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ABSTRACT 29 

Overweight and obesity are considered as a major cause of various conditions related to 30 

metabolic syndrome. Yet, considering the complex interacting factors leading to pathogenicity 31 

and underlying mechanisms, it remains a poorly defined area. Some probiotics have a 32 

reputation of a relatively long history of safe use, and an increasing number of studies are 33 

confirming benefits including anti-obesity effects when administered in adequate amounts. 34 

Recent reports demonstrate that probiotic functions may widely differ with reference to either 35 

intra-species or inter-species related data. Such differences do not necessarily reflect or explain 36 

strain specific functions of a probiotic, and thus require further assessment at the intra-species 37 

level. Various anti-obesity clinical trials with probiotics have shown discrepant results and 38 

require more consolidated studies in order to clarify the correct dose of application for reliable 39 

and constant efficacy over a long period. In this study three different strains of Lactobacillus 40 

sakei were administered in a high fat diet induced obese murine model using three different 41 

doses, 1x1010 CFU, 1x109 CFU and 1x108 CFU, respectively, per day. Changes in body and organ 42 

weight were monitored, and serum chemistry analysis was performed for monitoring obesity 43 

associated biomarkers. The results show that only one strain of L. sakei (CJLS03) induced a dose 44 

dependent anti-obesity effect, while no correlation with either dose or body and adipose tissue 45 

weight loss could be detected for the other two L. sakei strains (L338 and L446). The body 46 

weight reduction mainly correlated with adipose tissue and obesity associated serum 47 

biomarkers such as triglycerides. This study suggests that anti-obesity effects of probiotics may 48 

vary in a strain and dose specific manner. 49 

 50 
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INTRODUCTION 57 

Overweight and obesity result from abnormal adipose deposition and function and are 58 

considered as major pathophysiological symptoms of metabolic syndrome (Olufadi & Byrne, 59 

2008). Originating from insulin resistance, metabolic syndrome may be reflected by several 60 

clinical manifestations such as atherosclerosis, hyperglycemia, dyslipidemia, hypertension, 61 

reduced high-density lipoprotein cholesterol and type 2 diabetes mellitus (Furukawa et al., 62 

2017). Based on typical pathological symptoms, broadly defined as excessive fat mass in the 63 

body (specifically the abdomen), the prevalence of obesity has rapidly increased during the last 64 

two decades (Kobyliak et al., 2017). In spite of intensive   65 

research input in recent history, deeper understanding of pathogenesis and knowledge on the 66 

underlying mechanisms of obesity are still limited, while, in fact, the causality of obesity has been 67 

suggested from different viewpoints and disciplines of science such as genetics, endocrinology 68 

and psychology (Schwartz et al., 2017).  69 

Following up on classical approaches, recent studies show that microbiota can play a key 70 

role in host obesity and metabolic syndrome (Gérard, 2016). Thereby, new clinical diagnostic 71 

perspectives were opened on the influence of gut microbiota on the status of metabolic disorders. 72 

Numerous studies have reported on qualitative and quantitative discrepancies in microbiota of 73 

the gastrointestinal tract (GIT) when comparing healthy subjects with people suffering from 74 

metabolic diseases (Turnbaugh et al., 2006; Turnbaugh et al., 2008; Ley et al., 2005; Cani & 75 

Delzenne, 2009; Armougom et al., 2009).  76 

There is general consensus that probiotics support the host gut microbiota balance, and 77 

scientific evidences are steadily accumulating regarding the beneficial impact of probiotics on 78 

human health, including immune disorders, inflammatory bowel disease, type 2 diabetes and 79 

atherosclerosis (Amar et al., 2011; Kim et al., 2016; Ritze et al., 2014; Schroeder et al., 2018; 80 

Vemuri, Gundamaraju & Eri, 2017). Various modes of probiotic action were elucidated by using 81 

in vitro studies (including in vitro models) while efficacy was investigated by in vivo studies and 82 

clinical trials. Along with therapeutic benefits, anti-obesity effects of probiotics have been 83 

reported recently (Kadooka et al., 2010; Park et al., 2016; Wang et al., 2015; Woodard et al., 84 
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2009). Yet, the anti-obesity efficacy of probiotics has not been fully elucidated in spite of various 85 

clinical trials, and scientific evidence for a <minimal dose effect level= remains relatively sparse 86 

