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Abstract:  42 

Bacteria and other microbes play a crucial role in human health and disease. Medicine and clinical 43 

microbiology have traditionally attempted to identify the etiological agents that causes disease, and 44 

how to eliminate them. Yet this traditional paradigm is becoming inadequate for dealing with a 45 

changing disease landscape. Major challenges to human health are noncommunicable chronic diseases, 46 

often driven by altered immunity and inflammation, and persistent communicable infections whose 47 

agents harbor antibiotic resistance. It is increasingly recognized that microbe-microbe interactions, as 48 

well as human-microbe interactions are important. Here, we review the “Evolutionary Medicine” 49 

framework to study how microbial communities influence human health. This approach aims to predict 50 

and manipulate microbial influences on human health by integrating ecology, evolutionary biology, 51 

microbiology, bioinformatics and clinical expertise. We focus on the potential promise of evolutionary 52 

medicine to address three key challenges: 1) detecting microbial transmission; 2) predicting 53 

antimicrobial resistance; 3) understanding microbe-microbe and human-microbe interactions in health 54 

and disease, in the context of the microbiome. 55 

 56 

 57 

Introduction 58 

A diverse range of bacteria plays a crucial role in human health and disease. Opportunistic or specialist 59 

pathogens may colonize the urinary tract (1), the gut (2) or the lungs (3), while the gut microbiome 60 

composition affects nutrient absorption (4), and resilience to infection (5). Global antibiotic use is on 61 

the rise (6) and antibiotic resistant bacteria are now so widespread that the World Health Organization 62 

warns that the world is running out of functional treatments (7), while bacteria continue to evolve 63 

resistance to new drugs. This problem is caused by the extensive use of antibiotics in the clinic, as well 64 

as unregulated over-the-counter purchases, and therapeutic, prophylactic and growth-promoting use in 65 

agriculture. Another major challenge is disease attributed to the perturbation of the healthy 66 

microbiome, where changes due to a diet of processed food, altered hygiene practices, and antibiotic 67 

use is suggested to leave individuals vulnerable to opportunistic infections and prone to develop 68 

metabolic syndromes (8,9).  69 

 70 

The emerging field of Evolutionary (or Darwinian) Medicine seeks to apply the approach of 71 

evolutionary biology to address challenges to human health, aiming to identify the ultimate causes of 72 
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disease (10). This approach is particularly relevant for understanding our associated microbes: they 73 

evolve rapidly due to their large population sizes and short generation times (11), and some have a long 74 

history of association with their host (12). Given a short generation time, the scales of ecology and 75 

evolution overlap, and there is an inherent feed-back between ecology and evolution (13,14). When 76 

microbes are concerned, Evolutionary Medicine is therefore inseparable from Ecological Medicine. 77 

Theoretical and experimental biology have been instrumental in elucidating how microbial interactions 78 

shape the stability of microbial consortia (15,16), and how clinical interventions affect bacterial 79 

evolution and co-existence (17). Whilst such an approach is directly relevant from a medical 80 

perspective, the application of eco-evolutionary approaches to clinical systems has thus far been limited 81 

despite some success stories (Box 1).  82 

 83 

Below we discuss three areas where such an eco-evolutionary approach to microbial-associated 84 

diseases may be beneficial. These were defined during the first Workshop on Microbial Darwinian 85 

