A peer-reviewed version of this preprint was published in PeerJ on 16 October 2018.

<u>View the peer-reviewed version</u> (peerj.com/articles/5640), which is the preferred citable publication unless you specifically need to cite this preprint.

Cruaud A, Groussier G, Genson G, Sauné L, Polaszek A, Rasplus J. 2018. Pushing the limits of whole genome amplification: successful sequencing of RADseq library from a single microhymenopteran (Chalcidoidea, *Trichogramma*) PeerJ 6:e5640 <u>https://doi.org/10.7717/peerj.5640</u>

Pushing the limits of whole genome amplification: Successful sequencing of RADseq libraries from single microhymenoptera (Chalcidoidea, *Trichogramma*)

Astrid Cruaud ^{Corresp., 1}, Géraldine Groussier ², Guenaëlle Genson ¹, Laure Sauné ¹, Jean-Yves Rasplus ¹

¹ CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France

² Institut Sophia Agrobiotech, INRA, CNRS, Université Côte d'Azur, Sophia Antipolis, France

Corresponding Author: Astrid Cruaud Email address: astrid.cruaud@inra.fr

A major obstacle to high-throughput genotyping of micro-hymenoptera is their small size. As species are difficult to discriminate and because complexes may exist, the sequencing of a pool of specimens is hazardous. Thus, one should be able to sequence pangenomic markers (e.g. RADtags) from a single specimen. To date, whole genome amplification (WGA) prior to library construction is still a necessity as only ca 10ng of DNA can be obtained from single specimens. However this amount of DNA is not compatible with manufacturer's requirements for commercialised kits. Here we tested the accuracy of the GenomiPhi kit V2 on Trichogramma wasps by comparing RAD libraries obtained from the WGA of single specimens (generation F0 and F1, ca 1 ng input DNA for the WGA) and a biological amplification of genomic material (the pool of the progeny of the F1 generation). Globally, we found that ca 99% of the examined loci (up to 48,189; 109 bp each) were compatible with the mode of reproduction of the studied model (haplodiploidy) or a Mendelian inheritance of alleles. The remaining 1% (ca 0.01% of the analysed nucleotides) could represent WGA bias or other experimental / analytical bias. This study shows that the multiple displacement amplification method on which the GenomiPhi kit relies, could also be of great help for the high-throughput genotyping of micro-hymenoptera used for biological control or other organisms from which only a very low amount of DNA can be extracted such as human disease vectors (e.g. sand flies, fleas, ticks etc.).

- 1 Pushing the limits of whole genome amplification: successful sequencing of RADseq
- 2 libraries from single micro-hymenoptera (Chalcidoidea, *Trichogramma*)

Astrid Cruaud^{1*}, Géraldine Groussier², Guenaëlle Genson¹, Laure Sauné¹, and Jean-Yves
Rasplus¹

- 5
- 6 ¹ CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
- 7 ² Institut Sophia Agrobiotech, INRA, CNRS, Université Côte d'Azur 400, route des chappes –

8 BP 167 - 06903 Sophia Antipolis Cedex – France

9

10 *corresponding author : <u>astrid.cruaud@inra.fr</u>

11

12 Abstract

13 A major obstacle to high-throughput genotyping of micro-hymenoptera is their small size. As 14 species are difficult to discriminate and because complexes may exist, the sequencing of a pool 15 of specimens is hazardous. Thus, one should be able to sequence pangenomic markers (e.g. 16 RADtags) from a single specimen. To date, whole genome amplification (WGA) prior to library 17 construction is still a necessity as only *ca* 10ng of DNA can be obtained from single specimens. However this amount of DNA is not compatible with manufacturer's requirements for 18 19 commercialised kits. Here we tested the accuracy of the GenomiPhi kit V2 on Trichogramma 20 wasps by comparing RAD libraries obtained from the WGA of single specimens (generation F0 21 and F1, ca 1 ng input DNA for the WGA) and a biological amplification of genomic material 22 (the pool of the progeny of the F1 generation). Globally, we found that ca 99% of the examined 23 loci (up to 48,189; 109 bp each) were compatible with the mode of reproduction of the studied

24 model (haplodiploidy) or a Mendelian inheritance of alleles. The remaining 1% (ca 0.01% of the

analysed nucleotides) could represent WGA bias or other experimental / analytical bias. This

26 study shows that the multiple displacement amplification method on which the GenomiPhi kit

27 relies, could also be of great help for the high-throughput genotyping of micro-hymenoptera used

- 28 for biological control or other organisms from which only a very low amount of DNA can be
- 29 extracted such as human disease vectors (e.g. sand flies, fleas, ticks etc.).

30

31 **Running Head :** RADseq from low DNA amount through WGA

32 Keywords : DNA quantity, GenomiPhi, high-throughput genotyping, microarthropods, outside

33 manufacturer recommendations, RAD.

35 INTRODUCTION

Parasitoid wasps (especially Chalcidoidea; Heraty et al. 2013) are increasingly used as biocontrol
agents of many crop pests to reduce pesticide use (Austin et al. 2000). Among them, minute
wasps of the genus *Trichogramma* (210 species worldwide, 40 in Europe), which develop within
the eggs of ca. 200 species of moths damaging crops (e.g. corn, grapes, apple, pines; Consoli et
al. 2010) are the most commercialized worldwide.
It is acknowledged that successful and safe biological control depends on accurate genetic and
phenotypic characterization of the strains released. Furthermore, host preferences and the

43 potential of strains to hybridize with each other or with native species should be carefully studied.

44 This is critical to avoid non-target effects such as gene introgression with indigenous species

45 (Van Driesche & Hoddle 2016). However, probably because most species of chalcids are minute

46 wasps (less than a few millimetres long) and are difficult to identify to species by non-specialists,

47 strains are often released without in depth characterization.

