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Ecology has reached the point where data science competitions, in which multiple groups

solve the same problem using the same data by different methods, will be productive for

advancing quantitative methods for tasks such as species identification from remote

sensing images. We ran a competition to help improve three tasks that are central to

converting images into information on individual trees: 1) crown segmentation, for

identifying the location and size of individual trees; 2) alignment, to match ground truthed

trees with remote sensing; and 3) species classification of individual trees. Six teams

(composed of 16 individual participants) submitted predictions for one or more tasks. The

crown segmentation task proved to be the most challenging, with the highest-performing

algorithm yielding only 34% overlap between remotely sensed crowns and the ground

truthed trees. However, most algorithms performed better on larger trees. For the

alignment task, an algorithm based on minimizing the difference, in terms of both position

and tree size, between ground truthed and remotely sensed crowns yielded a perfect

alignment. In hindsight, this task was over simplified by only including targeted trees

instead of all possible remotely sensed crowns. Several algorithms performed well for

species classification, with the highest-performing algorithm correctly classifying 92% of

individuals and performing well on both common and rare species. Comparisons of results

across algorithms provided a number of insights for improving the overall accuracy in

extracting ecological information from remote sensing. Our experience suggests that this

kind of competition can benefit methods development in ecology and biology more

broadly.
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24 Abstract

25 Ecology has reached the point where data science competitions, in which multiple groups solve 

26 the same problem using the same data by different methods, will be productive for advancing 

27 quantitative methods for tasks such as species identification from remote sensing images. We ran 

28 a competition to help improve three tasks that are central to converting images into information 

29 on individual trees: 1) crown segmentation, for identifying the location and size of individual 

30 trees; 2) alignment, to match ground truth trees with remote sensing; and 3) species classification 

31 of individual trees. Six teams (composed of 16 individual participants) submitted predictions for 

32 one or more tasks. The crown segmentation task proved to be the most challenging, with the 

33 highest-performing algorithm yielding only 34% overlap between remotely sensed crowns and 

34 the ground truth trees. However, most algorithms performed better on larger trees. For the 

35 alignment task, an algorithm based on minimizing the difference, in terms of both position and 

36 tree size, between ground truth and remotely sensed crowns yielded a perfect alignment. In 

37 hindsight, this task was over simplified by only including targeted trees instead of all possible 

38 remotely sensed crowns. Several algorithms performed well for species classification, with the 

39 highest-performing algorithm correctly classifying 92% of individuals and performing well on 

40 both common and rare species. Comparisons of results across algorithms provided a number of 

41 insights for improving the overall accuracy in extracting ecological information from remote 

42 sensing. Our experience suggests that this kind of competition can benefit methods development 

43 in ecology and biology more broadly.

44 1. Introduction

45 In many areas of science and technology there are tasks for which solutions can be optimized 

46 using well-defined measures of success. For example, in the field of image analysis, the goal is 

47 to accurately characterize the largest proportion of images (Solomon & Breckon, 2010). When a 

48 clear measure of success can be defined, one approach to rapidly improving the methods used by 

49 the field is through open competitions (Carpenter, 2011). In these competitions, many different 

50 groups attempt to solve the same problem with the same data. This standardization of data and 

51 evaluation allows many different approaches to be assessed quickly and compared. Because the 

52 problems are well defined and data is cleaned and organized centrally, competitions can allow 

53 involvement by diverse participants, from those with domain expertise, to those in fields like 

54 modeling and machine learning.

55 In fields outside of ecology, these competitions have yielded rapid advances in the accuracy of 

56 many tasks. One well-known example of this is the ImageNET image classification competition 

57 (Krizhevsky et al., 2012). For the past five years, teams have competed in classifying 100,000s 

58 of images that has resulted in a major increase in classification accuracy from only 70% in 2010 

59 to 97% in 2017. This success has resulted in the rapid growth of competitions for solving 

60 common data science problems through both isolated competitions and major platforms like 

61 Kaggle (https://www.kaggle.com/). Kaggle has run over 200 competitions ranging from industry 
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62 challenges predicting sales prices of homes, to scientific questions like detecting lung cancer 

63 from lung scans. In general, life and environmental sciences, including ecology, have only 

64 recently begun to recognize the potential value of competitions. A few ecology-related 

65 competitions have been run recently, including competitions quantifying deforestation in the 

66 Amazon basin (https://www.kaggle.com/c/planet-understanding-the-amazon-from-space) and 

67 counting sea lions in Alaska (https://www.kaggle.com/c/noaa-fisheries-steller-sea-lion-

68 population-count). However, these are far from common and, as a result, most ecologists are 

69 unaware of, and have had few opportunities to participate in, data science competitions.

70 In recent years, ecology has reached the point where these kinds of competitions could be 

71 productive. Large amounts of open data are increasingly available (Reichman et al. 2011, 

72 Hampton et al. 2013, Michener 2015) and areas of shared interest around which to center 

73 competitions are increasingly prominent. One of these shared areas of interest is converting 

74 remote sensing data into information on vegetation diversity, structure and function (Pettorelli et 

75 al. 2014, Pettorelli et al., 2017, Eddy et al., 2017). We ran a competition to improve three tasks 

76 that are central to converting airborne remote sensing (images and vertical structure  

77 measurements collected from airplanes) into the kinds of vegetation diversity and structure 

78 information traditionally collected by ecologists in the field: 1) crown segmentation, for 

79 identifying the location and size of individual trees (Zhen et al., 2016); 2) alignment to match 

80 ground truth data on trees with remote sensing data (Graves et al., in prep); and 3) species 

81 classification to identify trees to species (Fassnacht et al., 2016). If these three tasks can be 

82 conducted with a high degree of accuracy, it will allow scientists to map species locations over 

83 large areas, and use them to understand the factors governing the individual level behavior of 

84 natural systems at scales thousands of times larger than possible from traditional field work 

85 (Barbosa & Asner, 2017).