Medicine, held in August 2017 at the Lorentz Center (Leiden, the Netherlands). These constitute key 86 

challenges where an interdisciplinary approach would be feasible and useful: 1) the timely detection of 87 

microbial transmission; 2) the prediction of antimicrobial resistance; and 3) the importance of 88 

microbial interactions in health and disease, in the context of the human microbiome. Lastly, we 89 

discuss challenges of the interdisciplinary approach needed to address the above-mentioned issues, 90 

exemplified by the sharing and utilization of high-throughput sequencing data for both basic research 91 

and clinical applications (Figure 1). 92 

 93 
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 94 
 95 

Figure 1. A vision of how the information flow in an interdisciplinary microbial evolutionary 96 

medicine approach could improve basic knowledge, public health, and patient care. A microbial 97 

sample collected from a diseased person, a healthy person or the environment can be sequenced and 98 

phenotyped, e.g. by assessing antibiotic susceptibility. Sequencing and annotation of isolates may serve 99 

as a rapid diagnostic to directly benefit the individual patient. On the longer term, compiled sequence 100 

and phenotypic data in an accessible database, with appropriate metadata, may represent a goldmine for 101 

subsequent analyses. Inferred epidemiological transmission patterns can be used for improved 102 

diagnostics and risk assessment in future cases. Comparative genomics and experimental ecology and 103 

evolution can help in the formulation of hypotheses of why a given clinical outcome occurred. This 104 

may in turn be experimentally verified with collaborative, interdisciplinary efforts. This has the 105 

potential to lead to improved treatment strategies and precautions, which feed back to benefit the 106 

population on the long term.  107 

 108 

1. Detecting transmission 109 

Tracking pathogen transmission via genome sequencing is possible because many pathogens are 110 

measurably evolving during an epidemic, and even within patients (18,19). Globalization, urbanization, 111 
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changing climate and land-use patterns, and large-scale farming all contribute to the risk of epidemics 112 

caused by both viral and bacterial pathogens. While viral outbreaks are often detected quickly, 113 

epidemic spread of bacterial pathogens often goes unnoticed for some time. This is particularly the case 114 

when the causative agent is considered a common pathogen, such as transmissible Pseudomonas 115 

aeruginosa clones spreading between cystic fibrosis patients (3,20), and the ST131 E. coli clone, which 116 

was not discovered until 2008 when it had already spread globally (21,22). Through retrospective 117 

evolutionary investigation of bacterial pathogen population dynamics, we are now beginning to 118 

understand how these epidemics begin (23), which leads to the question of how these events could be 119 

detected earlier, when there is still time to prevent further transmission. 120 

 121 

Faster sharing of genomic data and annotations (e.g. pathogenicity islands, plasmids that easily spread, 122 

and virulence gene markers) through public databases may support the tracking of ongoing epidemics, 123 

allowing scientific consortia of local and global scientists to contribute to the analyses. Currently, many 124 

studies on clinical isolates are focused on the core genome, which is the portion of alignable genomic 125 

regions common to a collection of isolates. This is primarily to ease analysis and comparisons across 126 

strains, as researchers in evolutionary genomics and epidemiologists traditionally use the core genome 127 

to infer phylogenies and transmission events. Yet, clinical microbiologists appreciate the clinical 128 

importance of mobile elements such as plasmids, phages and transposons in the spread of antibiotic 129 

resistance and virulence factors (24). Exemplary is the spread of the colistin resistance-conferring mcr-130 

1 gene that is not unique to a particular E. coli clone but appears to be widely spread on plasmids 131 

(25,26). Current technology that outputs short reads of DNA/RNA sequences makes assembly of 132 

plasmids and other mobile elements challenging, but not impossible, and long-read technologies may 133 

solve these problems entirely (27,28). Increasingly, genomic approaches are used to track plasmid 134 

dissemination (e.g. 29), and a cohesive view of both core and accessory genomic components is needed 135 

to fully understand pathogen evolution, transmission, and virulence (30). Looking beyond the core 136 

genome raises the question whether the microbe is merely a vector of disease, in cases where virulence 137 

and antibiotic resistance stem from transferable mobile elements (31,32). If we aim to understand and 138 

predict the transfer of disease it is crucial to know which genetic elements to monitor. This has 139 

implications for attempts to predict the outcome of infection in individual patients, or over the course 140 

of an outbreak of resistant bacteria.  141 

 142 
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A better understanding of the environmental niches and genetic variation of opportunistic pathogens is 143 