48 RADseq, the sequencing of hundreds of thousands of DNA fragments flanking restriction sites

49 (Miller et al. 2007) has been successfully used for population genetics or phylogeography

50 (Emerson et al. 2010), to infer relationships between closely (Jones et al. 2013; Nadeau et al.

51 2013; Wagner et al. 2013) or more distantly (Cruaud et al. 2014; Hipp et al. 2014) related species,

52 to detect hybridization processes (Eaton & Ree 2013; Hohenlohe et al. 2011), to identify markers

53 under selection and detect genes that are candidates for phenotype evolution (Hohenlohe et al.

54 2010), or to better understand the genomic architecture of reproductive isolation (Gagnaire et al.

55 2013). Thus, sequencing RAD markers appear relevant for in depth characterisation of

56 Trichogramma strains used in biocontrol.

57 A major obstacle to RAD sequencing of oophagous parasitoids is their small size. Ideally, one 58 should be able to sequence RAD markers from a single specimen. Indeed, species complexes 59 may exist that are difficult to identify based on morphology only (Al Khatib et al. 2014; Kenyon 60 et al. 2015; Mottern & Heraty 2014), which makes sequencing of a pool of specimens risky. 61 However, to date, the DNA amount obtained from single specimens is not sufficient enough to 62 build a RADseq library. Usually, for minute specimens, ca 10 ng are obtained while ca 150 ng 63 input DNA are required to build a RADseq library. Performing whole genome amplification 64 (WGA) prior to library construction is thus a necessity. So far a few studies have formally 65 examined the accuracy of WGA methods, mostly on human DNA and either a few loci (Hosono et al. 2003; Lovmar et al. 2003; Sun et al. 2005) or a higher number of SNPs and loci but always 66 67 with 10ng of more input DNA (Abulencia et al. 2006; Barker et al. 2004; Blair et al. 2015; 68 ElSharawy et al. 2012; Paez et al. 2004; Pinard et al. 2006). All studies have concluded that the 69 multiple displacement amplification method (MDA; Dean et al. 2002; Lasken 2009), which 70 relies on isothermal DNA amplification using a high-fidelity polymerase (bacteriophage phi29; 71 Paez et al. 2004) and random hexamer primers to decrease amplification bias and increase 72 product size, is among the most accurate. 73 So far, only one study has quantified sequence bias that might result from WGA prior to double-74 digest RAD sequencing (ddRADseq; Peterson et al. 2012); a variant of RADseq that uses two 75 restriction enzymes to cut DNA instead of one enzyme and a DNA shearing system. In their 76 study, Blair et al. (2015) use the Qiagen REPLI-g Mini Kit and 100 ng of input DNA (as requested by the kit) extracted from liver samples of specimens of the grey mouse lemur 77 78 (Microcebus murinus). They conclude that the kit does not introduce bias for i) SNP calling as 79 compared to what is obtained from native DNA of the same samples or ii) genome coverage as

80	compared to the published genome of <i>M. murinus</i> . Here we test the accuracy of the
81	GE Healthcare Life Sciences TM illustra TM GenomiPhi V2 for the WGA of single <i>Trichogramma</i>
82	wasps prior to RADseq library construction. As for the REPLI-g Mini Kit, WGA is performed
83	using the MDA. However, the GenomiPhi kit requires 10 times less DNA (1 μ l of input DNA at
84	10ng/ μ l) but still more than what can be extracted from single <i>Trichogramma</i> wasps. As a
85	consequence, we had to push the limits of the kit, increasing the risk of inconsistent or not
86	representative amplification of the genome. To test the accuracy of the GenomiPhi kit in these
87	challenging conditions we compared RADtags obtained from the WGA of single individuals and
88	RADtags obtained from the pool of their progeny (Fig 1). Thus, we compared RAD libraries
89	obtained from a technical / artificial amplification (WGA) and a biological / natural
90	amplification (pool of specimens).
91	
92	MATERIALS AND METHODS
92 93	MATERIALS AND METHODS
	MATERIALS AND METHODS Sampling and experimental design
93	
93 94	Sampling and experimental design
93 94 95	Sampling and experimental design Males and females (F0) were taken from the strain collection hosted by the Biological Resource
93 94 95 96	Sampling and experimental design Males and females (F0) were taken from the strain collection hosted by the Biological Resource Centre "Egg Parasitoid Collection" (EP-Coll, Sophia-Antipolis, France) (Marchand et al. 2017).
93 94 95 96 97	Sampling and experimental design Males and females (F0) were taken from the strain collection hosted by the Biological Resource Centre "Egg Parasitoid Collection" (EP-Coll, Sophia-Antipolis, France) (Marchand et al. 2017). All specimens belong to the species <i>Trichogramma brassicae</i> Bezdenko, 1968. Ten crossing
93 94 95 96 97 98	Sampling and experimental design Males and females (F0) were taken from the strain collection hosted by the Biological Resource Centre "Egg Parasitoid Collection" (EP-Coll, Sophia-Antipolis, France) (Marchand et al. 2017). All specimens belong to the species <i>Trichogramma brassicae</i> Bezdenko, 1968. Ten crossing experiments were attempted (Fig. 1). Ten pairs (F0) of male (haploid) / female (diploid) were
93 94 95 96 97 98 99	Sampling and experimental design Males and females (F0) were taken from the strain collection hosted by the Biological Resource Centre "Egg Parasitoid Collection" (EP-Coll, Sophia-Antipolis, France) (Marchand et al. 2017). All specimens belong to the species <i>Trichogramma brassicae</i> Bezdenko, 1968. Ten crossing experiments were attempted (Fig. 1). Ten pairs (F0) of male (haploid) / female (diploid) were sorted out from the rest of the specimens. Each pair was then reared in individual glass tubes and
93 94 95 96 97 98 99	Sampling and experimental design Males and females (F0) were taken from the strain collection hosted by the Biological Resource Centre "Egg Parasitoid Collection" (EP-Coll, Sophia-Antipolis, France) (Marchand et al. 2017). All specimens belong to the species <i>Trichogramma brassicae</i> Bezdenko, 1968. Ten crossing experiments were attempted (Fig. 1). Ten pairs (F0) of male (haploid) / female (diploid) were sorted out from the rest of the specimens. Each pair was then reared in individual glass tubes and left free to mate. Droplets of honey were provided as food and eggs of <i>Ephestia kuehniella</i>

