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Abstract

We introduce Julia package ospats+ for optimal sampling design in the
context of farm-scale soil carbon auditing. The main difference with package
ospats is that ospats+ maximises the expected profit for the farmer, rather
than the statistical criterion of estimation precision. The package is written
in Julia for speed of computation.

Our methodology has been discussed in general terms by de Gruijter et al.
(2016), here we go into the computational aspects. Using a grid of predicted
carbon content with associated uncertainty, we optimise a stratified random
sampling design: number of strata, stratification of the grid, total sample
size and sample sizes within strata. The expected profit is maximised on the
basis of sequestered carbon price, sampling costs, and a trading parameter
that balances farmer’s and buyer’s risks due to uncertainty of the estimated
amount of sequestered carbon.

The core of the methodology is optimisation of the stratification by the
Ospats method (de Gruijter et al., 2015), an iterative procedure that re-
allocates grid points to strata on the basis of pairwise generalised distances
between grid points. The distances are a function of the locations, the pre-
dictions and the covariances of the prediction errors. We illustrate the use
of ospats+ with an application to an Australian farm.
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1. Introduction1

The purpose of this paper is to introduce a software package, ospats+2

supporting farm-scale soil carbon auditing. The statistical methodology has3

been discussed in detail by de Gruijter et al. (2016). Using a grid of predicted4

carbon content with associated uncertainty, it optimises a stratified random5

sampling design, i.e. number of strata, stratification of the grid, total sample6

size and sample sizes within strata. The optimisation criterion is the expected7

financial profit for the farmer, whom we assume to have a contract for soil8

carbon sequestration.9

The expected profit is maximised on the basis of the sequestered carbon10

price, the sampling costs, and a trading parameter γ that balances farmer’s11

and buyer’s risks due to uncertainty of the estimated amount of sequestered12

carbon.13

The process of data acquisition and analysis for soil carbon auditing is14

schematically presented in Table 1. Package ospats+ covers step 2 of the15

scheme: design optimisation for the first sampling round, also referred to as16

the ’baseline’. The actual optimisation takes place in step 2c and 2d, which17

combines stratification by the Ospats method introduced by de Gruijter et al.18

(2015), the Value Of Information (VOI) approach explained in de Gruijter19

et al. (2016), and Neyman allocation of optimal sample sizes to each stratum.20

The main difference between packages ospats and ospats+ lies in the opti-21

misation criterion. Package ospats (https://github.com//jjdegruijter/ospats)22

minimises the expected sampling error of the estimated mean or total of any23

target variable for which a grid of predictions with associated error is avail-24

able. Package ospats+ on the other hand maximises the expected profit to25

the farmer from carbon sequestration by the VOI approach. It is therefore a26

more specialised application, however it is also a more rationalised approach27

in the sense that it directly optimises for the final goal of maximising profits28

from soil carbon sequestration efforts.29

2. Method30

Our method is discussed in detail by de Gruijter et al. (2016). Here31

we only re-iterate the essentials as far as computation is concerned. The32

process of optimisation is summarised as step 2c and 2d in Table 1 and33

is further detailed in Table 2. In short, the optimal design is found by34

subsequently optimising the stratification, total sample size and Neyman35
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Table 1: Schematic overview of the auditing procedure

Step Action
1 PREPARATION:
1a Delineate the area.
1b Superimpose a grid with predictions and error variances.
1c Determine cost per grid point and carbon offset price.
2 OPTIMIZE DESIGN FOR THE FIRST SAMPLING ROUND:
2a Choose allowed minimum sample size within strata, nhmin (e.g. 3).
2b Choose a feasible range of strata numbers, [Hmin, Hmax].
2c For each number of strata in the range, calculate stratification

(Ospats), total sample size (Eq. 3) and sample sizes within
strata (Eq. 4).

2d Select the design with the largest strata number that still fulfils
the condition of step 2a.

2e Draw a stratified random sample according to the design from
step 2d.