86 To create this competition, we used data from the National Ecological Observatory Network 

87 (NEON; Keller et al. 2008) funded by the U.S. National Science Foundation (NSF). NEON 

88 collects data from a wide range of ecological systems following standardized protocols. One of 

89 the core sets of observations comes from the Airborne Observation Platform (AOP) that collects 

90 high resolution LiDAR and hyperspectral images across ~10,000 ha for dozens of sites across the 

91 United States (http://www.neonscience.org). NEON also collects associated data on the 

92 vegetation structure at each site, which supports the building and testing of remote sensing based 

93 models. In addition to providing the openly available data needed for this competition, NEON 

94 also provides an ideal case for competitions because the methods are standardized across sites 

95 and data collection will be conducted at dozens of locations annually for the next 30 years. This 

96 means that the methodological improvements identified by the competition can be directly 

97 applied to hundreds of thousands of hectares of remotely sensed images and continual 

98 improvements can be made by regularly rerunning the competition. As a result, this competition 

99 has the potential to produce major gains in the quality of the ecological information that can be 

100 extracted from this massive data collection effort.
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101 In addition to producing important improvements for NEON remote sensing products, this 

102 competition should also broadly benefit efforts to convert airborne remote sensing into 

103 ecological information. A major challenge in current assessments of airborne remote sensing 

104 tasks is determining whether published assessments of different methods generalize to the broad 

105 application of the methods as a whole, or are specific to the particular dataset and evaluation 

106 metrics being used. While this is a general problem for method comparison, it is particularly 

107 acute in many areas of remote sensing because: 1) most papers do not compare their methods to 

108 other approaches; 2) when comparisons are made it is typically between a new method and a 

109 single alternative; 3) different papers focus on different datasets; and 4) different papers often 

110 use different evaluation metrics and fail to specifically identify the best evaluation metric for a 

111 given task. Zhen et al. (2016) have highlighted the importance of changing this culture to 

112 produce extensive method comparisons using consistent data and evaluation metrics to drive the 

113 field of crown segmentation forward. By design, competitions provide single core datasets and 

114 consistent evaluation metrics to allow direct comparisons among many different approaches.

115 To capitalize on the benefits of competitions for overcoming barriers of comparing methods and 

116 determining how well different approaches to common data science task generalize, the National 

117 Institute of Standards and Technology (NIST) has been developing a Data Science Evaluation 

118 Series (DSE). This program has developed methodologies for evaluating progress in data science 

119 research through iterative examination of a range of problems, with the goal of devising a 

120 general evaluation paradigm to address data science problems that span diverse disciplines, 

121 domains, and tasks. As a part of the early stages of DSE, a pilot evaluation was run using traffic 

122 data, which was then followed by this competition on converting remote sensing data to 

123 information on trees. As a component of this endeavor, NIST researchers identified general 

124 classes of data science problems (Dorr et al., 2015; Dorr et al., 2016a, b) and produced a 

125 framework for evaluating methods both within an individual domain (like in this paper) and 

126 across domains (e.g., allowing algorithms for similar tasks to be applied to both traffic and 

127 ecological problems). This framework was used as the foundation for this competition including 

128 curating the datasets, developing the task and data descriptions, designing evaluation metrics, 

129 developing submission formats, and disseminating of participation information and rules.

130 Here we present the details of the initial run of this data science competition for converting 

131 remote sensing to data on individual trees. We present the details of the tasks and data, and 

132 summarize and synthesize the results from the participants. In a set of short accompanying 

133 papers and preprints, the participants describe the methods used, present detailed results for those 

134 methods, and discuss lessons learned and future directions for these methods (Anderson 

135 submitted, Dalponte et al. submitted, Taylor submitted, McMahon submitted, Sumison et al. 

136 submitted). Finally, we discuss the broad potential for competitions in ecology and the biological 

137 sciences more generally.
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138 2. Materials & Methods

139 2.1.  NEON data

140 We used NEON-AOP data (from year 2014) and field collected data (from years 2015-2017) for 

141 the Ordway-Swisher Biological Station (Domain D03, OSBS) in north-central Florida. The 

142 NEON field data was from 43 permanently established plots across the OSBS site, which are 

143 stratified across three land cover types (Homer et al. 2015). The field measurements were the 

144 NEON vegetation structure data that provides information on the stem location, taxonomic 

145 species, stem size, tree height, and in some cases two measurements of crown radius (Table 1).

146 Four NEON-AOP remote sensing data products were used; LiDAR point cloud data, LiDAR 

147 canopy height model (CHM), hyperspectral surface reflectance, and high resolution visible color 

148 (RGB) photographs (Table 1). The LiDAR point cloud data provide information about the 

149 vertical structure of the canopy. Data consists of a list of spatial 3D coordinates, with an average 

150 resolution of 4-6 points per square meter. The CHM data provides 1 m spatial resolution 

151 information on the spatial variation in canopy height. Hyperspectral data provides surface 

152 reflectance from 350-2500 nm at 1 m spatial resolution and allows development of spectral 

153 signatures to identify object categories. The RGB photographs provide 0.25 m spatial resolution 

154 information in the visible wavelengths. The higher spatial resolution relative to the other data 

155 products may be helpful to separate trees that are close to one another and to refine tree crown 

156 boundaries. The RGB data was the only data type not available for all plots (39 out of 43 total). 

157 NEON provides geographically registered files of these data products across the entire NEON 

158 site. The data was clipped to 80 x 80 m subsets to capture the full 40 x 40 m field plot with a 20 

159 m buffer on each side. The buffer was used to include any trees with their base in the plot but 

160 with a crown that fell outside of the NEON plot boundary.

161 2.2.  Individual tree crown (ITC) field mapping data

162 Generating field-validated individual tree crowns (ITCs) required spatially matching individual 

163 trees measured in the field to the remote sensing image of their crowns taken from above the 

164 canopy. The ITCs were generated in the field on a tablet computer and GIS software. This 

165 process was done after NEON remote sensing and field data had been acquired and processed. 

166 First, the NEON images were loaded in a GIS application on a tablet computer that was 

167 connected to an external GPS device. The GIS software displayed the GPS location and the 

168 NEON digital images. Second, NEON plots were visited and field-technicians from our team 

169 located all tree crown that fell within a NEON plot and had branches that were in the upper 

170 canopy and visible in the NEON image. Third, with the aid of the GPS location, and the 

171 technicians9 skills in visual image analysis, the crown boundaries of individual trees were 

172 digitized in the GIS application. While the LiDAR and RGB data was used to aid in tree crown 

173 delineation, the ITC polygons were made in reference to the hyperspectral data. This is important 

174 to consider when there is geographic misalignment among the 3 data products.  The result of the 
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175 field mapping process was spatially explicit polygon objects that delineated the crown 

176 boundaries of individual trees. These polygons were linked to field data by the NEON 

177 identification number, or field-based species identification.