mating) and reared in new glass tubes (1 female per tube). As for F0, droplets of honey were
provided as food and eggs of *Ephestia kuehniella* were used as hosts. Females F1 were killed
before the emergence of the F2 generation (males only, arrhenotokous parthenogenesis). For
each cross, all males F2 were pooled prior to DNA extraction.

108 **DNA extraction and whole genome amplification**

109 DNA extraction was performed with the Qiagen DNeasy 96 Blood & Tissue Kit, following

110 manufacturer protocol with the following modifications to increase DNA yield: two successive

111 elutions (50 μ L each) were performed with heated buffer AE (55°C) and an incubation step of 15

112 minutes followed by plate centrifugation (6000 rpm for 2 minutes).

113 DNA was quantified with a Qubit[®] 2.0 Fluorometer (Invitrogen). To fit as much as possible the 114 recommendations of the GenomiPhi protocol (1 μ l DNA input at 10 ng/ μ l), ethanol precipitation 115 of DNA was performed prior to WGA. 1/10 volume of sodium acetate 3M pH 5.2 was added to 116 the extract. Then, 2 volumes of cooled absolute ethanol were added to the mix. The mix was 117 incubated at -20°C overnight. The mix was then centrifuged (30 min, 13 000 rpm, 4° C) and the 118 pellet was washed with 500 µl of cooled ethanol 70%. After another centrifugation (15 min, 119 13 000 rpm, 4°C), the pellet was dried at room temperature and resuspended in 4 µl of sterile 120 molecular biology ultrapure water, as a total resuspension of the pellet would not have been 121 obtained in a smaller volume. Concentrate DNA was quantified with a Qubit® 2.0 Fluorometer 122 (Invitrogen). DNA extracts were then subjected to Whole Genome Amplification using the 123 GenomiPhi[™] V2 DNA Amplification kit (GE Healthcare) with 1ul of concentrate DNA used as 124 input. The resulting DNA was quantified with a Qubit® 2.0 Fluorometer (Invitrogen).

125

126 RADseq library construction

127 Library construction followed Baird et al. (2008) and Etter et al. (2011) with modifications 128 detailed in Cruaud et al. (2014). The PstI enzyme was chosen as cutter. The number of expected cut sites was estimated with an in silico digestion of the genome of T. pretiosum (assembly 129 130 Tpre 1.0, 196Mb) using a custom script. The experiment to test the accuracy of WGA for 131 RADseq of micro-hymenoptera is part of a larger project that aims at resolving the phylogenetic 132 relationships of European Trichogramma wasps. Thus more samples (N=40) than what was used 133 to answer our technical question were included in the library. About 250ng of input DNA was 134 used for each sample. The quantity of P1 adapters (100nM) to be added to saturate restriction 135 sites (result=3uL) as well as the optimal time for DNA sonication on a Covaris S220 136 ultrasonicator to obtain fragments of 300 - 600 bp (results = duty cycle 10%, intensity 5, 137 cycles/burst 200, duration 70s) that are both specific to the studied group were evaluated in a 138 preliminary experiment. After tagging with barcoded P1 adapters and prior to sonication, 139 samples were pooled eight by eight. Five pools were thus obtained, and each pool was sheared 140 and then tagged with a different barcoded P2 adapter. 2*125nt paired-end sequencing of the 141 library was performed at MGX-Montpellier GenomiX on one lane of an Illumina HiSeq 2500 142 flow cell.

143

144 Data analysis

145 Cleaning of raw data was performed with the wrapper RADIS (Cruaud et al. 2016) that relies on

146 Stacks (Catchen et al. 2013; Catchen et al. 2011) for demultiplexing of data and removing PCR

- 147 duplicates. Data analysis was performed with Stacks v1.46. Individual loci were built using
- 148 *ustacks* [m=3; M=1; N=2; with the removal (r) and deleveraging (d) algorithms enabled].
- 149 Catalogs of loci were built with *cstacks* (n=2) for each of the four crosses. Females F1 and their

150 progeny were analysed first (4 data sets), other catalogs grouping all specimens involved in the 151 cross were built (4 other data sets). sstacks was used to map individual loci to the catalog. 152 *rxstacks* was then used to correct genotype and haplotype calls : i) Loci for which at least 50% of 153 the samples (when a pair composed of one female F1 and a pool of males F2 was analysed) or 154 25% of the samples (when F0, F1 and F2 were analysed together) had a confounded match to the 155 catalog were removed; ii) excess haplotypes were pruned; iii) SNPs were recalled after removal of possible sequencing errors using the bounded SNP model (--bound high 0.1), and iv) loci 156 157 with an average log likelihood less than -10.0 were discarded. After this filtering step, *cstacks* 158 and *sstacks* were rerun. The program *populations* was then used to compare the RADtags 159 obtained with or without WGA (parsing of the *haplotypes.tsv* and *populations.log* files). Loci 160 were kept only if i) they had a minimum stack depth of 10 and ii) all samples had a sequence. 161 Analyses were performed on the Genotoul Cluster (INRA, Toulouse).