(Tanentsapf, Heitmann & Adegboye, 2011; Raoult, 2009; Mekkes et al., 2013). The concept of a 87 

minimal effective dose is complicated due to the large (and diverse) number of microbial and 88 

host-related factors (Salminen et al., 1998), and will also depend on the kind of key criteria and 89 

the <end-points= selected. The dose of intolerance is generally considered to be high, thus, 90 

allowing a relatively broad <therapeutic window= (Collins, Thornton & Sullivan, 1998), it may be 91 

difficult to find a suitably effective low dose above the minimal level. Yet, precisely defining an 92 

effective dose has remained an arbitrary issue, and thus the pragmatic suggestion by an 93 

FAO/WHO Working Group (FAO/WHO, 2002) that <The suggested serving size must deliver the 94 

effective dose of probiotics related to the health claim<. Convincingly delivering this kind of 95 

evidence has remained difficult until this day, in particular for commercial distribution of (food 96 

or pharmaceutical) strains claimed to be probiotics. In an early report Perdigón, Alvarez & de 97 

Ruiz Holgado (1991) suggested a dose related impact of Lactobacillus casei on the secretory 98 

immune response and protective capacity in intestinal infections. A placebo-controlled study 99 

designed to evaluate the therapeutic value of four different non-antibiotic preparations 100 

(including Saccharomyces boulardii, and heat-killed microbial strains) indicated a non-significant 101 

dose dependency for either prophylaxis or treatment of traveller's diarrhoea (Kollaritsch et al., 102 

1989; Kollaritsch et al., 1993). Yet, substantial evidence supports the principle of dose 103 

dependency of probiotics to modulate systemic and mucosal immune function, improve 104 

intestinal barrier function, alter gut microbiota, and exert metabolic effects on the host, also in 105 

a strain dependent manner (Alemka et al., 2010; Madsen, 2012). Everard et al. (2011) reported 106 

a dose-dependent immunomodulation of human DCs by the probiotic Lactobacillus rhamnosus 107 

Lcr35, leading, at high doses, to the semi-maturation of the cells and to a strong pro-108 

inflammatory effect.  109 

In this study we administered three different ten-fold doses of three different L. sakei 110 

strains separately to a diet induced obese C57BL/6 murine model and monitored body weight 111 

during the full experimental period. Organ weights and serum biomarkers were monitored to 112 
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elucidate the dose dependent anti-obesity effect of three different Lactobacillus sakei strains.  113 

 114 

MATERIALS AND METHODS 115 

The animal study was approved by the Ethical Committee of KPC Ltd. in Korea (P150067). Five 116 

weeks old, specific pathogen free (SPF) male C57BL/6 mice were supplied from Orient Bio, 117 

Korea. High fat diet (Research Diets D12492) (HFD), low fat diet (Cargill Agri Purina Inc., Rodent 118 

Chow) (LFD) and autoclaved tap water were provided ad libitum, while the animals were housed 119 

at 23 °C, 55 ± 10 % humidity, in a 12 h light/dark cycle. All 120 mice were separated into 12 120 

different groups each receiving different treatments (Table 1).  121 

 122 

Table 1. Study design and animal treatments, based in a high-fat (HFD) and low-fat diet (LFD) 123 

Group Feed type Treatment 

LFD LFD 300 ¿l PBS (non-obese control) 

HFD HFD 300 ¿l PBS (obese control) 