178 2.3.  Train test split

179 Training data for the segmentation task consisted of a subset of 30 out of 43 plots (~70%). The 

180 ITCs were provided as ground truth to allow participants to apply supervised methods. Plots 

181 were selected to have a consistent 0.7 to 0.3 training-testing ratio both in number of plots, and 

182 number of ITCs (Table 2). The splitting resulted in a training dataset of 452 out of 613 ITCs. 

183 Since the OSBS NEON site is characterized by three different ecosystem types, we split the data 

184 accordingly to ensure each ecosystem was split in the 0.7 to 0.3 ratio. Separate polygon files 

185 were provided for each NEON plot. All ITC files had a variable number of polygons, and each 

186 polygon represented a single tree. LiDAR and hyperspectral derived data was made available to 

187 participants for all tasks. The RGB data were provided only when available. For the alignment 

188 task, we used only data from individual trees shared by the vegetation structure and the ITCs, 

189 resulting in a total of 130 entries. We split data in a 0.7 to 0.3 training-test ratio, following the 

190 same rationale described for segmentation. For the classification task we used data from all ITC 

191 crowns. Again, data were split in a 0.7 to 0.3 ratio. In this case, we stratified training-test 

192 samples by species labels (e.g. Pinus palustris, Quercus laevis). As a result, around 70% of the 

193 trees for each species belonged to the training set, the other 30% to the test set. We grouped 

194 species whose occurrences were less than 4 into a general category labelled as <Other=, because 

195 their individual numbers were considered too few to allow any learning.  We consider the 

196 <Other= category potentially useful to discriminate rare, undefined species from the rest of the 

197 dataset.

198 2.4. Timeline and participants

199 The data science evaluation was announced one month in advance of making the data available 

200 (September 1, 2017), and participants were allowed to register until the final submission date 

201 (December 15, 2017). Participants could work on any or all of the tasks. There were two 

202 submission deadlines, with the first deadline providing an opportunity to get feedback on a 

203 submission evaluated on the test data before the final submission. A total of 84 groups showed 

204 interest in participating, 14 formally registered, and 6 teams submitted results. Teams came from 

205 a number of institutions including teams from outside the United States. The six teams were: 1) 

206 BYU, a team composed of 4 researchers from the Bioinformatics Research Group (BRG); 2) 

207 Conor, a team from University of Texas at Austin composed of a single researcher; 3) FEM, a 

208 team composed of 3 researchers of the Fondazione Edmund Mach (Italy); 4) GatorSense, a team 

209 composed of 5 members, all affiliated to University of Florida (but not involved in organizing 

210 the competition); 5) Shawn, a team composed of a single researcher at University of Florida; and 

211 6) StanfordCCB, a single researcher affiliated with Stanford University.
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212 2.5.  Competition Tasks

213 2.5.1. Segmentation

214 The crown segmentation task aims to determine the boundaries of tree crowns in an image. 

215 While image segmentation is a well developed field in computer science (Badrinarayanan et al., 

216 2017, Saha & Panda, 2018), delineating tree crowns in a forest is a particularly complex task (Ke 

217 & Quackenbush, 2011; Bunting & Lucas, 2006). Most of the complexity is driven by the fact 

218 that individual crowns overlap, look similar to each other, and can show different shapes 

219 depending on the environment and developmental stage (Duncanson et al, 2014). The spatial 

220 resolutions of the NEON hyperspectral and LiDAR data (1m2) are also relatively low compared 

221 to crown sizes. In addition, these data are also different than most image data in that they have 

222 very high spectral resolution, which may facilitate the task of distinguishing neighboring tree 

223 crowns especially if coupled to LiDAR data. As a result of these complexities, there is no widely 

224 agreed upon solution to the crown segmentation problem, as widely described in Zhen et al. 

225 (2016). Different classes of algorithms perform best in different ecoregions, or even within a 

226 single forest. For example, the same method can perform well in an open canopy area and poorly 

227 in a closed canopy portion of the same stand. 

228 For the segmentation task we asked participants to delineate tree crowns in the 80 x 80 m field-

229 plot area using remote sensing data and the ITC polygons collected in the field (Figure 1). For a 

230 more detailed state of the art review, we point the reader to Zhen et al. (2016).

231 2.5.1.1.  Performance metric

232 We used the mean pairwise Jaccard Coefficient, J(A,B), as the performance metric for the 

233 segmentation task (Real & Vargas, 1996). The J(A,B) is a measure of similarity and diversity 

234 between pairs of objects, and is formulated as:

235

236 Where A and B are respectively the observed and predicted ITCs. By definition, the J(A,B) is a 

237 value between 0 and 1, where 0 stands for no overlap, and 1 for a perfect match.

238 The score for the segmentation task is the average of the plot-level scores for each pair of 

239 crowns; that is, the average J(A,B) calculated on every measured ITC with the single most 

240 overlapping predicted crown. We used the Hungarian algorithm to match predicted and ground 

241 truth crowns. We chose this method because it is simple to interpret, does not require assignment 

242 of predicted crowns to specific ITCs by the participants, and provides a continuous measure. We 

243 penalized cases where predicted polygons overlapped with each other by disregarding the 

244 intersecting area in the numerator of the Jaccard Coefficient.
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245 Although it was not an official scoring criterion, we also analyzed the confusion matrix of their 

246 predictions to detect how the errors were distributed. The confusion matrix is a table where 

247 predicted and ground truth labels are represented by columns and rows, respectively. In the 

248 context of crown delineation, labels are true positive, false positive, and true negative for each of 

249 the pixels. Given this information, we could determine and aggregate the number of false/true 

250 positives and negatives.

251 2.5.1.2.  Algorithms

252 Our baseline prediction consisted of applying the Chan-Vese algorithm (Chan et al., 2001) on the 

253 negative of the 1m2 resolution canopy height model. Polygons boundaries were drawn by 

254 applying a segmentation mask to each predicted crown, and following their pixels9 perimeter. 