162

163 **RESULTS**

164 On the ten attempted crosses, only three leaded to enough F2 males (N > 100) to get a sufficient 165 amount of DNA for RADseq library construction without WGA. Consequently RADseq libraries 166 were constructed only on these crosses. DNA extraction of one third of the tested specimens 167 provided an amount of DNA that stand below the detection limit of the Qubit (Table 1). WGA 168 was not attempted on these specimens. For other specimens, the average amount of DNA 169 obtained with the Qiagen kit was 10.4 ng (min = 6.2 - max = 13.9) (Table1). After DNA re-170 concentration, the average DNA quantity used as input for the WGA was $ca \ 1.0 \ ng \ (0.17 - 2.9)$. 171 In average, 947.5 ng of DNA was obtained with the WGA (226 - 2393).

172 In silico digestion of the genome of T. pretiosum revealed 59,433 PstI cut sites (i.e. 118,866 173 tags). An average of 2*3,757,867 reads (109 bp) was obtained for the different samples after 174 quality filtering, demultiplexing and removal of PCR clones (Table 1). Two females F1 175 (TRIC00027 1103 and TRIC00027 3103) were represented by much less reads than other 176 samples (595,204 and 1,991,305 respectively). The number of tags recovered by ustacks and 177 *cstacks* varied but was comparable among the samples and in line with the predictions made on 178 the genome of *T. pretiosum* when these two females were excluded from calculation (average 179 number of ustacks tags = 132,787; average number of cstacks tags = 128,293, Table1). 180 The comparison of the loci obtained after filtering steps with rxstacks and populations revealed 181 that, in average, 97.6% of the loci were homozygous and identical for females F1 and the pool of 182 males F2 (min=96.8% - max=98.2%, Table 2). In average, 0.7% (0.3%-1.3%) of the loci were 183 heterozygous and identical in both samples. Thus there was a *ca* 98.3% (97.4%-99.0%) exact 184 match between the loci of the females F1 included in the library (and whose DNA was amplified 185 with WGA) and the whole progeny of the F1 generation (pool of males whose DNA was not 186 amplified). 187 Between 1.0 and 2.6% of the loci were not identical between analysed pairs (Table 2). A careful 188 inspection of the haplotypes revealed that ca 60% of these differences could be explained by the 189 experimental setup, *i.e.* the sequencing of a single female of the F1 generation versus the 190 sequencing of the whole progeny of the F1 generation (pool of males heterozygous, female F1 191 homozygous with an allele present in the pool of males; pool of males with three alleles, female

192 F1 homozygous with an allele present in the pool of males; pool of males with three alleles,

193 female F1 heterozygous with two alleles present in the pool of males). About 40% of the

194 observed SNPs were not compatible with either the experimental setup (pool of males and

195 female F1 homozygous but with different alleles; female F1 heterozygous, pool of males 196 homozygous with an allele present in the female F1; female F1 heterozygous, pool of males homozygous with an allele not present in the female F1; pool of males heterozygous, female F1 197 198 homozygous with an allele not present in the pool of males; females F1 and pool of males 199 heterozygous with only one of the two alleles in common. Globally, 99.3% (98.9 - 99.6%) of the 200 shared loci were either identical or displayed differences that could be explained by the 201 experimental setup. The first cross was used to check in details the overall coherence of the 202 haplotypes from the parental generation to the whole progeny of the F1 generation (Table 3). 203 98.8% of the 32,913 loci shared by the four samples displayed haplotypes consistent with 204 experimental the setup and a Mendelian inheritance of alleles (97.3% being homozygous and 205 identical between samples). SNPs observed in 385 loci (which represent 1.2% of the loci and 206 0.01% of the analysed nucleotides) were not compatible with the mode of reproduction of the 207 studied model (haplodiploidy) or a Mendelian inheritance of alleles. Considering the haplotype 208 observed in the pool of males F2 as a reference, questionable SNPs could be categorized into 209 five categories as listed in Table 4. In ca 90% of the situations, SNPs found either in the male F0 210 (21%), the female F0 (32.5%) or the female F1 (36.6%) were incompatible with haplodiploidy or 211 with a Mendelian inheritance of alleles. 96 cases (ca 25.0%) represented situations where one 212 allele was missing for the female F0 or the female F1 to fit with a Mendelian inheritance of 213 alleles (possible cases of allele drop-out).

214

215 **DISCUSSION**

216 Here we compare RAD libraries obtained from a technical / artificial amplification of DNA

217 (WGA of single specimen of micro-hymenoptera, F0 and F1 generations) and a biological /

218 natural amplification (pool of the progeny of the F1 generation). We push the limits of the kit 219 used for the WGA (GenomiPhi) by using ca 90% less DNA (ca. 1.0ng) than the required amount 220 specified on the manufacturer's protocol (10ng). Globally, we show that 99% of the examined 221 loci (up to 48,189; 109 bp each) were compatible with haplodiploidy and either identical among 222 specimens or compatible with a Mendelian inheritance of alleles. These results are consistent 223 with observations by Blair et al. (2015) who used the Qiagen REPLI-g Mini Kit and 100 ng of 224 input DNA and showed that SNP calling between ddRAD libraries from native and amplified 225 DNA presented a > 98% match (up to 11,309 loci examined). They are also in agreement with 226 older studies that attempted to quantify bias induced by multiple displacement amplification 227 method (MDA) on which the GenomiPhi kit relies (> 99% match; Barker et al. 2004; ElSharawy 228 et al. 2012; Paez et al. 2004), though with more input DNA (10ng). 229 To the exception of two samples, for which the construction of the library seems to have failed 230 (much less reads were obtained), comparable numbers of tags were obtained. This indicates that 231 the coverage of the genome is the same regardless if native or amplified DNA is used as 232 suggested by previous studies on the potential bias induced by MDA (Abulencia et al. 2006; 233 Blair et al. 2015; Paez et al. 2004). Studies have suggested that WGA may induce allele dropout 234 especially when the starting amount of DNA is low (≤ 1 ng) (Handyside et al. 2004; Lovmar et al. 235 2003; Lovmar & Syvänen 2006; Sun et al. 2005). ElSharawy et al. (2012) and Blair et al. (2015) 236 concluded that MDA had no significant effect on levels of homozygosity. Here about 1% of the 237 loci retained by our analytical pipeline (ie ca 0.01% of the examined nucleotides) presented 238 problematic SNPs that were not compatible with the biology of *Trichogramma* wasps or a 239 Mendelian inheritance of alleles. 0.3% of the SNPs were possible cases of allele drop-out (one 240 allele was missing for the female F0 or the female F1 to fit with a Mendelian inheritance of