3 EXECUTE THE FIRST SAMPLING ROUND:
3a Collect samples at the locations from step 2e, and take laboratory

measurements to determine the carbon stock for each location.
3b Estimate the total carbon stock and its variance.
4 OPTIMIZE DESIGN FOR THE SECOND SAMPLING ROUND:
4a Update the predictions and error variances using the sample data

from the first round.
4b Repeat step 2.
5 EXECUTE THE SECOND SAMPLING ROUND: repeat step 3.
6 FINISH: calculate the confidence interval for the total amount of

sequestered carbon.

allocation (explained below) for each of the number of strata (H) in a pre-36

chosen range, [Hmin, Hmax]. The optimal H is then the largest one, subject to37

the condition that the sample sizes allocated across its strata are each at least38

equal to a pre-chosen minimum nhmin. The method works from an input file39

with four values for each of N grid points: X-coordinate x, Y-coordinate y,40

predicted SOC content C̃ and error-variance of the prediction s2.41

The stratification for a given H, assuming Neyman allocation, is opti-42

mised by Ospats, the iterative re-allocation method described by de Gruijter43

et al. (2015). This method starts with a random stratification and improves44
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it by re-allocating the grid points to different strata on the basis of their45

pair-wise generalised distances (see below). This process is continued as long46

as it diminishes the objective function O, defined as:47

O =
H∑
h=1

{
Nh−1∑
i=1

Nh∑
j=i+1

D2
ij

}1/2

(1)

with generalised distance:48

D2
ij =

(C̃i − C̃j)2

R2
+ (s2i + s2j)(1− e−3·

√
(xi−xj)2+(yi−yj)2/range) (2)

where R2 denotes the squared correlation coefficient resulting from a re-49

gression analysis underlying the SOC prediction, and the range is the param-50

eter of an exponential co-variance function fitted to the prediction residuals.51

To save computer time, package ospats+ calculates the N ×N matrix of52

pairwise generalised distances beforehand, prior to the iterative re-allocation.53

In case of large grids this would be impractical, so the optimisation process is54

then split into two phases. In the first phase, a stratification is calculated only55

for a sample of the grid points, then the remaining grid points are allocated56

to the sample strata whilst minimising O.57

As shown by de Gruijter et al. (2016), a stratification that results from58

this process is optimal for any total sample size. Therefore the total sample59

size which maximises the expected profit for the farmer can be derived as:60

n′ =

(
CP · A · Zγ ·O

f
√

2

)2/3

, (3)

where61

CP : carbon offset price, in currency unit (e.g. Aus $) per Mg.62

A : surface area of the farm (ha).63

Zγ : quantile of the standard normal distribution (1.645 for the 95% quan-64

tile).65

O = O/N : value of the optimisation criterion for the calculated stratifica-66

tion.67

f : predicted average cost of obtaining data per grid point, in currency unit.68

As discussed in de Gruijter et al. (2016) the data value of the sample69

data that is going to be collected depends on the precision of the estimated70

amount of sequestration. The precision of an estimate is usually calculated71
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from the sample data. In our case, however, we can predict the precision of72

the estimate and indeed the data value beforehand, when we use the SOC73

predictions and their error variances. To that end we define the tradeable74

amount of sequestration tp such that there is a sufficiently large probability75

γ (say 95%) that the future sequestration will be equal to or much greater76

than tp, thus minimising chances of a false positive sequestration. This is77

formalised by taking for tp the lower boundary of the one-sided prediction78

interval around the predicted amount of sequestration. This boundary de-79

pends linearly on Zγ. If the average sequestration were selected as tp, there80

would be no value in increasing the certainty of the sequestration estimate.81

Given the stratification and the total sample size n′, optimal allocation82

of sample sizes to the strata, in the sense of minimal sampling variance of83

the mean or total, can be realised by so-called Neyman allocation (Dalenius84

and Hodges, 1959; Cochran, 1977). The optimal sample size for stratum h85

is then given by:86

n′h = n′
NhSh∑H
h=1NhSh

. (4)

where87

Nh is the size (number of grid points) of stratum h,88

Sh is the standard deviation of the SOC predictions in stratum h, which is89

predicted by90

S̃h =

{
Nh−1∑
i=1

Nh∑
j=i+1

D2
ij

}1/2

(5)

The total sample size and the sample sizes per stratum are rounded off to91

the nearest integer. To avoid possible inconsistency between both, the total92

sample size is adjusted to equal the sum of the sample sizes per stratum.93

3. Architecture of package ospats+94

The package consists of four script files: ”main”, ”readdata”, ”ospats”95

and ”ospall”. Script ”main” first serves to fill in all process parameters96

by the user (see below), it then invokes the functions of the other three97

scripts. Script ”readdata” reads the datafile mentioned in ”main”. Scripts98

”ospats” and ”ospall” produce both an optimal design using the datafile99

and the process parameters. The difference is that ”ospats” optimises by100
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Table 2: Schematic overview of the optimization algorithm