255 Three groups participated in the segmentation task and each applied a different algorithm. The 

256 Conor group applied a three step method that first filtered pixels based on an greenness threshold 

257 (based on NDVI, the normalized difference vegetation index), then extracted local maxima from 

258 the canopy height model using a linear moving window, and finally ran a watershed 

259 segmentation seeded by the local maxima (McMahon et al. submitted). The FEM group applied a 

260 growing region algorithm based on relative distance and difference in reflectance between 

261 neighbor pixels (Dalponte et al., 2015, submitted). For this purpose, they used the hyperspectral 

262 images, and tuned the method by visual analysis on the training set. The Shawn group used a 

263 watershed algorithm on the CHM, filtering the scene by NDVI threshold (preprint). 

264 2.5.2.  Alignment

265 Once crown location, position and shape are recognized, it is important to accurately identify 

266 which object in the images is linked to the data collected on the ground. Although both remote 

267 sensing and field data collection are georeferenced, these data products use different methods to 

268 acquire geolocation. Moreover, field data coordinates locate the central stem (trunk) position, 

269 instead of the crown9s centroid, which can be offset from each other, especially in closed-canopy 

270 forests. The differences in stem and crown location could lead to substantial misalignment 

271 between the two products, and consequently to misattributed information that could affect the 

272 quality of further inference. This task is known as alignment and is the second step of the 

273 pipeline. The goal of alignment is to correctly label each tree crown polygon to a single tree in 

274 the ground data, thus allowing data collected on the ground (e.g., species identity, height, stem 

275 diameter, tree health) to be accurately associated with remote sensing data. For this round, we 

276 envisioned the alignment task as a 1:1 labelling problem (Figure 1). We provided ITC data for 

277 crowns sampled in the field only and asked participants to link each single ITC to a specific field 

278 label. We acknowledge that this is an oversimplification of the real problem because each single 

279 ground label could be potentially confused with several apparent crowns in proximity that were 

280 not included in the field-mapped ITC dataset. 
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281 2.5.2.1.  Performance metric

282 Performance of matching field stem locations to ITCs was evaluated using the trace of the 

283 prediction matrix divided by the sum over the values in that matrix. This method was chosen 

284 based on the following reasoning. In the testing stage, suppose we have a set of remotely sensed 

285 data (ITC) denoted as {pn|n=1,..,N}, and ground truth data denoted as {gn|n=1,..,N}. We know in 

286 advance that there is a unique one-to-one mapping between the P and G sets. Without loss of 

287 generality, assume pn should be mapped to gn for n=1,..,N. For each data point pi, a program 

288 predicts a non-negative conûdence score that should be aligned with ground truth data point ij, 

289 which forms a prediction matrix M = (mi,j) where i,j = 1,...,N. Then, the quality of prediction can 

290 be measured by the following scoring function:

291 ýýýÿÿ= ýÿÿýÿ(ý)ÿÿ,ÿÿÿ,ÿ
292 where trace (;) represents trace of a matrix and M represents the prediction matrix which has 

293 been aligned in the order which matches the ground truth.

294 2.5.2.2.  Algorithms

295 Our baseline prediction was the application of naive Euclidean distance from the stem location to 

296 the centroid of the ITC. Two groups participated in this task and applied different algorithms. 

297 Both were based on the Euclidean distance between field stem and each of the ITCs included in 

298 the dataset. Euclidean distance was calculated by using East and North UTM spatial coordinates, 

299 as well as crown height and radius. The groups calculated these values using allometric 

300 relationships whenever tree height and crown size were missing from the field data. The Conor 

301 group used crown diameter as a measure of tree size (McMahon et al. submitted). Euclidean 

302 distances were adjusted for the average plot-level offset in the training data to compensate for 

303 location biases consistent within a plot. The FEM group applied the Euclidean distance based on 

304 spatial coordinates, tree height, and the crown radius as well (Dalponte et al. submitted). FEM 

305 used an allometric equation to estimate the crown radius from tree height. One of the main 

306 differences between the two methods was that FEM used a visual check on the results to 

307 manually correct points where the distance offset was too high. 

308 2.5.3. Classification

309 A large number of ecological, environmental, and conservation-oriented questions depend on 

310 species identification. This includes efforts to conserve individual species, understand and 

311 maintain biodiversity, and incorporate the biosphere into global circulation models (Rocchini et 

312 al., 2015, Lees et al., 2018). Species identification is generally treated as a supervised problem, 

313 whose demand for labelled data is usually high. Linking remote sensing with field data would 

314 potentially provide species identification for thousands of trees, facilitating the building of a 

315 successful classifier. For this reason, we identified species classification as the last step of the 
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316 pipeline (Figure 1). Classifying trees species from remote sensing imagery is complicated by: (1) 

317 highly unbalanced data; (2) features fundamental to differentiate among species that cannot be 

318 perceived by the human eye; (3) contribution of the understory and soil to the image properties 

319 for ITCs; and (4) data limitation, especially for rare species. A detailed description of the state of 

320 the arts can be found in Fassnacht et al. (2016), and other methods borrowed by the field of 

321 Image Vision in Wäldchen & Maler, (2017).

322 2.5.3.1.  Performance metric

323 We evaluated classification performance using two metrics. The first was rank-1 accuracy, 

324 namely the fraction of crowns in the test set whose ground truth species identification 

325 (species_id) and genus identification (genus_id) was assigned the highest probability by the 

326 participant. It is calculated as: 

327

328 where gn is the ground-truth class of crown i, and  pnk is the probability assigned by the 

329 participant that crown i belongs to class k. This metric only considers whether the correct class 

330 has the highest probability, not whether the probabilities are well-calibrated. 

331 The second metric was the average categorical cross-entropy, defined as:

332  

333 given that pnk b 0, to avoid the singularity. The ·(x, y) is an indicator function that takes value 1 

334 when x = y. This metric rewards participants for submitting well-calibrated probabilities that 

335 accurately reflect their uncertainty about which crowns belong to which class.