241 alleles). A larger sampling would be required to examine these few problematic SNPs in more 242 details. Here, a correlation may exist between the number of problematic SNPs and the quantity 243 of input DNA used for the WGA [less bias in haploid male F0 (1.5 ng; 81 problematic SNPs; 244 0.002% of the examined nucleotides) as compared to female F0 (0.39 ng; 125; 0.003%) and 245 female F1 (0.35 ng; 141; 0.004%)] but no definite conclusion can be drawn. It is noteworthy that 246 if these problematic SNPs can indeed result from bias caused by WGA, other explanations are 247 possible (competition between fragments for ligation of P1 or adapters, mutation during enrichment PCR, sequencing error). Indeed, although they are less frequent, bias are also 248 249 observed in the pool of males F2 (29 problematic SNPs; 0.0002% of the examined nucleotides). 250 Regarding the possible improvements of our protocol. Extraction failed for a third of our 251 specimens (especially single males that are much smaller than females). Here we used the 252 Qiagen kit 96-well-plate format in order to facilitate the processing of many specimens at a time. 253 However, especially for precious specimens, DNA yield could be increased with the spin-column 254 format, as higher centrifuge speed could be used. Furthermore, for projects that aim to target a 255 high number of specimens, re-concentration on SPRI beads may be used instead of using ethanol 256 precipitation of DNA. Indeed, such methods are compatible with robotic sample preparation. 257 However, while DNA yield could be better, working with very low amount of buffer to 258 resuspend DNA could be troublesome.

259

260 CONCLUSION

261 In this study we pushed the limits of the GenomiPhi kit V2 and successfully built RADseq

262 libraries from single micro-wasps (Trichogramma). Globally, we found that ca 99% of the

examined loci (up to 48,189; 109 bp each) were compatible with the mode of reproduction of the

264	studied model (haplodiploidy) and/or a Mendelian inheritance of alleles. The remaining 1% (ca
265	0.01% of the analysed nucleotides) could represent WGA bias or other experimental / analytical
266	bias. It is noteworthy that the GenomiPhi kit V2 (and the new GenomiPhi kit V3) are affordable
267	and easy to use by the vast majority of laboratories, which is an important point to consider given
268	the increasing demand for the genomic characterisation of parasitoids used in biocontrol
269	programs or other disease-transmitting micro-arthropods (e.g. sand flies, fleas, ticks etc.).
270	
271	ACKNOWLEDGEMENTS
272	We are grateful to Montpellier GenomiX (Montpellier, France) for sequencing of the library and
273	to the Genotoul bioinformatics platform Toulouse Midi-Pyrenees for providing computing
274	resources. This work was funded by the ANR project TriPTIC (ANR-14-CE18-0002).
275	
276	REFERENCES
277	Abulencia CB, Wyborski DL, Garcia JA, Podar M, Chen W, Chang SH, Chang HW, Watson D,
278	Brodie EL, Hazen TC, and Keller M. 2006. Environmental whole-genome amplification
279	to access microbial populations in contaminated sediments. Applied and Environmental
280	Microbiology:3291-3301.
281	Al Khatib F, Fusu L, Cruaud A, Gibson G, Borowiec N, Ris N, Rasplus J-Y, and Delvare G.
282	2014. An integrative approach for species discrimination in the Eupelmus urozonus
283	complex (Hymenoptera, Eupelmidae), with the descriptions of eleven new species from
284	the West Palaearctic. Systematic Entomology 39:806-862.
285	Austin AD, Dowton M, and (Eds.). 2000. Hymenoptera: Evolution, Biodiversity and Biological
286	Control: CSIRO PUBLISHING.

287	Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA,
288	and Johnson EA. 2008. Rapid SNP discovery and genetic mapping using sequenced RAD
289	markers. PLoS ONE 3:e3376.
290	Barker DL, Hansen MS, Faruqi AF, Giannola D, Irsula OR, Lasken RS, Latterich M, Makarov
291	V, Oliphant A, Pinter JH, Shen R, Sleptsova I, Ziehler W, and Lai E. 2004. Two methods
292	of whole-genome amplification enable accurate genotyping across a 2320-SNP linkage
293	panel. Genome Research 14:901-907.
294	Blair C, Campbell CR, and Yoder AD. 2015. Assessing the utility of whole genome amplified
295	DNA for next-generation molecular ecology. Molecular Ecology Resources 15:1079-
296	1090.
297	Catchen J, Hohenlohe PA, Bassham S, Amores A, and Cresko WA. 2013. Stacks: an analysis
298	tool set for population genomics. Molecular Ecology 22:3124-3140.
299	Catchen JM, Amores A, Hohenlohe P, Cresko W, and Postlethwait JH. 2011. Stacks: Building
300	and Genotyping Loci De Novo From Short-Read Sequences. G3-Genes Genomes
301	Genetics 1:171-182. 10.1534/g3.111.000240
302	Consoli FL, Parra JRP, Zucchi RA, and (Eds.). 2010. Egg parasitoids in agroecosystems with
303	emphasis on Trichogramma: Springer, Dordrecht.
304	Cruaud A, Gautier M, Galan M, Foucaud J, Sauné L, Genson G, Dubois E, Nidelet S, Deuve T,
305	and Rasplus J-Y. 2014. Empirical assessment of RAD sequencing for interspecific
306	phylogeny. Molecular Biology and Evolution 31:1272-1274.
307	Cruaud A, Gautier M, Rossi J-P, Rasplus J-Y, and Gouzy J. 2016. RADIS: Analysis of RAD-seq
308	data for InterSpecific phylogeny Bioinformatics 32:3027-3028.