Orlistat HFD 40mg/kg suspended in 300 ¿l PBS 

CJB38 L HFD 1 x 108 CFU/day of L. sakei L338 suspended in 300 ¿l PBS 

CJB38 M HFD 1 x 109 CFU/day of L. sakei L338 suspended in 300 ¿l PBS 

CJB38 H HFD 1 x 1010 CFU/day of L. sakei L338 suspended in 300 ¿l PBS 

CJB46 L HFD 1 x 108 CFU/day of L. sakei L446 suspended in 300 ¿l PBS 

CJB46 M HFD 1 x 109 CFU/day of L. sakei L446 suspended in 300 ¿l PBS 

CJB46 H HFD 1 x 1010 CFU/day of L. sakei L446 suspended in 300 ¿l PBS 

CJLS03 L HFD 1 x 108 CFU/day of L. sakei LS03 suspended in 300 ¿l PBS 

CJLS03 M HFD 1 x 109 CFU/day of L. sakei LS03 suspended in 300 ¿l PBS 

CJLS03 H HFD 1 x 1010 CFU/day of L. sakei LS03 suspended in 300 ¿l PBS 

 124 

The experiment comprised one week of adaptation followed by six weeks of obesity 125 

induction using HFD while the LFD group was maintained on LFD feeding. After six weeks as 126 

obesity induction period, each group was treated with either the PBS suspended microbial culture, 127 
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PBS suspended Orlistat as chemical control or only PBS as negative control, twice a day at the 128 

same time (10:00 and 17:00) for seven weeks. On the last day of the experiment, the mice were 129 

sacrificed by dislocation of the cervical vertebrata. The organs, i.e., liver, femoral muscle, brown 130 

adipose tissue, epididymal adipose tissue, subcutaneous adipose tissue and mesenteric adipose 131 

tissue were collected, weighed, and kept at -80 #. Serum Triglyceride (TG), glucose (GLU), total 132 

cholesterol (TC), high density lipoprotein (HDL), low density lipoprotein (LDL), aspartate 133 

transaminase (AST) were measured using an automated biochemical analyser BS-200 (Mindray, 134 

China) in Pohang Technopark, Pohang (South Korea).   135 

L. sakei strains CJB38, CJB46 and CJLS03 were grown daily in MRS broth (Difco 136 

Laboratories INC., Franklin Lakes, NJ, USA) for feeding during the seven weeks period of 137 

intervention. Strains were grown for 8 hours to reach their late log phase and were collected by 138 

centrifugation (3546 g, 5 min, 5 #) (Centrifuge: Hanil Science Industry, Korea) and washed two 139 

times with PBS. Each strain was prepared in an approximate number of 1 X 1010 CFU/ml using a 140 

mathematical equation derived from a pre-optimised standard curve (data not shown) using 141 

optical density by SPECTROstar Nano (BMG Labtech, Durham, USA). A stock suspension of 1 X 142 

1010 CFU/ml was prepared of each strain, then diluted ten-fold to 1 X 109 and 1 X 108 CFU/ml, 143 

respectively, and finally suspended in 300 µl of PBS to be administered to each mouse by oral 144 

gavage.  145 

Experimental determinants were statistically calculated using ANOVA and Dunnett9s multiple 146 

comparison test to distinguish the level of significance based on probability of 0.05 (*), 0.01 (**) 147 

and 0.001 (***).  148 

 149 

RESULTS 150 

Three different doses (108-1010) of the three L. sakei strains (CJB38, CJB46 and CJLS03) were 151 

orally administered to high fat diet induced obese C57BL/6 mice for 7 weeks, and body weight 152 

and food consumption were measured daily. During the test period, three strains were found to 153 

exhibit weight loss compared to the HFD group (Fig. 1 b, c, d). LFD, Orlistat, all of the CJB46 154 

group, and medium and high dose of the CJLS03 groups showed significantly lower weight 155 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26959v1 | CC BY 4.0 Open Access | rec: 25 May 2018, publ: 25 May 2018



 7 

increase compared to the HFD group. The weight loss was not dependent of the dose of CJB38 156 

or CJB46 while CJLS03 showed a dose-dependent weight reduction effect and CJLS03 H showed 157 

the highest efficacy of all groups (Fig. 1 e). The onset time of weight loss showed significance 158 

compared to HFD at days 4, 21, 21 and 7 for the Orlistat, CJB38, CJB46 and CJLS03 groups, 159 

respectively (data not shown). The daily dietary intake was significantly higher in the LFD, 160 