also required for the detection of virulence determinants. Do disease-causing strains represent a random 144 

sample from an environmental or host reservoir, or do they harbour specific characteristics that 145 

facilitate human colonization and infection? A comparison of Vibrio cholerae genomes from 146 

environmental and clinical sources revealed that a combination of specific core-genome SNPs, already 147 

present in the environment, was a prerequisite for the acquisition of mobile elements encoding key 148 

virulence factors that affect colonization and virulence in the human host (33). Likewise, sampling 149 

from animal hosts can show linkage between animal and human reservoirs (34–36). Additionally, 150 

various studies looking at bacteria residing in the urinary tract have shown that what are traditionally 151 

thought of as ‘pathogens’ can actually be present in both patients and controls (37,38). In this case, 152 

more extensive sequencing in conjunction with laboratory studies may shed light on why pathogenicity 153 

only occurs in certain people, and whether this is due to the genetics of the ‘pathogens’ or the different 154 

niches provided by genetically or physiologically different human hosts.  155 

 156 

2. Predicting the evolution of resistance 157 

Due to the wide use of antibiotics in the community and in agriculture, and the proximity of humans 158 

and livestock, resistance spreads rampantly back and forth from livestock to waste water and likely 159 

humans, for example in small family farms in Vietnam (39,40) and industrial-sized farms in China 160 

(41). The spread of resistance back and forth between livestock and humans seems to be socio-161 

economically dependent as this appears to happen less in the Netherlands (42). While antibiotic 162 

resistance is a widespread phenomenon, and also found in organisms never exposed to man-made 163 

antibiotics (43–45), resistance is not distributed equally across all environments (46).  164 

 165 

There is a need to study the role of bacterial genetic background in determining the likelihood of 166 

resistance evolution, via both de novo mutations and the uptake of mobile elements conferring 167 

resistance. Genetic background plays a key role in shaping the evolution of resistance to antibiotics by 168 

point mutation (47–49), and can also impact the evolution of resistance by horizontal gene transfer 169 

(50). For example, clinical isolates of the nosocomial pathogens Enterococcus faecalis and E. faecium 170 

lack CRISPR-cas systems, making them more prone to accept foreign DNA and thus more likely to 171 

acquire antibiotic resistance genes (51,52). The most recombinogenic strains of the human pathogen 172 

Streptococcus pneumoniae are also the most likely to become antibiotic resistant (53). Fitness barriers 173 
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may prohibit the transfer or functioning of mobile elements in the once they arrive in a new host 174 

genome. Such costs can be caused by the regulatory inefficiency experienced once new elements are 175 

incorporated (54), or biochemical incompatibilities (55). To identify clones that are antibiotic resistant 176 

and adapted to the host environment, the inter-dependent nature of resistance and fitness should be 177 

recognized. 178 

 179 

Approaches aimed at identifying resistance should not only focus on specific resistance genes, but 180 

should also consider mutations in non-coding sequences (e.g. promoters and intergenic regions) and in 181 

coding sequences (30). In E.coli ST131, the uptake of mobile elements involved in resistance was 182 

found to lead to selection for compensatory mutations in the genome (56). Extraintestinal pathogenic 183 

ST131 clones may further be ecologically separated in different niches, as drug susceptible ST131 184 

clones incorporate different phages or plasmids compared with drug resistant ST131. Developing tools 185 

for predicting which strains of a pathogen have a high risk of evolving resistance may be a daunting 186 

task, but could help to guide the use of antibiotics in clinical settings. Developing such insight requires 187 

richly annotated genome and mobilome data, in publicly accessible databases that include antimicrobial 188 

susceptibility metadata.  189 

 190 

In the laboratory, microbes are capable of quickly adapting to high concentrations of antibiotics (57). 191 