Step Action
2c Design optimisation for maximum number of strata Hmax:
2c-1 Calculate the optimal stratification with Hmax as number of strata.
2c-2 Calculate the optimal sample size, using Eq. 3.
2c-3 Calculate the optimal (Neyman) allocation of sample sizes to the

strata, using Eq. 4.
2c-4 Determine the smallest sample size within a stratum: nhl.
2c-5 If nhl < nhmin, then lower H by 1.
2d Select the optimal number of strata:
2d-1 Repeat steps 2c-1 through 2c-5 until nhl ≥ nhmin.
2d-2 Keep the last design resulting from step 2d-1 as the optimal design.

iterative re-allocation of all N grid points, while ”ospall” re-allocates only101

a sample of the grid points, to avoid working with an N × N matrix of102

generalised distances in case of very large grids. After a sample of grid points103

has been stratified, ”ospall” continues by (once and definitively) allocating104

the remaining grid points to the sample strata, using the same optimisation105

criterion described above.106

The process parameters to be set by the user in ”main” are:107

Hmin : smallest acceptable number of strata.108

Hmax : largest number of strata still assumed to be possibly optimal.109

nhminim : smallest sample size allowed within the strata.110

CP : carbon offset price, in currency unit (e.g. Aus $) per Mg.111

f : predicted average cost of obtaining data per grid point, in currency unit.112

Area : surface area of the farm (ha).113

Zγ : quantile of the standard normal distribution (1.645 for the 95% quan-114

tile).115

R2 : squared multiple correlation coefficient from the regression model used116

to generate the predictions.117

range : estimated parameter of the exponential auto-covariance of the pre-118

diction errors.119

maxcycle : maximum number of iteration cycles allowed for iterative re-120

allocation. This is intended as a safe-guard against unforeseen endless loop-121

ing. In our experiments the number of iteration cycles needed to fully122

complete the re-allocation process has not yet exceeded 100. The setting123

maxcycle = 0 forces the system to skip the iterative re-allocation, and to124
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proceed with calculating statistics of the random initial stratification.125

in : interval used to draw a systematic sample from the grid. if in = 1126

then function ”ospats” will be called, which optimises a stratification for the127

entire grid. If in > 1 then function ”ospall” will be called, which optimises a128

stratification for a sample from the grid, i.e. after coarse-gridding. The size129

of the sample is determined by in. For instance, if in = 10 then every 10th130

point is included in the sample, starting with a randomly chosen first point.131

In principle, the sample size should be taken as large as computer capacity132

allows for calculating the N × N matrix of generalised distances. Without133

recourse to super-computing, that will be in the order of some thousands for134

a computing size of one 2.5 GHz IntelCore i5 processor and 4 RAM.135

seed : seed for the random number generator.136

See Figure 1 for a broad overview of the optimisation process as imple-137

mented in ospats+.138

139

The following general comments on alternative solutions in the algorithm are140

to be made.141

1) The random starting solution.142

The process of iterative re-allocations starts from a random initial stratifi-143

cation, i.e. one where the strata consist of a random collection of grid points.144

Initial solutions that are closer to the eventual optimum than a random draw145

are possible, e.g. by the cum-root-f rule (Dalenius and Hodges, 1959). We146

decided not to implement a closer starting solution, because preliminary ex-147

periments (not reported here) showed that the computation time needed to148

generate a closer start can easily outweigh any saving from fewer iteration149

cycles. This is primarily due to the first few iteration cycles covering the150

majority of the distance between a random draw and convergence to the op-151

timal solution.152

153

2) The option of skipping unchanged pairs of strata.154

If any two strata are not changed during a cycle, then it is known be-155

forehand that in the next cycle there can be no improving transfers of points156

between these two strata, hence it is an unnecessary computation step. This157

could in principle be skipped to save computation time. However, prelimi-158

nary experiments (not reported here) show that the search functions required159

to enable such a skipping device is more computationally expensive than the160

possible savings. Thus the ’inefficiency’ remains conceptional when employ-161

ing conditional functions (e.g. if-else constructions) within loops.162
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163

