bootstrapped accuracy scores of 0.944 (s 

232 = 0.009) for GBC and 0.955 (s = 0.008) for RFC. Models fit using the spectrally-subset 

233 reflectance data as features calculated mean accuracy scores of 0.883 (s = 0.012) for GBC and 

234 0.877 (s = 0.011) for RFC, and mean log loss scores of 0.46 (s = 0.03) for GBC and 0.48 (s = 

235 0.03) for RFC. For the models fit using varying numbers of principal components, mean model 

236 accuracies declined and mean log loss scores increased after including more than 20 components 

237 as features (Figure 4).

238 Discussion

239 The CCB-ID approach accurately classified tree species using NEON imaging 

240 spectroscopy data, reporting the highest rank-1 accuracy score and lowest cross-entropy cost 

241 score among ECOSDE participants. These scores compare favorably to other imaging 

242 spectroscopy-based species classification efforts (Fassnacht et al., 2016). The crown-scale test 

243 results highlight the potential to develop species mapping methods that approximate botanical 

244 and taxonomic approaches to classification. However, this method failed to overcome several 

245 well-known species mapping challenges, like precisely identifying rare species. Below, I discuss 

246 some key takeaways, and suggest opportunities to improve future imaging spectroscopy-based 

247 species classification approaches. 

248 The high per-species accuracy scores indicate a high proportion of correctly classified 

249 crowns in the test data. However, accuracy can be a misleading metric in imbalanced contexts. 

250 Since seven of the nine classes had six or fewer crowns in the test data (out of 126 total test 
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251 crowns), classification metrics weighted by the true negative rate (i.e., accuracy and specificity) 

252 were expected to be high if the majority class were correctly predicted. Metrics weighted instead 

253 by the true positive rate (i.e., precision and recall) showed much higher variation across rare 

254 species, as a single misclassification greatly alters these metrics when there are few observed 

255 crowns (Figure 3). Due to the small sample size, it is difficult to assess if these patterns portend 

256 problems at larger scales. For example, there were two observed Acer rubrum crowns in the test 

257 data, yet only one was correctly predicted. Was the misclassified crown an anomaly? Or will this 

258 low precision persist across the landscape, predicting Acer rubrum occurrences at half its actual 

259 frequency? The latter seems unlikely, in this case; the low cross entropy and log loss scores 

260 suggest misclassified crowns were appropriately uncertain in assigning the wrong label (Table 

261 S1). However, since airborne species mapping is employed to address large-scale ecological 

262 patterns where precision is key (e.g., in biogeography, macroecology, and biogeochemistry), we 

263 should be assessing classification performance on more than one or two crowns per species.

264 Model performance between and within taxonomic groups revealed some notable 

265 patterns. Quercus and Pinus individuals (i.e., Oaks and Pines) accounted for 120 of the 126 test 

266 crowns and there was high fidelity between them; only one Quercus crown was misclassified as 

267 Pinus, and two Pinus crowns were misclassified as Quercus. From a botanical perspective, this 

268 makes sense; these genera exhibit very different growth forms (i.e., different canopy structures 

269 and foliar traits), and should thus be easy to distinguish in reflectance data. However, Quercus 

270 and Pinus showed different within genus patterns. Quercus crowns were never misclassified as 

271 other Quercus species, yet there were several within-Pinus misclassifications. This may be 

272 because Quercus species tightly conserve their canopy structures and foliar traits (Cavender-

273 Bares et al., 2016), while Pinus species may express trait plasticity. Pinus species maintain 
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274 similar growth forms (i.e., their needles grow in whorls bunched through the canopy), limiting 

275 opportunities to identify species-specific structural variation. Furthermore, they are distributed 

276 across the varying climates of the southern, eastern, and central United States, suggesting some 

277 degree of niche plasticity. If this plasticity is expressed in each species9 functional traits, then 

278 convergence among species may then preclude trait-based classification efforts. Quantifying the 

279 extent to which foliar traits are conserved within and between species and genera will be 

280 essential for assessing the potential for imaging spectroscopy to map community composition 

281 across large extents.

282 The post-submission analyses revealed further notable patterns. First, PCA 

283 transformation increased mean model accuracy scores compared to the spectrally-subset 

284 reflectance data. I suspect this is because the models could focus on the spectral variation driven 

285 by more biologically meaningful components instead of searching for that signal in the 

286 reflectance spectrum where the majority of variation is driven by abiotic factors. The low feature 

287 importance scores of the first principal component support this interpretation. The first 

288 component in reflectance data is typically driven by brightness (i.e., not a driver of interspecific 

289 variation) and contained 78% of the explained reflectance variance, but ranked low in feature 

290 importance for both models. This preprocessing transformation approximates the 8rotation forest9 

291 approach developed by Rodríguez, Kuncheva & Alonso (2006). They found PCA transformation 

292 improved tree-based ensemble models in several contexts, and they suggested retaining all 

293 components to maintain the dimensionality of the input features. However, the analysis that 

294 varied the number of feature components showed model accuracy decreased when including 

295 more than 20 components (Figure 4). This suggests that using all components could overfit to 

296 noise. Performing feature selection on transformed data may help overcome this. Feature 
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297 selection has been applied to reflectance data to find the spectral features that track functional 

298 trait variation (Feilhauer, Asner & Martin, 2015), and I believe it could help identify trait-based 

299 components that discriminate between species. Furthermore, other transformation methods may 

300 be more appropriate than PCA; principal components serve only as proxies to functional traits in 

301 this context. Transforming reflectance data directly into trait-based features could improve 

302 species classification efforts, improve model interpretability, and further develop the biophysical 

303 basis for species mapping with imaging spectroscopy.