309	Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, Sun Z, Zong Q, Du Y, Du J,
310	Driscoll M, Song W, Kingsmore SF, Egholm M, and Lasken RS. 2002. Comprehensive
311	human genome amplification using multiple displacement amplification. Proceedings of
312	the National Academy of Sciences of the United States of America 99:5261-5266.
313	Eaton DAR, and Ree RH. 2013. Inferring Phylogeny and Introgression using RADseq Data: An
314	Example from Flowering Plants (Pedicularis: Orobanchaceae). Systematic Biology
315	62:689-706. 10.1093/sysbio/syt032
316	ElSharawy A, Warner J, Olson J, Forster M, Schilhabel MB, Link DR, Rose-John S, Schreiber S,
317	Rosenstiel P, Brayer J, and Franke A. 2012. Accurate variant detection across non-
318	amplified and whole genome amplified DNA using targeted next generation sequencing.
319	BMC Genomics 13:500.
320	Emerson KJ, Merz CR, Catchen JM, Hohenlohe PA, Cresko WA, Bradshaw WE, and Holzapfel
321	CM. 2010. Resolving postglacial phylogeography using high-throughput sequencing.
322	Proceedings of the National Academy of Sciences of the United States of America
323	107:16196-16200. 10.1073/pnas.1006538107
324	Etter PD, Bassham S, Hohenlohe PA, Johnson EA, and Cresko WA. 2011. SNP discovery and
325	genotyping for evolutionary genetics using RAD sequencing. In: Orgogozo V, and
326	Rockman MV, eds. Molecular methods for evolutionary genetics: Humana Press, New
327	York., 157-178.
328	Gagnaire PA, Normandeau E, Pavey SA, and Bernatchez L. 2013. Mapping phenotypic,
329	expression and transmission ratio distortion QTL using RAD markers in the Lake
330	Whitefish (Coregonus clupeaformis). Molecular Ecology 22:3036-3048.

331	Handyside AH, Robinson MD, Simpson RJ, Omar MB, Shaw MA, Grudzinskas JG, and
332	Rutherford A. 2004. Isothermal whole genome amplification from single and small
333	numbers of cells: a new era for preimplantation genetic diagnosis of inherited disease.
334	Molecular Human Reproduction 10:767-772.
335	Heraty JM, Burks RA, Cruaud A, Gibson GAP, Liljeblad J, Munro J, Rasplus J-Y, Delvare G,
336	Janšta P, Gumovsky A, Huber J, Woolley JB, Krogmann L, Heydon S, Polaszek A,
337	Schmidt S, Darling DC, Gates MW, Mottern J, Murray E, Dal Molin A, Triapitsyn S,
338	Baur H, Pinto JD, van Noort S, George J, and Yoder M. 2013. A phylogenetic analysis of
339	the megadiverse Chalcidoidea (Hymenoptera). Cladistics 29:466-542.
340	Hipp AL, Eaton DAR, Cavender-Bares J, Fitzek E, Nipper R, and Manos PS. 2014. A
341	framework phylogeny of the american oak clade based on sequenced RAD data. PLoS
342	ONE 9:e93975. 10.1371/journal.pone.0093975
343	Hohenlohe PA, Amish SJ, Catchen JM, Allendorf FW, and Luikart G. 2011. Next-generation
344	RAD sequencing identifies thousands of SNPs for assessing hybridization between
345	rainbow and westslope cutthroat trout. Molecular Ecology Resources 11 (Suppl. 1):117-
346	122.
347	Hohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, and Cresko WA. 2010. Population
348	genomics of parallel adaptation in threespine stickleback using sequenced RAD tags.
349	PloS Genetics 6:e1000862.
350	Hosono S, Faruqi AF, Dean FB, Du Y, Sun Z, Wu X, Du J, Kingsmore SF, Egholm M, and
351	Lasken RS. 2003. Unbiased whole-genome amplification directly from clinical samples.
352	Genome Research 13:954-964.

353	Jones JC, Fan SH, Franchini P, Schartl M, and Meyer A. 2013. The evolutionary history of
354	Xiphophorus fish and their sexually selected sword: a genome-wide approach using
355	restriction site-associated DNA sequencing. Molecular Ecology 22:2986-3001.
356	10.1111/mec.12269
357	Kenyon SG, Buerki S, Hansson C, Alvarez N, and Benrey B. 2015. Uncovering cryptic
358	parasitoid diversity in Horismenus (Chalcidoidea, Eulophidae). PLoS ONE 10:e0136063.
359	Lasken RS. 2009. Genomic DNA amplification by the multiple displacement amplification
360	(MDA) method. Biochemical Society Transactions 37:450.
361	Lovmar L, Fredriksson M, Liljedahl U, Sigurdsson S, and Syvänen AC. 2003. Quantitative
362	evaluation by minisequencing and microarrays reveals accurate multiplexed SNP
363	genotyping of whole genome amplified DNA. Nucleic Acids Research 31.
364	Lovmar L, and Syvänen AC. 2006. Multiple displacement amplification to create a long-lasting
365	source of DNA for genetic studies. Human Mutation 27:603-614.
366	Marchand M, Sellier N, Warot S, Ion Scotta M, Ris N, and Groussier-Bout G. 2017.
367	Formalisation d'un Centre de Ressources Biologiques dédié aux parasitoïdes oophages :
368	CRB Ep-Coll. Cahier des Techniques de l'INRA Special Volume "Innovations
369	entomologiques : du laboratoire au champ":49-58.
370	Miller MR, Dunham JP, Amores A, Cresko WA, and Johnson EA. 2007. Rapid and cost-
371	effective polymorphism identification and genotyping using restriction site associated
372	DNA (RAD) markers. Genome Research 17:240-248.
373	Mottern JL, and Heraty JM. 2014. Revision of the Cales noacki species complex (Hymenoptera,
374	Chalcidoidea, Aphelinidae). Systematic Entomology 39:354-379.