3) The option of swapping.164

If the iteration process get trapped in a local minimum, then it could be165

possible to escape from it via a swap, i.e. a simultaneous transfer of two166

grid points to and from their current strata. An inbuilt swapping device167

would therefore reduce the risk of a local minimum. However, preliminary168

experiments (not reported here) show that only very few improving swaps169

are found after a complete run using sequential transfers. These swaps had170

a negligible effect on O. In addition, the swapping device proved to be rela-171

tively time consuming. Therefore our provisional conclusion is that multiple172

runs are more efficient than swapping.173

4. Use of package ospats+174

We selected Julia as programming language primarily due its speed. R175

was not a suitable candidate as it tends to be slower when used for large176

scale optimisation problems. Initially Matlab was used by de Gruijter et al.177

(2015) and de Gruijter et al. (2016). However, speed comparisons in the178

literature suggest that Julia is usually faster than Matlab, and Julia is a free179

and open-source language.180

The supplied data file is assumed to have N rows, i.e. one for each181

grid point and no headers. The values are comma-separated and presented182

in the order X-coordinate, Y-coordinate, SOC prediction and variance of183

the prediction error. The file may also include a column with grid point184

identifications. In that case the user must specify the order of the columns185

in script ”readdata”. If the data file is incomplete, i.e. not all columns have186

the same length, Julia issues a LoadError.187

The output from ospats+ consists of two files:188

”Stratification”: a file with x-coordinate, y-coordinate and stratum number189

for the N grid points. The present version of ospats+ does not provide a190

map of the stratification.191

”Sample”: the stratified random sample is written in this file with five192

columns, for sample number, stratum number, grid point number, x-coordinate193

and y-coordinate.194

ospats+ has been developed with Julia Version 0.6.2. Julia can be down-195

loaded from https://julialang.org/downloads/. ospats+ can be downloaded196

from https://github.com/jjdegruijter/ospats-plus, together with a user’s man-197

ual and replication material. It is ready to be used, assuming that Julia has198
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Figure 1: Overview of the optimisation process in ospats+.

been installed. No other package dependencies are needed, except for the199

Julia packages CSV and DataFrames (simply do Julia > Pkg.add(”CSV”)200

and Julia > Pkg.add(”DataFrames”).201

The use of ospats+ need not be limited to a farm as a whole. It can also202

be applied to different parts of a farm, such as management units. Another203

option is to use it for a group of farms, e.g. a co-operation of carbon farmers.204

In a research setting ospats+ can be employed as a tool for what-if studies,205

to investigate the effects of, for instance, changes in carbon offset price, costs206

of data collection and accuracy of SOC prediction.207

It should be noted that ospats+ has several limitations. Firstly, the208
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present version supports only the first sampling round in SOC monitoring,209

i.e. step 2 in Table 1. A future extension may well include optimal design210

for the second round. The methodology has been worked out by de Gruijter211

et al. (2016), and coding can largely follow the same lines as in the present212

version.213

Secondly, ospats+ optimises a sampling design for a single target variable214

only: soil organic carbon. The resulting design, especially the stratification,215

may not be optimal for other soil variables in general. However, we expect216

the design to be reasonably efficient for other variables as well, dependant217

the degree in which they are correlated with SOC.218

For instance, among the most common macro and micro nutrients, the219

most correlated with organic carbon is organic nitrogen (see Figure 4 Hengl220

et al. (2017)). As most nutrients are inter-correlated, more than 75% of vari-221

ation in values can be explained by the first 5 principal components: PC1222

(48.8%), PC2 (19.4%), PC3 (6.7%), PC4 (5.2%) and PC5 (3.8% variation)223

(Hengl et al., 2017). Therefore it is reasonable to assume that optimised sam-224

pling designs for organic carbon will capture a decent portion of the spatial225

variation of other common plant nutrients - should they also be measured.226

Regardless of efficiency, the unbiasedness of the statistics estimated from227

the sample data like means, totals and fractions, as well as standard errors228

and confidence intervals, remains valid for any variables measured using these229

designs.230

Thirdly, but less importantly, iterative re-allocation may get trapped in231

a local minimum. In other words it does not warrant a global optimum.232

This is why package ospats has the option of multiple runs, retaining the233

best result. In our experience, however, differences between the results from234

multiple runs appeared to be practically irrelevant in all our cases, if at all235

existent. This option was therefore not included in ospats+.236

5. Illustrative Example237

5.1. Description of area and data238

As an illustration, we applied ospats+ to soil carbon data from ’Now-239

ley farm’, the same farm as in the case study by de Gruijter et al. (2016).240

For this example we used data from previous sampling campaigns. How-241

ever, prior data collection on-site is becoming less necessary for optimising242

sampling designs as carbon mapping with associated uncertainty, at suffi-243

cient resolution, is becoming increasingly available. Part of the drive of this244
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increased availability/suitability of carbon prediction maps is based on in-245

creasing availability of both covariates (e.g. remote sensing based) and field246

measurements based on proximal sensing..247

Nowley farm covers approximately 2300 ha and is situated in the highly248

agriculturally productive Liverpool Plains region in north west NSW, Aus-249

tralia. It is run as a mixed farming enterprise centred around cropping of250

wheat, barley and canola in winter, sorghum and sunflower in summer, and251

a cattle herd of breeders, replacement heifers and bulls. Nowley has a combi-252

nation of fertile basaltic soils together with more challenging soil types that253

