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According to the energy supply/energy depletion model, it is not clear how the depletion of

substrates (adenosine triphosphate) affects sprint performance. Therefore, this research

was conducted to find out how the human organism regulates the amount and the rate of

adenosine triphosphate to observe how these factors affect performance specifically

during a maximal exercise of short duration.It was found there was a causal relationship

between percentage of PCr and speed which might affect sprint performance.The

percentage of chemical energy derived from the anaerobic energy system was found to be

95% for 100-m sprint running. The rate constant for the PCr anaerobic metabolic energy

process (0.31s-1) was found to be greater than that of the oxygen-independent glycolysis

metabolic process (0.11s-1) and these rate constants affect sprint performance.
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13 Abstract: According to the energy supply/energy depletion model, it is not clear how the 

14 depletion of substrates (adenosine triphosphate) affects sprint performance. Therefore, this 

15 research was conducted to find out how the human organism regulates the amount and the rate of 

16 adenosine triphosphate to observe how these factors affect performance specifically during a 

17 maximal exercise of short duration.It was found there was a causal relationship between 

18 percentage of PCr and speed which might affect sprint performance.The percentage of chemical 

19 energy derived from the anaerobic energy system was found to be 95% for 100-m sprint running. 

20 The rate constant for the PCr anaerobic metabolic energy process (0.31s-1) was found to be 

21 greater than that of the oxygen-independent glycolysis metabolic process (0.11s-1) and these rate 

22 constants affect sprint performance.
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25

26 1 Introduction

27 The energy which is produced during anaerobic metabolism has been of growing interest to 

28 exercise physiologists to understand how this specific energy pathway affects the high-intensity 

29 exercise of short duration (Shulman & Rothman, 2001; de Koning JJ et al., 2011; Hill et al., 

30 1923; Lambert et al., 2004). Despite the physiological laboratory works during short-duration 

31 maximal exercise (Bogdanis, 1996; Gaitanos et al. 1993), most proposed theoretical models 

32 (Edwards, 1983; Hill et al., 1923; Hill, 1927; Noakes, 2000; Ulmer, 1996), however, cannot 

33 explain how the human body controls the rate of adenosine triphosphate (ATP) production to 

34 prevent a severe fall in ATP concentration in the active muscles.
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35 Therefore, in this study, mathematical modelling and analysis was used in an attempt to validate 

36 certain physiological theories of control fatigue. In fact, a large fall in ATP levels occurs during 

37 times of maximal exercise of short duration such as sprinting (Fox et al., 1993; Matthews et al., 

38 1971). To date, various research studies have incorporated single equation models to analyse the 

39 anaerobic metabolism (Di Prampero et al., 1993; Laurent and Locatelli, 2002; Lloyd, 1967; 

40 Peronnet and Thibault, 1989; Ward-Smith, 1985; Ward-Smith and Mobey, 1995). However, one 

41 study (Ward-Smith and Radford, 2000), has tentatively developed a mathematical model to 

42 represent the biochemical processes during the anaerobic metabolism based on several 

43 assumptions. They considered the total finishing times or duration of the sprints using a fourth-

44 order Runge-Kutta mathematical method whereby temporal information of what is happening at 

45 discrete time intervals was lost and, by taking the height of the centre of mass of all sprinters 

46 who participated in the sprinting event to be equal, which was not the case according to their 

47 different weights and heights (Ferro et al., 2001; IAAF, 2008). Based on these assumptions, they 

48 found that the overall maximum anaerobic power of the sprinters for the 100m event at the 1987 

49 World Championships was 51.6 Wkg-1. The oxygen independent glycolysis, being the highest 

50 contributor of energy, was 11.7% greater than the energy derived from phosphocreatine (PCr) 

51 utilisation anaerobic energy subsystem. In order to extend the previous models, the aims of this 

52 experimental study were, therefore, firstly to develop mathematical models to determine 

53 indirectly the rate of ATP production and utilisation through the anaerobic subsystems that are 

54 endogenous ATP (i.e. ATP initially stored in the exercising muscles), PCr utilization and 

55 oxygen-independent glycolysis. Secondlythis research aimed to assess how the anaerobic 

56 subsystems can be exploited further to improve high-intensity short duration sporting activities 

57 such as sprint performance.