375	Nadeau NJ, Martin SH, Kozak KM, Salazar C, Dasmahapatra KK, Davey JW, Baxter SW,
376	Blaxter ML, Mallet J, and Jiggins CD. 2013. Genome-wide patterns of divergence and
377	gene flow across a butterfly radiation. Molecular Ecology 22:814-826. 10.1111/j.1365-
378	294X.2012.05730.x
379	Paez JG, Lin M, Beroukhim R, Lee JC, Zhao X, Richter DJ, Gabriel S, Herman P, Sasaki H,
380	Altshuler D, Li C, Meyerson M, and Sellers WR. 2004. Genome coverage and sequence
381	fidelity of φ 29 polymerase-based multiple strand displacement whole genome
382	amplification. Nucleic Acids Research 32:e71. doi.org/10.1093/nar/gnh069
383	Peterson BK, Weber JN, Kay EH, Fisher HS, and Hoekstra HE. 2012. Double digest RADseq:
384	an inexpensive method for de novo SNP discovery and genotyping in model and non-
385	model species. PLoS ONE 7:e37135.
386	Pinard R, de Winter A, Sarkis GJ, Gerstein MB, Tartaro KR, Plant RN, Egholm M, Rothberg
387	JM, and Leamon JH. 2006. Assessment of whole genome amplification-induced bias
388	through high-throughput, massively parallel whole genome sequencing. BMC Genomics
389	7:216.
390	Sun G, Kaushal R, Pal P, Wolujewicz M, Smelser D, Cheng H, Lu M, Chakraborty R, Jin L, and
391	Deka R. 2005. Whole-genome amplification: relative efficiencies of the current methods.
392	Legal Medicine 7:279-286.
393	Van Driesche R, and Hoddle MS. 2016. Non-target effects of insect biocontrol agents and trends
394	in host specificity since 1985. CAB Reviews 44.
395	Wagner CE, Keller I, Wittwer S, Selz OM, Mwaiko S, Greuter L, Sivasundar A, and Seehausen
396	O. 2013. Genome-wide RAD sequence data provide unprecedented resolution of species

397 boundaries and relationships in the Lake Victoria cichlid adaptive radiation. *Molecular*

Ecology 22:787-798.

399

400 DATA ACCESSIBILITY

401 Cleaned reads are available as a NCBI Sequence Read Archive (#SRP136713).

402

403 AUTHOR CONTRIBUTIONS

404 A.C. and J.-Y.R. designed the study, analysed the data and wrote the manuscript. G. Groussier

405 reared *Trichogramma* strains. G. Genson and L.S. performed molecular work. All authors

406 commented on the manuscript.

407

408 TABLES AND FIGURES

409

410 Figure 1. Experimental setup

411 Photo Trichogramma brassicae © J.-Y. Rasplus

412

- 413 Table 1. Extraction, whole genome amplification and sequencing results
- 414 * reads obtained after demultiplexing and quality filtering with *process_radtags*; ** reads
- 415 obtained after removal of PCR clones (input reads for the ustacks step); *** one catalog was
- 416 built for each cross

- 418 Table 2. Pairwise comparison of loci obtained for females of the F1 generation and pools of
- 419 males of the F2 generation. Analysed loci have been first corrected by *rxstacks* for genotype

420	and haplotype calls and filtered with <i>populations</i> . Only loci that were present in the two samples
421	with a stack depth of 10 were kept.

422

423	Table 3. Comparison	of loci obtained for	• the first crossing	experiment.	Analysed lo	oci have

424 been first corrected by *rxstacks* for genotype and haplotype calls and filtered with *populations*.

425 Only loci that were present in the four samples with a stack depth of 10 were kept.

426

427 Table 4. Categories of SNPs not compatible with the mode of reproduction of the studied

428 model (haplodiploidy) or a Mendelian inheritance of alleles and number of occurrences of

each case. The different situations are illustrated by examples taken from the analysis of the 385questionable SNPs.

431

Table 1(on next page)

Extraction, whole genome amplification and sequencing results

* reads obtained after demultiplexing and quality filtering with *process_radtags*; ** reads obtained after removal of PCR clones (input reads for the *ustacks* step); *** one catalog was built for each cross

1 Table 1

Cross #	Sample code	Description	qDNA (ng)	Input DNA for WGA (ng)	Output DNA from WGA (ng)	Input DNA for RAD library (ng)	Demultiple xed Reads* (forward only)	Cleaned reads** (forward only)	<i>ustacks</i> : Nb of loci	<i>ustacks</i> : Nb of loci***
1	TRIC00027_2101	Male F0, haploid, WGA	11.5	1.5	500	169.0	6,774,680	5,173,711	136,623	130,060
1	TRIC00027_2102	Female F0, diploid, WGA	10.6	0.39	1048	203.3	4,073,370	3,179,891	128,212	122,860
1	TRIC00027_2103	Female F1, diploid, WGA	6.20	0.35	2393	281.2	4,597,505	3,566,986	130,565	124,845
1	TRIC00027_2199	Pool of haploid males F2 (n=933), no WGA	735.4	N.A.	N.A.	269.0	4,818,385	3,745,752	127,709	125,047
2	TRIC00027_1101	Male F0, haploid, WGA	Too low	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
2	TRIC00027_1102	Female F0, diploid, WGA	Too low	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
2	TRIC00027_1103	Female F1, diploid, WGA	9.4	0.17	1128	164.6	774,450	595,204	43,763	42,062
2	TRIC00027_1199	Pool of haploid males F2 (n=229), no WGA	359.6	N.A.	N.A.	270.6	5,878,301	4,437,984	127,380	125,302
3	TRIC00027_3101	Male F0, haploid, WGA	Too low	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
3	TRIC00027_3102	Female F0, diploid, WGA	13.9	2.9	390	247.7	7,006,980	5,365,499	147,718	140,690
3	TRIC00027_3103	Female F1, diploid, WGA	10.7	0.43	226	137.3	2,616,330	1,991,305	93,606	89,543
3	TRIC00027_3199	Pool of haploid males F2 (n=1415), no WGA	670.7	N.A.	N.A.	228.4	7,510,904	5,764,475	131,267	129,249