However, for experimental work on resistance evolution to be clinically relevant, we need to address 192 

the question of whether resistance in vivo evolves under strong or weak selection pressure. The 193 

antibiotic concentrations used in experiments may well be different from what is experienced in 194 

patients, with unequal distribution of antibiotics across tissues and in biofilms that protect bacteria 195 

(58,59). The strength of selection in the host environment is basically unknown but it may affect the 196 

type of resistance mutations that arise, and the rate at which these mutations can be acquired. A weak 197 

pressure has been found to be more likely to select for a broader range of resistance mutations at little 198 

to no cost to the bacteria that carry them (60). Cross-resistance, in which mutations confer resistance to 199 

multiple antibiotics, was more likely to evolve under strong selective pressures. However, under some 200 

conditions, collateral sensitivity can occur. In such a case mutations that confer resistance to one drug 201 

can induce susceptibility to another drug (61). Cycling of antibiotics in the clinic has been suggested, to 202 

use collateral sensitivity to limit the development of resistance to each of the cycled drugs (62,63), yet 203 

studies show mixed results of effectiveness of the cycling strategies (64,65). Additionally, 204 
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discrepancies between the experimental conditions where drugs are developed, and the clinical setting 205 

where they are used, may cause the failure of drugs during pre-clinical trials, even if they could 206 

actually perform well in a patient (66).  207 

 208 

There is a general expectation that fitness trade-offs in different environments are a barrier to the 209 

spread of resistance (67). For instance, clinical isolates of E. faecium have a markedly larger genome 210 

than non-clinical isolates, in part because they carry a large pathogenicity island and other mobile 211 

genetic elements (52,68). In other species, resistance against fluoroquinolones and aminoglycosides can 212 

have a deleterious effect on either mobility or growth in the absence of the antibiotics (69–72). Trade-213 

offs may thus lead to a fitness burden in the absence of the antibiotics. This may effectively select 214 

against the dissemination of resistant pathogens outside of the clinic (73). Yet, not all antibiotic-215 

resistant bacteria suffer from such a fitness burden in the absence of antibiotics (74). Some conditions, 216 

such as heavy metal-rich environments, can even co-select for resistance (75). Understanding for which 217 

resistance mechanisms – and in which environmental contexts – fitness trade-offs limit the spread of 218 

antibiotic resistance will be a major future challenge of evolutionary medicine (Box 1). 219 

 220 

3. Microbial interactions and the eco-evolutionary dynamics of the human microbiome 221 

When considering the adaptive potential of opportunistic pathogens, we need to take into account intra- 222 

and interspecies interactions, i.e. the social environment in which bacteria evolve and interact. Bacterial 223 

behaviors that affect virulence often involve the production of extracellular public good molecules (76). 224 

These compounds are produced and shared within the population in a cooperative manner. Public 225 

goods are, however, by definition exploitable, as non-producing freeloaders may reap the benefit of 226 

their use, without paying the cost of their production (77). Therefore, intra-species bacterial interactions 227 

can drive changes in production of virulence factors during an infection (78). Further, pathogen 228 

diversity and order of arrival can affect disease severity. In urinary tract infections, for example, E. 229 

faecalis is able to facilitate the invasion of otherwise avirulent E. coli in an animal colonization model, 230 

and can even impact disease development after it is cleared (79). The stochastic nature of arrival may 231 

therefore play a role in the ecology, as not all bacteria are able to colonize the host in any order (80). 232 