Orlistat and CJLS03 M groups compared to the HFD group (Fig. 1 f). 161 

Serum biochemical analysis showed an overall increase in the lipid profile (TC, TG, HDL, 162 

LDL), liver (AST) and the glucose level of the HFD group compared to the LFD group, 163 

demonstrating that a high fat diet intake may impact various biomarkers associated with 164 

pathophysiological symptoms of obesity (Fig. 2). Compared to the HFD group, the serum TG level 165 

decreased in all test groups (Fig. 2 a) while the LDL level was significantly reduced in all test 166 

groups except CJB46 H (Fig. 2 e). Significant reduction of TC was only detected in LFD, Orlistat 167 

and in the groups treated with higher doses (M and H) of L. sakei CJB38 H, CJB46 M, CJB46 H, 168 

CJLS03 M and CJLS03 H (Fig 2 c). In particular, the CJLS03 group, shown to be superior regarding 169 

weight gain inhibition, appears to be effective in a dose dependent manner (Fig. 2 a, b, c). HDL 170 

levels were not significantly different from the HFD group in all the test groups, however, all L. 171 

sakei treated groups except CJB46 L, CJLS03 M and CJLS03 H showed significant increase when 172 

the ratio of HDL to total cholesterol level was calculated (data not shown). Serum AST values 173 

(indicating liver function) were found to be approximately 1.7 times higher for the HFD 174 

compared to the LFD group (Fig. 2 f), while the Orlistat group showed no significant change in 175 

AST level compared to the HFD group. All three groups receiving the L. sakei strains showed 176 

noticeable decrease of AST levels with a dose-dependent reduction in the CJLS03 groups, which 177 

was significant in the CJLS03 H group when compared to the HFD group (Fig. 2 f). CJLS03 showed 178 

the highest overall effectivity and a dose dependent anti-obesity function; at the same time, it 179 

induced a dose-dependent improvement of serum obesity associated biomarkers and liver 180 

function. 181 

Compared to HFD the LFD group showed significantly lower weights of epididymal, 182 

mesenteric, subcutaneous and brown adipose tissues while insignificant organ weight 183 
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differences were measured in liver and femoral muscles (Fig 3). Every dose of all three strains of 184 

L. sakei and the Orlistat group resulted in significantly lower subcutaneous adipose tissue weight 185 

while only CJLS03 H showed significant reduction of visceral adipose tissue including epididymal 186 

and mesenteric adipose tissue, when compared to the HFD group (Fig. 3 a, b, c). CJLS03 M 187 

treatment significantly reduced epididymal adipose tissue weight when compared to the HFD 188 

group (Fig 3 a). These results suggest that the three different L. sakei strains inhibited the 189 

accumulation of subcutaneous adipose tissue but that the CJLS03 group responded by dose 190 

dependent reduction of visceral adipose tissues including the epididymal and mesenteric 191 

adipose tissues (Fig. 3a, b). Orlistat and L. sakei treatment did not result in significant weight 192 

differences regarding brown adipose tissue, liver and femoral muscle (Fig 3 d, e, f).  193 
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 194 

Figure 1 (A) Body weight after 48 days, (B, C, D) and increase over the 48-day period; (E) body 195 

weight gain after 48 days, and (F) daily feed consumption of each group. Asterisks denotes level 196 

of significant compared to HFD as *: p<0.05, **: p<0.01 and ***: p<0.001.   197 
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 198 

Figure 2 Serum biomarkers of each experimental group showing (A) triglyceride, (B) glucose, (C) 199 

total cholesterol, (D) high density lipoprotein (HDL), (E) low density lipoprotein (LDL) and (F) 200 

aspartate transaminase (AST). Asterisks denote the level of significance compared to HFD as *: 201 

p<0.05, **: p<0.01 and ***: p<0.001. 202 

 203 

 204 
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 205 

Figure 3 Organ weights of each experimental group showing (A) epididymal adipose tissue, (B) 206 

mesenteric adipose tissue, (C) subcutaneous adipose tissue (D) brown adipose tissue, (E) liver and 207 