336 2.5.3.2.  Algorithms

337 Our baseline prediction was a classification based on probability distributions of species 

338 frequency in the training data. The Conor group reduced the first 10 components of the 

339 hyperspectral data and CHM information to three components, with two principal component 

340 analysis (PCA) subsequently (McMahon et al. submitted). They applied a maximum likelihood 

341 classifier to the test set to calculate the probability of each test tree to be a specific tree of the 

342 training set. The class (species) of the tree in the test set was assigned by using the same label of 

343 the individual tree with highest likelihood. The BRG group used a neural network multi-layer 

344 perceptron on the hyperspectral images (Sumsion et al., submitted). Crown probabilities were 

345 aggregated by averaging the pixel scale predicted probabilities. FEM applied a four step pipeline, 

346 consisting of data normalization, Sequential Forward Floating feature selection, building of a 
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347 support vector machine classifier, and crown level aggregation by majority rule (Dalponte et al. 

348 submitted). The GatorSense group built a series of one-vs-one Applied Multiple Instance 

349 Adaptive Cosine Estimator (MI-ACE) classifiers (Zare et al., 2017) that automatically select the 

350 best subset of pixels to use for classification. Crown level probabilities were assigned by 

351 majority vote of pixel scale predictions. Finally, StanfordCCB group applied a six step pipeline 

352 (Anderson, submitted). Dimensionality reduction was performed using principal components 

353 analysis, and the first 100 components were retained. Pixels with high shade fractions were 

354 removed. Random Forest and Gradient Boosting multi-label classification algorithms were 

355 applied in a one-vs-all framework. Training species were under- or over-sampled to deal with 

356 label imbalance. Models' hyperparameters were determined using a grid search function, and 

357 prediction probabilities were calibrated using validation data. Finally, prediction probabilities 

358 were averaged between the two model ensembles. 

359 3. Results

360 Overall, there was no single team that had a highest performing system across all three tasks. The 

361 FEM group achieved the highest evaluation scores for the segmentation and alignment tasks, but 

362 had a lower score for the classification task than the highest scoring group, StanfordCCB. In all 

363 three tasks, the highest scoring group scored substantially higher than the baseline. Given our 

364 evaluation data and metrics for each task, some groups performed better than the others. 

365 However, we may still be able to learn useful information or strategies from those teams that did 

366 not achieve the best performance on this specific competition configuration.

367 3.1.  Segmentation

368 This task had the lowest performance among the three tasks given our evaluation data and 

369 criteria (Figure 2). A segmentation that perfectly matched our field-delineated crowns would 

370 achieve of Jaccard score of 1.0000. All submissions performed well below the optimal score, but 

371 well above the baseline prediction. The highest-performing method, as determined by the Jaccard 

372 scoring function, achieved score of 0.3402 (Table 3). In comparison, our baseline system only 

373 has a score of 0.0863. All groups had more false positives compared to true positives, suggesting 

374 that all groups made polygons bigger than the field-based ITCs, on average (Figure 3). Only two 

375 groups, baseline and Connor (McMahon, submitted), had more false negatives than true positives 

376 indicating these approaches failed to segment some portion or all of a crown. Overall, the FEM 

377 group (Dalponte et al., submitted) had the best balance between minimizing false positive and 

378 negatives as well as the highest number of true positives, across trees with different crown size 

379 (Figure 4). 

380 3.2.  Alignment

381 In this task, the FEM group again achieved the best performance, while the baseline system and 

382 the Conor group performed equally well. Surprisingly, the FEM group had the perfect accuracy 
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383 score of 1.0 (Figure 5). However, their pipeline is not fully automatable, and so may not be fully 

384 reproducible or scale to a significantly larger spatial extent. On the other hand, despite the 

385 similar structure to the automated part of FEM9s method, Conor group did not perform any better 

386 than the baseline (Table 4).

387 3.3.  Classification

388 We had the most participants in this task (6): BRG (Sumsion et al., submitted), Conor 

389 (McMahon, submitted), FEM (Dalponte et al., submitted), GatorSense, StanforCCB (Anderson, 

390 submitted) and our baseline system (Figure 6). For the evaluation criteria used in this 

391 competition, Cross Entropy loss (CE) and Rank-1 accuracy (Rank1), there was consistent 

392 ranking of all groups except our baseline system (Table 5).  The top three groups in order were 

393 StanfordCCB, FEM, and Gatorsense (Figure 7). Conor and BRG outperformed our baseline 

394 system in Rank1 but not CE.  Most of the difference in accuracy among groups was determined 

395 by ability in classifying species that were infrequent in the data set. In fact, all groups performed 

396 well in predicting the two most common species Pinus palustris (PIPA) and Quercus laevis 

397 (QULA), according to Rank1 scores (Figure 8). However, the three lowest-performing 

398 approaches (Baseline, BRG, and Conor) failed to predict all but these two species. StanfordCCB, 

399 FEM, and GatorSense were able to predict both PIPA and the rarest species (i.e. LIST and 

400 QUNI), but performed differently for the other species.

401 4. Discussion

402 The results of the competition are both promising and humbling, and the results for each task 

403 provide different lessons for how to improve both the conversion of remote sensing to ecological 

404 information, and the competition itself. An assessment of the results for each of the individual 

405 tasks is provided below.

406 4.1.  Crown segmentation

407 The results of the crown segmentation task reveal the challenging nature of segmentation 

408 problems (Zhen et al., 2016). The highest-performing algorithms yielded only 34% overlap 

409 between the closest remotely sensed crowns and ground truth crowns mapped directly onto 

410 remote sensing imagery in the field. This suggests that crown segmentation algorithms have 

411 substantial room for improvement for precisely identifying individual crowns from remote 

412 sensing imagery. 

413 By looking at the results across the three algorithms for this task, we can identify future 

414 directions for improvement. FEM, the best performing method, was the only method using 

415 hyperspectral data to perform segmentation, despite LiDAR data being used more commonly for 

416 segmentation (Zheng et al., 2016). This indicates that there is useful information in the 

417 hyperspectral data for classification. For example, the hyperspectral data may allow 
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418 distinguishing overlapping crowns from different species. As a result, some participants 

419 suggested that better segmentation may be achieved in the future by combining both 

420 hyperspectral and LiDAR derived information (McMahon submitted; Dalponte et al., submitted). 