Additionally, interactions between different bacterial species derived from polymicrobial urinary tract 233 

infections affect ecological stability and antibiotic tolerance in vitro (16). Indeed, in chronic urinary 234 

tract infection amongst the elderly with sub-acute symptoms, polymicrobial infections are the norm 235 
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(81). An additional layer of complexity in this system can come from phages, that affect the growth of 236 

the microbial population and may thus mediate microbe-microbe interactions (82). Ecology and 237 

evolution thus both play an important role in the outcome of infections, as microbial interactions may 238 

affect pathogen colonization and survival.  239 

 240 

Microbe-microbe and host-microbe interactions are not just pairwise but take place in the context of 241 

often diverse and complex host-associated communities called microbiomes. The composition, 242 

structure and stability of the healthy microbiome is impacted by human genetics, diet and other 243 

environmental factors (83,84). Gut microbiome research is particularly focused on identifying taxa that 244 

contribute to health and disease. For instance, the abundance of an Akkermansia species was observed 245 

to be reduced in hosts with metabolic disorders (85,86), but also, an increased abundance was observed 246 

in persons with Alzheimer’s disease and ulcerative colitis (87,88). However, such bacterial species 247 

often act in concert with other microbiome members (87), and Akkermansia has been found to interact 248 

with other gut bacteria in metabolic networks (88). The contribution of members of the gut microbiome 249 

to health and disease may thus depend on the context of their surrounding microbiome ecosystem.   250 

 251 

The degree of co-evolution between mammals and their microbiomes is debated, but phylogenetic 252 

studies show that several gut bacteria have been vertically inherited over millions of years of evolution 253 

and have co-speciated with mammals (12). The absence of some of these bacteria is associated with 254 

inflammatory bowel disease in humans (12). Several studies have shown that humans have experienced 255 

an accelerated depletion of gut bacterial biodiversity in recent times, in particular populations 256 

embracing “westernized” lifestyles and diets (89–91). It is suspected that processed foods, the use of 257 

antibiotics and overly hygienic environments are responsible for the disappearance of our ancestral gut 258 

symbionts, which could drive the rise of non-communicable diseases worldwide  (9).  259 

 260 

The microbiome composition may affect the propensity for non-communicable diseases through the 261 

immune system, as a diverse and stable microbiome is suggested to be a key contributor to its 262 

maturation. Early life events that affect the development of the microbiome ecosystem may therefore 263 

be of crucial importance as these events also shape the development of the immune system (92). Early 264 

life perturbation of the microbiome is exemplified by the treatment with antibiotics at a young age, 265 

which has been shown to be associated with an increased risk of developing both asthma and obesity 266 
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later in life (93,94). A prospective cohort study also showed that an adequate maturation of the gut 267 

microbiome in the first year of life was critical for protecting children against asthma at age 5 years, 268 

especially for children born to asthmatic mothers (95).  269 

 270 

Knowledge of ecosystem dynamics may inform gut microbiome treatments, for instance by reducing 271 

the occurrence of available niches for pathogens. As Clostridium difficile colonization is facilitated by 272 

a low diversity of the gut microbiome (87), repopulating the system towards a healthy, diverse state 273 

may cure such infections (96). Fecal microbial transplants (FMT) were found to be about 85% effective 274 

at treating recurrent Clostridium difficile infections in such a manner (97), holding great promises for 275 

the future design of microbiome-based therapeutics. It is still unclear exactly which components of the 276 

transplant lead to success (98), but the effect of an FMT can be partly predicted based on the 277 

microbiome composition of donor and recipient (99). 278 

 279 

To harvest information on the eco-evolutionary dynamics from microbiome data with the aim to 280 

develop clinical interventions, we must take into account the temporal feedback between the host and 281 

the microbiome, as the microbiome composition fluctuates. These fluctuations can be regulated 282 

endogenously by circadian clocks (100) and are subjected to both seasonal cycles (101) as well as jet-283 

lag (102). Because the immune system also has endogenous rhythmicity (103), patterns in the 284 

microbiome and immune system could interact to shape the temporal dynamics of disease. Diet and 285 

other host behaviors can also lead to temporal fluctuations in the microbiome (83,101,104). This may 286 

have implications for sampling strategies used in investigations of the microbiome, such as the 287 

collection of data series over time, the timing of sampling, and the initiation of treatments against 288 

disease. 289 

 290 

Development of novel eco-evolutionary models to discern the short-term (ecological) and long-term 291 