304 Despite the successes of CCB-ID, there were a few missteps in model design and 

305 implementation. For example, outlier removal and resampling were employed to obviate class 

306 imbalance problems but may instead have exacerbated them. First, the PCA-based outlier 

307 removal excluded samples based on deviation from the mean of each component. However, 

308 since the transformations were calculated using imbalanced data, the majority of the variance 

309 was driven by variation in the most common class. This means outlier removal excluded samples 

310 that deviated too far from the mean-centered variance weighted by Pinus palustris. Indeed, 533 

311 of the 797 samples excluded from analysis (67%) were from non-P. palustris species (which 

312 comprised only 37% of the full dataset). This removed up to 45% of samples from the rarest 

313 species (Liquidambar styraciflua), reducing the spectral variance these models should be trained 

314 on to better identify rare species. This suggests, for rare species, outlier removal should either be 

315 skipped or implemented using other methods (e.g., using spectral mixture analysis to identify 

316 samples with high soil fractions).

317 Data resampling further exacerbated the class imbalance problem. By setting the 

318 resampling threshold an order of magnitude above the least sampled class, the rarest species 

319 were oversampled nearly tenfold in model training. This inflated per-class model performance 
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320 metrics by double-counting (or more) correctly classified samples for oversampled species. 

321 These metrics were further inflated as a result of how the train/test data were split. The split was 

322 performed after resampling, meaning the train/test data for oversampled species were likely not 

323 independent. This invalidated their use as true test data, and further overestimated performance 

324 during model training. This is unequivocally bad practice; I call this <user error.= Undersampling 

325 the common species was also detrimental. Excluding samples from common species meant the 

326 models were exposed to less intraspecific spectral variation during training, a key source of 

327 variance the models should recognize. This made it more difficult for the models to distinguish 

328 inter and intraspecific variation. Assigning sample weights (e.g., proportional to the number of 

329 samples per class) and using actually independent holdout data could obviate these issues. These 

330 will be implemented in future versions of CCB-ID. However, these need not be the only updates 

331 to this method; CCB-ID is an open source, freely available project (https://github.com/stanford-

332 ccb/ccb-id), and I invite you to to use it and improve it.

333 Conclusions

334 It wasn9t always possible to classify tree species from airplanes; now it is. Airborne 

335 imaging spectrometers can identify trees at crown scales across large areas, and these data are 

336 now publicly available through NEON. However, there is currently no canonical imaging 

337 spectroscopy-based species mapping approach, limiting opportunities to explore key patterns in 

338 biogeography. CCB-ID was developed to identify best practices for species classification in this 

339 context, and to further the conversation on how to implement these practices. CCB-ID performed 

340 well within the scope of the ECODSE competition, reporting the highest rank-1 accuracy and 

341 lowest cross entropy scores among participants, but further testing is necessary to identify 

342 whether this method can scale to other regions (e.g., to high diversity forests). I hope CCB-ID 
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343 will be used to improve future species mapping efforts, and to pursue answers to biogeography9s 

344 great mysteries of where the species are, and why they are there.
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Figure 1(on next page)

Per-species canopy reflectance profiles

Canopy reflectance profiles for the eight tree species analyzed, with mean reflectance values

in black and +/- 1 standard deviation values in color. The bottom right panel shows the mean

reflectance values for each species, with each color corresponding to the individual species

panels. Though the mean reflectance signals show high interspecific variation, the high

intraspecific variation complicates classification efforts.
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Figure 2(on next page)

Model performance metrics

Visual representation of the classification model metrics calculated on a per-species basis. A

confusion matrix was computed for each species, and each metric was calculated in a one-

vs.-all fashion.
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Figure 3(on next page)

CCB-ID model performance

Per-species secondary performance metrics from the test data. These metrics were

calculated using the binary confusion matrix reported in Table 1. Metrics weighted by the

true negative rate (i.e., accuracy and specificity) were high for all species since the models

correctly predicted the most common species, Pinus palustris. However, metrics weighted by

the true positive rate (i.e., precision and recall) were much more variable since there were

only 1 to 6 observed crowns for 7 of the 9 species (P. palustris and Quercus laevis had 84 and

23 crowns, respectively). This penalized misclassifications of rare species. These metrics

were re-calculated using the per-crown prediction probabilities, and can be found in Figure

S1.
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Figure 4(on next page)

Spectral variance and model performance

The effects of increasing spectral variance on model performance through altering the

number of principal component features. These plots show the mean (solid) and standard

deviation (shaded) of (A) model accuracy and (B) log loss scores for each classification

method. Scores were calculated on holdout data from the training set, not the competition

test data. These results suggest that using all available spectral variance (i.e., all principal

components) may decrease model performance. Using feature selection to identify

components that track variation in plant traits may prevent overfitting to noisy features.
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Table 1(on next page)

Confusion matrix of classification results

Binary classification results of the CCB-ID model on the competition test data.
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Predicted

Species ID

Acer 

rubrum

Liquidambar 

stryaciflua Other

Pinus 

elliottii

Pinus 

palustris Pinus taeda

Quercus 

germinata

Quercus 

laevis

Quercus 

nigra

Acer rubrum 1 0 0 0 0 0 0 0 1

Liquidambar 

stryaciflua 0 1 0 0 0 0 0 0 0

Other 1 1 1 0 0 0 0 0 0

Actual Pinus elliottii 0 0 0 0 1 1 0 0 0

Pinus 

palustris 0 0 0 2 81 0 0 1 0

Pinus taeda 0 0 1 0 0 4 1 0 0

Quercus 

germinata 0 0 0 0 0 0 4 0 0

Quercus 

laevis 0 0 0 0 1 0 0 22 0

Quercus 

nigra 0 0 0 0 0 0 0 0 1
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