421 However, it should be noted that the ground truth polygons were identified using the 

422 hyperspectral data (and not the LiDAR). This means that any misalignment resulting from 

423 preprocessing and orthorectification of the hyperspectral and LiDAR data would advantage 

424 hyperspectral data over LiDAR for this task.

425 This source of uncertainty is important beyond this competition because LiDAR data is typically 

426 used to perform segmentation, while hyperspectral data is usually used for classification. In case 

427 of misalignment, the exact segmentation on LiDAR would result in imperfect inclusion of 

428 hyperspectral pixels within associated crowns. As a result, LiDAR to hyperspectral misalignment 

429 should be taken into consideration when working with these data sources together and we will 

430 actively address it in future rounds of this Data Science Evaluation.  

431 Exploring the accuracy of different segmentation algorithms more thoroughly reveals that 

432 uncertainty in delineating crowns is generally dependent on crown size (Figure 4). Crowns below 

433 10 m2 were poorly classified by all algorithms and most algorithms performed best for crown 

434 sizes over 40 m2.  This may be due to the fact that small crowns are often closer together, more 

435 heterogeneous in shape, and composed of fewer pixels. The highest-performing method, FEM9s 

436 region growing algorithm, outperformed other algorithms on small and intermediate sized 

437 crowns. However, it performed worse than some other methods for the largest crowns. Conor9s 

438 and Shawn9s methods (preprint) generally performed best for larger crowns. This result shows 

439 the value of a comparative evaluation of different families of methods and suggests that creating 

440 ensembles of existing algorithms could result in better crown segmentation across the full range 

441 of tree sizes. 

442 4.2.  Alignment

443 The results for the alignment tasks were promising. In fact, FEM9s Euclidean distance based 

444 approach produced a perfect alignment between remotely sensed crowns and the stem location of 

445 individual trees. This precise match was accomplished by considering not only the position of 

446 the stem, but also the size of the crown. Adding the size of the crown was crucial for successful 

447 alignment because it allowed the algorithm to differentiate between multiple nearby stems based 

448 on differences in size. Using only Euclidean distance based on the position of the stems (the 

449 baseline) resulted in only a 48% alignment between stems and crowns. This perfect alignment is 

450 particularly encouraging because it used a statistical relationship between a standard field based 

451 measure of tree size (height) to estimate the size of the crown for the field data in cases where 

452 crown size was not measured. This means that the approach can be applied to all trees measured 

453 in the field, not just those where the less common direct measures of crown dimensions are 

454 performed. However, it is worth noting that FEM also performed a visual check of the 

455 alignments and shifted a few alignments manually based on this assessment (Dalponte et al. 
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456 submitted). This yielded meaningful improvements for crowns with misalignments of several 

457 meters or more (likely resulting from data entry or collection errors). While including manual 

458 steps is typically a concern for scaling up remote sensing predictions, it is less of an issue for 

459 alignment since this step is only important for model building, not prediction. That means that 

460 this step will typically only be applied to a few hundred or thousand trees making human 

461 involvement doable and potentially important. 

462 While the alignment results are encouraging for linking remote sensing and ground truth data at 

463 the individual level, in hindsight, the degree of this success was also due in part to how we posed 

464 the problem for the competition. When selecting data for this task we only included trees that 

465 occurred in both the field and remote sensing data. In all cases, there were additional trees in the 

466 80 x 80 m image subsets that were not included in both the field and remote sensing data.  This 

467 simplification resulted in overly sparse data compared to real-world situations where field data 

468 would need to be aligned against a full scene of remotely sensed crowns. Our original decisions 

469 made sense from an assessment perspective but failed to reflect the real-world complexity of the 

470 problem. We expect that including all trees in the scene will make the task more challenging. In 

471 the next round of the competition, we plan to include the remotely sensed crowns that lack 

472 corresponding field data to provide a clearer picture of the effectiveness in real-world situations.

473 4.3.  Classification

474 The species classification task was led by the StanfordCCB algorithm, which yielded the best 

475 overall performance with a categorical cross-entropy of 0.45 and a rank-1 accuracy of 92% 

476 (Figure 7). This is on the high end of classification accuracy rates reported for tree species 

477 identification from remote sensing (Fassnacht et al., 2016). This approach involved multiple 

478 preprocessing steps and an ensemble of Random Forest and Gradient Boosting multi-label 

479 classifications applied on each tree in a one-vs-all framework. A number of different models also 

480 performed well with rank-1 accuracies greater than 80% including Gatorsense, FEM, and Conor. 

481 StanfordCCB performed better in relation to other models when evaluated using categorical 

482 cross-entropy compared to rank-1 accuracy, which suggests that this method provides more 

483 accurate characterizations of uncertainty. Therefore, it is good at both identifying which species 

484 class a tree is most likely to belong to, and at knowing when it is unsure of which species to 

485 predict. This is a desirable property for a remote sensing model because good estimates of 

486 uncertainty allowing accurate error propagation into applications of those models. Exploring 

487 these results further by evaluating classifications for individual species (Figure 8; not part of the 

488 defined goals of the competition) shows that the StanfordCCB, FEM, and Gatorsense methods 

489 provide the best classifications for rare species, while other methods are only accurate for 

490 common species.

491 Interestingly, most of the groups that performed well developed multi-step methods that used 

492 data cleaning and dimensionality reduction. Outlier removal such as filtering dark or non-green 

493 pixels, seemed to be particularly important, likely because it allowed shadowed pixels or pixels 
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494 mixed with non-green vegetation like soil and wood, to be removed from the analysis. The 

495 Conor group averaged the spectra across all crown pixels and used structural information, 

496 namely crown radius and height range. Interestingly, averaging crown spectral information 

497 resulted in high predictability of the two most dominant classes, yet it was not a good strategy to 

498 predict rare species. This result suggests that clearing mixed noisy pixels may be particularly 

499 effective to better predict rare species. Likewise, adding structural features like crown radius 

500 may be useful in separating dominant classes. In general, the groups which performed best 

501 involved people with ecological expertise, which appeared useful in processing and selecting 

502 meaningful features from the data.