(evolutionary) feedback between the host and the microbiome may facilitate an understanding of their 292 

role in health and disease (12,15,105). Recent work also highlights the importance of considering the 293 

potential of the host to control the microbiome composition, e.g. through oxygen regulation, and the 294 

resulting "dysbiosis" if control is lost (105,106). To facilitate the accessibility of data to study these 295 

objectives, the Human Microbiome Project (https://hmpdacc.org/), the American Gut project 296 

(http://americangut.org/) and the Global Microbiome Conservancy 297 
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(http://microbiomeconservancy.org/), among others, are providing sequencing data from different body 298 

sites and different human populations. Such investigations may pave the way for future microbiome 299 

disease interventions (107). We argue that an interdisciplinary approach will help build a theoretical 300 

framework to infer causation from observed correlations between gut bacteria and disease, and 301 

importantly how we may be able to manipulate them for health benefits.  302 

 303 

Challenges to the use of high-throughput sequencing in the clinic 304 

Recent advances in sequencing tools and bioinformatics have helped us understand which bacteria are 305 

where, how their genomes evolve over time, and how pathogens and antibiotic resistance determinants 306 

are transmitted (Figure 1). Applying evolutionary theory to these data might enable us to prioritize 307 

possible approaches in the clinic. At present, making decisions about the best course of treatment for a 308 

patient based on their personal (meta)genomic data is not feasible. In principle, whole genome and 309 

metagenomic sequencing directly from clinical samples hold promise for eventually speeding up 310 

clinical diagnoses, selecting appropriate treatments, and epidemiological inferences; however, there are 311 

still many challenges in the translation of results to clinical practice (19). In addition to costs, we 312 

identified the main issue to be one of scale at the level of time available and certainty required. Whole 313 

genome sequencing (WGS) may be incredibly powerful for studying epidemics at the population level 314 

over a longer time period, such as identifying transmission of MRSA (108). It is, however, not yet 315 

competitive with traditional culture-based and PCR assays at the individual patient level, where fast 316 

diagnosis and appropriate treatment plans are key. This is due to the challenges in extracting high 317 

quality pathogen DNA directly from human samples as well as the additional cost and time needed to 318 

analyze the sequencing data, in particular when there is not yet a clear link between genotypes and 319 

phenotypes of clinical interest (e.g. antibiotic resistance) for many species (109). The small degree of 320 

uncertainty acceptable in diagnostics, compared with epidemiology, limits the current implementation 321 

of this new technology. There is thus a strong need for theoretical and technological development, as 322 

well as interdisciplinary collaborations to fill this knowledge gap.  323 

 324 

A clear exception is found for slow-growing pathogens such as Mycobacterium tuberculosis (TB), 325 

where a variety of resistance-conferring mutations can be identified more rapidly by WGS than by 326 

culture-based drug sensitivity assays (110–113). Even in this situation, communication of genomic data 327 

to clinicians is still a challenge. Genomic literacy may be a goal in medical training, thereby increasing 328 
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the understanding of when WGS is the appropriate tool for solving a problem. The first evidence-based 329 

guidelines for presenting microbial genomics data to clinicians, who often have only a few minutes to 330 

evaluate the data and make a decision on a course of treatment, were recently published. A design 331 

study approach, combining user interviews, surveys, and testing of various prototypes for graphically 332 

presenting WGS-derived species identification, antibiotic resistance, and epidemiological data, was 333 

used to design a two-page report that met end-user needs (114). To increase the accessibility of WGS 334 

data it would be highly relevant to incorporate clinically desirable user-interfaces in future clinical 335 