(F) femoral muscle. Asterisks denote the level of significantce compared to HFD as *: p<0.05, **: 208 

p<0.01 and ***: p<0.001. 209 

 210 

 211 

 212 
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DISCUSSION  213 

The anti-obesity influence of administered probiotics is a heavily debated issue, yet, an 214 

indisputable fact is that host gut microbiota is exercising a leverage over energy efficiency and 215 

adipose tissue accumulation (Kobyliak et al., 2017; Greiner and Bäckhed, 2011; Delzenne et al., 216 

2011); at the same time, probiotics have been reported to impact on host microbiota in a 217 

positive way. 218 

Probiotic administration increasingly enjoys consideration as a promising approach for 219 

beneficially modulating the host microbiota (Jia et al., 2008; Steer et al., 2000). Numerous 220 

reports confirmed the beneficial effects of specific probiotic strains against diarrhoea and 221 

inflammatory bowel diseases (Ahmadi, Alizadeh-Navaei & Rezai 2015; Gionchetti et al., 2000; 222 

Ouwehand, Salminen & Isolauri, 2002). Recently, anti-obesity effects of probiotics were also 223 

reported and confirmed in clinical trials and animal models (Kim et al., 2016; Alard et al,. 2016; 224 

Wang et al., 2015; Ji et al., 2012; Kadooka et al., 2010). Kadooka et al. (2010) investigated the 225 

anti-obesity effect of the probiotic L. gasseri SBT2055 by conducting a double-blind, 226 

randomised, placebo-controlled intervention trial with 87 overweight and obese subjects for 12 227 

weeks. The data confirmed that the abdominal visceral and subcutaneous fat area, weight, BMI, 228 

as well as waist and hip measures were significantly reduced in the group consuming the 229 

probiotic. In another study (Woodard et al., 2009) 44 morbid obese patients were operated for 230 

weight loss by surgery (gastric bypass surgery) and were randomly divided in a probiotic 231 

administered group and a control group. A significantly higher weight loss was recorded in the 232 

group receiving the probiotic. Park et al. (2013) reported a significant weight reduction of a 233 

C57BL/6 mice model after administering L. curvatus HY7601 and L. plantarum KY1032, however, 234 

faecal microbiota modulation of major groups such as Firmicutes and Bacteroidetes was not 235 

monitored.  236 

One of the major hurdles for an accurate clinical trial is to understand the effective dose 237 

of a probiotic at a strain specific level. Selecting the correct dose of a probiotic for a specific 238 
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purpose such as the alleviating of diarrhoea was suggested in various studies, yet, there is a 239 

general lack of scientific proof of a concept to define the functional dose of a probiotic 240 

(Kollaritsch et al., 1993; Kollaritsch et al., 1989; Islam, 2016). Chen et al. (2015) used 5 different 241 

tenfold doses of L. acidophilus in a colitis induced animal model and reported 106 CFU/10g of 242 

the animal weight as the most effective application level for modulating the bacterial profile in 243 

the distal colon.  244 

In our study we have monitored the dose dependent anti-obesity effects of three 245 

different strains of L. sakei and found only one strain, CJLS03, to show a dose dependent anti-246 

obesity effect while the anti-obesity impact of the other two strains was found to be dose 247 

independent. Adipose tissues were reduced relative to weight gain and triglyceride and total 248 

serum cholesterol showed the most significant reduction in the L. sakei treated groups 249 

compared to the HFD control group.  250 

 251 

CONCLUSIONS 252 

This in vivo investigation showed that beneficial effects of putative probiotics are both strain 253 

specific and dose related. For only one (CJLS03) out of three L. sakei strains an anti-obesity effect 254 

could be detected, which, at the same time, was found to be dose dependent. The highest of 255 

three doses (1 x 1010 CFU/day) of CJLS03 gave the most favourable (significant) biomarker 256 

related effects with regard to cholesterol and triglyceride reduction, when compared to the HFD 257 

control.  258 
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