503 The other interesting aspect of the third task was the high participation. Five teams participated 

504 in this task compared to two teams for task 1 and three teams for task 2. We suspect that the 

505 higher level of participation was due to the task being the most straightforward, out-of-the-box, 

506 analysis. The relevant data was already extracted into a common tabular form meaning that most 

507 classification algorithms could be applied directly to the provided data. This makes the task 

508 easier for non-domain experts and suggests that standardizing tasks, so that a common set of 

509 algorithms can be readily applied to them, could result in greater participation in this type of 

510 competition and result in broad improvements across disciplines. This is the motivation behind a 

511 new NIST effort focused on algorithm transferability where the goal is to allow algorithms 

512 developed in one field to be applied to similar problems in other disciplines. The next iteration of 

513 the NIST DSE Series (Dorr et al., 2016a, b) will combine sets of related tasks from different 

514 domains to help drive this idea of algorithm transferability forward. Accomplishing this requires 

515 standardizing data formats to allow integration into a central automatic-scoring system. We are 

516 in the process of converting the data from this competition into schema provided by DARPA9s 

517 Data-Driven Discovery of Models program (D3M) for this purpose.

518 Dealing with complex and non standard data types also highlights some of the challenges for 

519 data competitions in the environmental sciences. For example, most of the data in this 

520 competition is spatially explicit, a data type that does not completely generalize to more 

521 standard, non-spatial contexts, and involves file formats that many potential participants are not 

522 familiar with. We mitigated some of these challenges by cleaning and extracting simpler aspects 

523 of the data, but this also results in a loss of information relevant to the specific task. In fact, one 

524 participant found that the choices we had made to simplify the data limited their use of more 

525 advanced tools on the problem. In future rounds, we will seek to both provide simplified 

526 representations of the data that are accessible to many users and the full raw data that allow 

527 experts to employ tools appropriate to that data type.

528 4.4.  Insights from the competition

529 We developed and ran a data science competition on converting airborne remote sensing data 

530 into information on individual trees, with the goal of improving methods for using remote 

531 sensing to produce ecological information and accelerating methods development in ecology 
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532 more broadly. In developing this competition we took advantage of a major new source for open 

533 ecological and remote sensing data, the National Ecological Observatory Network (NEON). 

534 Because of the long-term large-scale nature of NEON9s data collection, the results of the 

535 competition have the potential to go beyond general improvements in methods to yield 

536 immediate improvements in the quality of the ecological information that can be extracted from 

537 this massive data collection effort. The clearly defined goals, potential for general 

538 methodological improvements, and opportunity for immediate operationalization to produce data 

539 products that will be used by large numbers of scientists, makes this an ideal combination of 

540 problems and data for a data science competition. 

541 We identified a single algorithm for each task that had the highest performance based on one or 

542 two performance criteria. While these algorithms showed the greatest promise for maximizing 

543 the evaluation criteria - for example providing the highest rank-1 classification accuracy for 

544 species identification - caution should be taken in focusing too much on a single method for 

545 several reasons. First, there are many different evaluation criteria that can be used depending on 

546 the specific application and ecological questions to be addressed. For example, in the evaluation 

547 criteria for the classification task, the correct identification of all trees was weighted equally, 

548 such that an algorithm that could correctly predict the common species would be favored over an 

549 algorithm that correctly predicted the rare species. Correct identification of the most common 

550 species may be the key goal for some ecological questions, such as producing maps of 

551 aboveground biomass. On the other hand, there may be other ecological questions for which 

552 equally good classification for all species is desirable. In this case, the training and test data may 

553 be chosen so that it is balanced among species, or weighting used in the evaluation criteria to 

554 increase the importance of identifying less common species (Graves et al., 2016; Anderson 

555 submitted did this for this competition). For some biodiversity assessments, the optimization for 

556 the species classification task may be more focused on identifying rare species, a single exotic 

557 species, or identifying species that are outliers, and potentially <new= or unusual species in the 

558 system (Baldeck et al. 2015). The evaluation criteria for these alternative goals would differ from 

559 the ones used in this competition. 

560 In addition to performing differently for a variety of specific tasks, different algorithms may vary 

561 in applicability and performance in different ecosystems or when using different types of field 

562 data. This competition used individual tree crowns from forest ecosystems, which are multi-pixel 

563 objects, as the unit of observation. However, other ecosystems, such as grasslands, prairies, open 

564 savannas, and shrublands, are dominated by plant species whose size is below the resolution of 

565 an individual pixel. NEON provides extensive data sets on the presence and cover of small plant 

566 species that if linked with NEON AOP data, could be used to generate landscape maps of these 

567 species. At a number of sites these sub-pixel plant species are the dominant plants at the site. 

568 Working across all NEON sites will therefore require algorithms that can perform alignment and 

569 identification of both super- and sub-pixel resolutions, a complex task that may change which 

570 algorithms perform best. For example, one of the approaches used in this competition, 
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571 GatorSense9s multiple instance classification, had slightly lower performance than the highest-

572 performing method in the species classification task, but has the flexibility to be used for the 

573 alignment and subpixel detection of small plant species presence and cover (Zare et al., 2017). 

574 This suggests that despite not being the highest-performing method in the competition, it is a 

575 promising route forward for the more general task.

576 For competitions like this one to be most effective in facilitating rapid methodological 

577 improvement of a field, it is important that the details of each teams9 analysis be described in 

578 detail and easy to reproduce. This allows for researchers to quickly integrate the advances made 

579 by other participants into their own workflows. We accomplished this for this competition in 

580 three ways. First, all of the data is openly available under an open license (ECODSE group 

581 2017). Second, all authors wrote short papers describing the detailed methods employed in their 

582 analyses and these papers are published as part of collection associated with this paper (link to 

583 PeerJ collection). Finally, all authors posted their code openly on GitHub and linked it in their 

584 contributions. One author (Anderson 2018) even encouraged other researchers to use and further 

585 improve on their method with the hope of collaboratively improving the use of remote sensing 

586 for species classification. Having access to a growing number of fully reproducible open 

587 pipelines evaluated on the same data will be a powerful instrument improving the methods used 

588 in converting remote sensing into ecological information.