WGS analysis software and databases. These databases may additionally be equipped with warnings on 336 

the detection of specific resistance mutations in submitted genomes, or alerts of possible transmission if 337 

a specific clone has been found elsewhere, thereby benefiting global detection and information 338 

exchange.  339 

 340 

The path to interdisciplinarity 341 

To further the understanding of the causal explanations for disease, more collaboration is needed 342 

between clinicians and basic researchers. Large amounts of sequencing data are already available and 343 

large collections of clinical isolates are stored in freezers with few available resources to study them. A 344 

database for matching strain collections and scientists, with questions, specific hypotheses and funds, 345 

may facilitate such interdisciplinary investigations.  346 

 347 

To achieve such interdisciplinary research, funding agencies must also play a role. Funders should 348 

require open data sharing and incentivize new collaborations, and academic institutions should not 349 

discriminate against researchers who share extensive authorships with other groups when it comes to 350 

hiring and promotion. Open and immediate sharing of WGS data, and of metadata including clinically 351 

relevant phenotypes is important, along with depositing manuscripts on pre-print servers such as on 352 

BioRxiv. To improve reproducibility across studies funders and journals should encourage higher 353 

standards in data submissions, including standardized metadata to allow reuse of data for comparative 354 

studies (115). The bundling of human-related meta-data (e.g. microbiome sequencing, co-morbidities 355 

and diet data) may raise issues related to privacy. For example, microbiome data can be used to identify 356 

individuals (116). We believe, however, that the benefits of open data sharing, with appropriate checks 357 

and balances, clearly outweigh the potential risks.  358 

 359 
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The hope for the future of the field of microbial evolutionary medicine is to establish a common ground 360 

between clinicians, epidemiologists, bioinformaticians, public health officials, and cell-, micro-, and 361 

eco-evolutionary biologists to tackle the extensive interdisciplinary challenges that lie ahead. A major 362 

aim is to be able to detect antibiotic resistance and virulence based on genomic signatures, and predict 363 

the development and spread of antibiotic resistance. For this, large advances are being made in 364 

relatively simple systems, exemplified by TB, which can serve as a test case for more complex systems 365 

(Box 1). Eventually we will be able to predict the health of the host based on the ecology of the 366 

personal microbiome, in concert with the genetics of the individual patient, as well as assess the risk of 367 

invasion of pathogens in complex systems, such as the gut. All these challenges cannot be solved by 368 

single disciplines in isolation. The path to applying evolutionary theory to improve patient care may 369 

seem discouragingly long at times (117,118). Yet initiatives such as the incorporation of evolutionary 370 

medicine in biological and medical curricula in universities throughout the world 371 

(http://www.evmeded.org/) may serve as encouragement.  372 

 373 

 374 

Box 1. Successes and open questions for Microbial Evolutionary Medicine 375 

 376 

Successes: 377 

1) Exploiting bacterial evolution (molecular clock) to trace transmission events at the scale of hospitals 378 

and continents (19) 379 

2) Using signatures of strong positive natural selection on antibiotic resistance mutations to identify 380 

potentially causal (or diagnostic) resistance mutations (e.g. 119)  381 

3) Identifying evolutionary tradeoffs that limit the acquisition of resistance genes (e.g. 51,120) 382 

4) Identifying the role of intra- and interspecies microbial interactions in pathogen adaptation (e.g. 383 

16,78) 384 

5) The discovery that gut microbes with a long evolutionary history of co-speciation with mammals 385 

tend to be depleted in human disease states, suggesting that ancient associates may tend to be beneficial 386 

to health (e.g. 12),. 387 

 388 

Open questions/challenges: 389 

1) How does evolution and natural selection of microbes in the environment (or non-human hosts) 390 
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impact their ability to colonize and cause disease in humans? 391 

2) Can we design pathogen treatment strategies that minimize the evolution of resistance? 392 

3) Can we design treatment strategies that favour beneficial microbes, and prophylactic treatments that 393 

disfavor the invasion of pathogens? 394 

4) Can we exploit fitness tradeoffs to reduce the spread of antibiotic resistance and other undesirable 395 

microbial traits? 396 

 397 
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