are poorly drained, with considerably high amounts of subsoil sodium.254

Soil point observations of total soil carbon concentration were collected255

over two separate soil sampling campaigns during 2014 and 2015 from across256

Nowley farm. The sampling for each campaign was based on stratified ran-257

dom sampling, where at each site a 7.5 cm depth core of soil (0 - 7.5 cm258

and with known volume) was collected. A total of 130 samples was collected259

from these two sampling campaigns.260

Soil carbon stocks (CS, t ha−1 ) to 7.5 cm were calculated from measured261

carbon concentrations, bulk densities and gravel contents. The mean carbon262

stock of these samples was 16.06 t ha−1, while the minimum and maximum263

was 6.03 and 43.20 t ha−1 respectively.264

Digital soil mapping was used to create a carbon stock map for Nowley265

using the point observations of carbon stocks and a number of environmental266

variables derived principally from a digital elevation model, air-borne gamma267

radiometric data and associated derivatives from each. The map was made268

using stepwise multiple linear regression which lead to a model containing269

parameters for 4 variables: Elevation (E), Topographic wetness index (TW ),270

gamma radiometric potassium (GK), and Wilford’s weathering index (WI).271

The model took the form:272

CC = 5.02 + 0.07× E − 0.83× TW − 1.05×GK − 0.81×WI (6)

Model residuals showed a week spatial autocorrelation. Fitting an expo-273

nential variogram with zero nugget (the default in ospats+), gave an esti-274

mated range of 582 m. We used Leave-one-out cross validation to evaluate275

the goodness of fit of the model. Here we estimated the RMSE = 5.5 and R2
276

= 0.36. The prediction variance of the model was also estimated in order to277

quantify the uncertainty about the map predictions of soil carbon stocks, see278

Figure 2. Together, these maps were created using a 10 m x 10 m grid cell279
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Figure 2: Nowley farm: soil carbon prediction and prediction variance.

Table 3: Process parameters used to run ospats+ on the Nowley data set

Parameter Value Parameter Value
Hmin 3 Hmax 7
nhminim 3 CP 10 Aus$
f 120 Aus$ Area 2336 ha
Zγ 1.645 R2 0.36
range 582 m maxcycle 150
in 2 seed 1234

resolution, as this was the resolution of the environmental covariates used.280

However, subsequent to this modelling we coarse-gridded the maps to 30 m x281

30 m grids to avoid undue computational load for this example. This resulted282

in 26,079 grid points.283

5.2. Application of ospats+284

We ran ospats+ on the data described above, with process parameters285

given in Table 3.286

It turned out that in these circumstances the optimal number of strata287

is 5, the optimal total sample size is 58, and the optimal sample sizes within288

the strata are 8, 12, 21, 4 and 13. A map of the optimised stratification and289

the sample locations is presented in Fig. 3.290
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Figure 3: Ospats+ stratification and stratified sample based on data in Fig. 2.

6. Discussion291

When using ospats+ one should realise that the following assumptions292

underly the methodology as implemented.293

1. The second round sampling is independent from the first round.294

Revisiting the sampling sites from the first round again in the second round295

would usually lead to a higher precision of the estimated change. However,296

to avoid possible fraudulent practices we adopted full independence between297

both rounds. Additionally, differing sample points each time allows a more298

complete picture of the spatial variation of SOC to emerge.299

2. The variable cost of collecting the data is linearly related to the number300

of sample points.301

The present version of ospats+ uses a linear cost function. If that does not302

predict the real costs well enough, then a non-linear function could replace303

the linear one. In that case Eq. 3 should be adapted, or replaced by a discrete304

optimisation algorithm to determine the optimal sample size..305
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3. The variances of the prediction errors are correctly quantified.306

Over-estimated and under-estimated variances of the prediction errors will307

expectedly lead to a less efficient sampling design. The same applies to over-308

and under-estimation of the auto-covariance range and R2. However, regard-309

less of efficiency, unbiasedness remains warranted for statistics estimated from310

the sample data like means, totals and fractions, as well as standard errors311

and confidence intervals.312

4. Measurement errors in determining SOC stocks of samples are negli-313

gible compared to prediction errors.314

If measurement errors are not negligible, such as with proximal sensing of315

SOC stocks, then the sample size should be increased to achieve the same316

data value. This is not accounted for in the present version of ospats+.317
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