589 We plan to continue to run this competition, updating the specifics of the tasks to help advance 

590 the science of converting remote sensing to information on individual trees. In the next iteration 

591 of this competition, we plan to address the fact that remote sensing models for identification of 

592 species and other key ecosystem traits are usually developed at individual sites (Zhen et al., 

593 2016, Fassnacht et al., 2016), which tend to make them site-specific and leads to a profusion of 

594 locally optimized methods that do not transfer well to other locations. For standardized data 

595 collection efforts like NEON, algorithms and models that perform well across sites are critical. 

596 To facilitate advances in this area we will include data from multiple NEON sites in future 

597 competitions with the goals of developing algorithms with high cross-site performance and 

598 comparing the performance of cross-site and site-specific algorithms.

599 5. Conclusions 

600 The results of this competition are encouraging both for the specific scientific tasks involved and 

601 for the use of competitions in ecology and science more broadly. The highest performing 

602 algorithms are indicative of the potential for using remote sensing models to obtain reasonable 

603 estimates of the location and species identity of individual trees. The competition results help 

604 highlight the components of this process that have good existing solutions as well as those most 

605 in need of improvement. Promising areas for future development include the ensemble of crown 

606 segmentation algorithms that perform well for small vs. large crowns. In cases with clearly 

607 defined outcomes, science would benefit from the increased use of competitions as a way to 

608 quickly determine and improve on the highest-performing methods currently available.
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Table 1(on next page)

Data products and sources (National Ecological Observatory Network, 2016).

Information about data products can be found on the NEON data products catalogue

(http://data.neonscience.org/data-product-catalog ).
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Name NEON data product 
ID

Data date How it was used

Woody plant vegetation 
structure

NEON.DP1.10098 2015 Task 2 vegetation structure

Spectrometer orthorectified 
surface directional 
reflectance - flightline

NEON.DP1.30008 2014 Task 1, 2, and 3 RS data 
(Hyperspectral)

Ecosystem structure NEON.DP3.30015 2014 Task 1, 2, and 3 RS data 
(Canopy height model)

High-resolution orthorectified 
camera imagery

NEON.DP1.30010 2014 Task 1, 2, and 3 RS data (RGB 
photos)

Field ITC Internal 2017 Task 1 ITC data; Task 3 to 
extract pixels per each crown

1
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Table 2(on next page)

Overview of train-test data split by task and ecosystem type.

The columns present respectively the number of NEON plots (Plots) and Individual Tree

Crowns (ITC) provided per task and ecosystem type. EF, Evergreen Forest; EHW, Emergent

Herbaceous Wetland; WWET, Woody Wetland.
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Task 1 Task 2 Task 3

Plots ITC Plots ITC Plots ITC

Train

EF 22 349 17 82 22 349

EHW 2 52 0 0 2 52

WWET 6 9 1 2 6 9

Total 30 452 19 84 30 452

Test

EF 9 144 7 28 9 144

EHW 1 21 0 0 1 21

WWET 3 7 1 2 3 7

Total 13 172 8 30 13 172

1
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Table 3(on next page)

Comparison of Jaccard scores among submissions and baseline
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Task 1: Crown Delineation

Rank Participant Score

#1 FEM 0.3402

#2 Conor 0.184

#3 Shawn 0.0555

Baseline 0.0863

1
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Table 4(on next page)

Comparison of alignment accuracy among submissions and baseline.
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Task 2: Crown 

Alignment

Rank Participant Score

#1 FEM 1

#2 Conor 0.48

Baseline 0.48

1
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Table 5(on next page)

Comparison of classification performance on categorical cross-entropy and rank-1

accuracy among submissions and baseline.
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Task 3: Species Classification

Rank Participant Score

(Cross Entropy)

Score

(Rank-1 Accuracy)

#1 StanfordCCB 0.4465 0.9194

#2 FEM 0.8769 0.88

#3 GatorSense 0.9386 0.864

#4 Conor 1.2247 0.8226

#5 BRG 1.4478 0.688

Baseline 1.1306 0.6667

1
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Figure 1

Representation of the pipeline for the three competition tasks.

From left to right, (A) Segmentation shows field ITC (red); the background is a composite of

the hyperspectral data overlaid by LiDAR CHM. (B) Alignment shows stem locations scaled by

stem diameter (circles) and field ITCs (irregular polygons) overlaid over a desaturated RGB

image. Both ITCs and stem locations colored by stem identity. Lines indicating the offset

between crowns and stems. (C) Classification shows field ITCs colored by species code. The

background is a false-color composite of the hyperspectral data.
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Figure 2

Sample of the participants9 algorithm performance on average on plot 41, ranked

around the median highest in performance for all the 3 groups (ranking 6th, 4th, and

4th respectively).

Yellow polygons represent ground truth ITCs, magenta the predicted ITCs. The background

image is a composite of the hyperspectral data overlaid by LiDAR CHM.
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Figure 3

Summary of error types for the crown segmentation task, using the 2 by 2 confusion

matrix.

Although presented in this figure, in the current competition evaluation criteria, we did not

use false negatives, since the ground truth ITCs did not cover the entire image area. For this

reason, the number of pixels obtained by summing the three columns per each group do not

necessarily match among submissions.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26966v1 | CC BY 4.0 Open Access | rec: 29 May 2018, publ: 29 May 2018



Figure 4

Jaccard score for crown segmentation as a function of the size (area) of the tree crown.

Jaccard scores for individual trees are binned into size classes and averaged.
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Figure 5

Sample of the participants9 algorithm performance on plot 25, for the two competing

groups.

Plot 25 was chosen for visualization because of the presence of one crown highly misaligned.

Data shown are stem locations (circles) scaled by diameter at breast height; field ITCs

(polygons); euclidean distances between the two data sources with same stem identity (solid

line). ITCs, stem, and distances colored by stem identity. Images background is desaturated

hyperspectral composite image.
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Figure 6

Performance of species classification in a plot that is relatively diverse in species

composition.

Field ITCs are colored by species code. The background is a false-color composite of the

hyperspectral data.
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Figure 7

Classification performance comparison.

(A) Rank 1 accuracy; (B) Categorical cross-entropy.
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Figure 8

Comparison of Rank-1 classification accuracy by species.

The number in square bracket is number of training samples.
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