Table 2(on next page)

Pairwise comparison of loci obtained for females of the F1 generation and pools of males of the F2 generation

Analysed loci have been first corrected by *rxstacks* for genotype and haplotype calls and filtered with *populations*. Only loci that were present in the two samples with a stack depth of 10 were kept.

1 **Table 2**

Pair of samples	Nb of shared loci	Percentage of identical loci (homozygous)	Percentage of identical loci (heterozygous)	Percentage of loci with differences possibly explained by the experimental setup	Percentage of loci with differences not explained by the experimental setup	
Cross #1	48,189	97.7	1.3	0.6	0.4	
Female F1 x pool of males F2	nale F1 x pool of males F2		e of identical loci	Total percentage of loci with differences		
		99	99.0		.0	
Cross #2	5,184	96.8	0.6	1.5	1.1	
Female F1 x pool of males F2		Total percentage	e of identical loci	Total percentage of	loci with differences	
		97	97.4		.6	
Cross #3	20,095	98.2	0.3	0.9	0.6	
Female F1 x pool of males F2		Total percentage of identical loci 98.5		Total percentage of loci with differences 1.5		

Table 3(on next page)

Comparison of loci obtained for the first crossing experiment.

Analysed loci have been first corrected by *rxstacks* for genotype and haplotype calls and filtered with *populations*. Only loci that were present in the four samples with a stack depth of 10 were kept.

1 Table 3

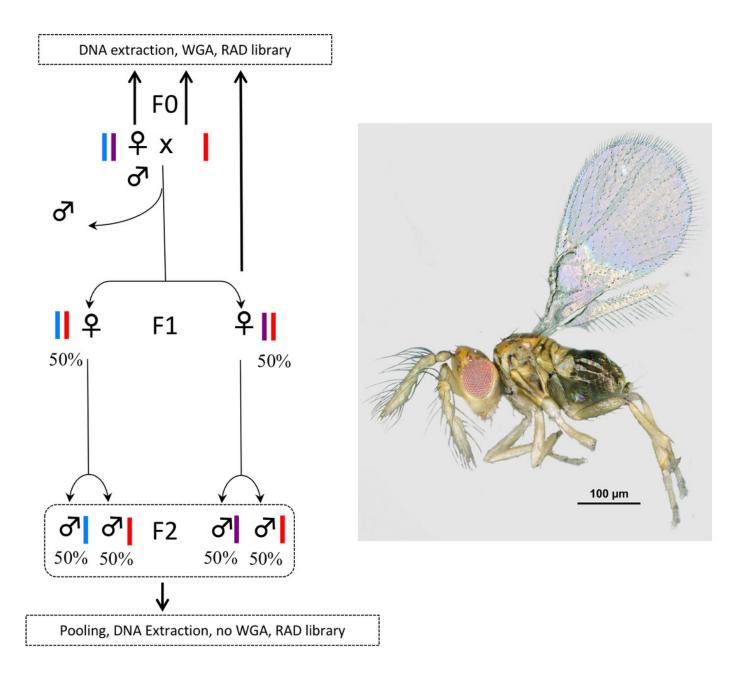
Studied samples	Nb of shared loci	Percentage of identical loci (homozygous)	Percentage of loci consistent with the experimental setup and Mendelian inheritance of alleles	Percentage of loci not consistent with the experimental setup and Mendelian inheritance of alleles
Cross #1	32,913	97.3	98.8	1.2
- female F0 & male F0				
- one female F1				
- progeny of the F1 generation				

Table 4(on next page)

Categories of SNPs not compatible with the mode of reproduction of the studied model (haplodiploidy) or a Mendelian inheritance of alleles and number of occurrences of each case.

The different situations are illustrated by examples taken from the analysis of the 385 questionable SNPs.

1 Table 4


Description	Male F0	Female F0	Female F1	Pool of males F2	Occurrences
Male F0 incompatible	A/G	G	G	G	81
					(21.04 % of the problematic SNPs ; 0.002% of the analysed nt)
	TG	GA	GA	GA	
Female F0 incompatible	С	С/Т	С	С	125 (32.47 % of the problematic SNPs ; 0.003% of the analysed nt)
	A	A	A/G	A/G	
	G	A	G	G	
Female F1 incompatible	С	C	A/C	С	141 (36.62 % of the problematic SNPs ; 0.004% of the analysed nt)
	Т	C/T	С	C/T	
	GG	AG/GG	GG/ GT	AG/GG	
	Т	A	Α	A/T	
Pool of males F2 incompatible	T	T	T	С/Т	
	A	A/G	A/G	A	29 (7.53% ; of the problematic SNPs ; 0.0008% of the analysed nt)
	AA	AA	AA	СС	
	С	Т	C/T	С	
Combination of the different situations	C/G	C/G	C/G	С	9
					(2.34%; of the problematic SNPs ; 0.0002% of the analysed nt)

2

Figure 1

Experimental setup

Photo Trichogramma brassicae [] J.-Y. Rasplus