58

59 2 Method 

60 2.1 Data collection and preliminary calculations 

61 In this experimental case study, the International Association of Athletics Federations (IAAF) 

62 10-m split times, for the Men’s 100-m Final at the 1999 world championships, in Sevilla Spain, 

63 were used to model mathematically high-intensity exercise of short duration (Table 1) to 

64 investigate the elite athletes’ sprint performance. In addition, the professional level of these 

65 sprinters would represent a good baseline for comparison purposes of the anaerobic subsystems 

66 and aerobic system at a track and field event. This mathematical model was then used to 

67 investigate the availability of metabolic resources, as well as the rate of energy production 

68 among the elite athletes. The mean (±standard deviation) height, mass and body mass index 

69 (BMI) of the athletes were 1.78 (±0.03) m, 75.8 (±6.6) kg and 23.8 (±1.5) kgm-2 respectively 

70 (IAAF, 2008). Each elite sprinter’s height, weight and reaction times was used to mathematically 

71 model the energy systems. The wind speed was +0.2ms-1, the air temperature was 27oC (300.15 

72 K), air density was 1.179 kgm-3 and the mean reaction time of the sprinters was 0.141 (±0.01) s. 

73 Table 1: 10-m split data intervals for the 100m sprint race in Sevilla Spain 1999. (Rivera, A.; 

74 Pagola, I.; Ferreruela, M.; Martín, A.; Rocandio, "Biomechanical Analysis of the World 

75 Championships in Athletics Sevilla'99: 100, 200, 400m sprint events". New Studies in Athletics, 

76 16 1\2 (2001)).

77
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78 2.1 Data analysis

79 All computations were performed using Matlab software R2008a as the programming platform 

80 as well as optimization toolbox together with Microsoft Excel 2007 for data handling purposes.

81 2.1.1 First Law of Thermodynamics 

82 The mathematical equations used in this study were based on the First Law of Thermodynamics 

83 (Lehninger, 1971). At the start of a sprint, the rate of the chemical energy production is 

84 converted to heat energy (H) and external work energy (W). The rate of change of energy is 

85 expressed per unit body mass (Wkg-1)and it is written in thedifferential form (Equ. 2.1) where 

86 the left term represents the rate of chemical energy conversion (C), and the first and second 

87 terms on the right-hand side are the rate of heat energy (H) and external mechanical work (W) 

88 respectively. The rate of heat energy is proportional to the instantaneous velocity v(t) (Ward-

89 Smith and Radford, 2000).

90

91  ...Equ 2.1
𝑑𝐶𝑑𝑡 =

𝑑𝐻𝑑𝑡 +
𝑑𝑊𝑑𝑡

92 Furthermore, the rate of external mechanical work is expressed as the sum of the rate of change 

93 of kinetic energy of the sprinter to move forward; the potential energy of the sprinter relative to 

94 his crouching state at the beginning of the race; and the work-done to overcome aerodynamic 

95 drag. The parameters for each of the energy components for the external mechanical work can be 

96 determined using already developed equations (Laurent and Locatelli, 2002; Ward-Smith and 

97 Radford, 2000).

98

99 2.1.2Rate of change of potential energy relative to crouching state

100 For a typical athlete (Baumann, 1976), the centre of mass is raised from its initial position (h0) of 

101 0.65m in the blocks to about 1.0 m which was assumed to be the centre-of-mass height (hcm) of a 

102 standing athlete, and was used same for all athletes for analysis (Laurent and Locatelli., 2002; 

103 Ward-Smith and Radford, 2000). Therefore, the change in height (∆h) of the centre-of-mass of 

104 the sprinter (Baumann, 1976) above the horizontal running surface relative to his crouching state 

105 position is given by equation 2.2.

106 ∆  (where θ≠0) ...Equ.2.2h = (h𝑐𝑚 - h0)sin 𝜃
107

108 In equation 2.2, the angle, measured in radians, can be expressed further (Mitra, 2006) as 2πft, 

109 where f, in this case, is the stride frequency which is equal to the number of stride cycles per 

110 second, and variable t is the time measured in seconds. It was also shown that the stride 

111 frequency is well estimated by taking the inverse of the stride period (frequency is inversely 

112 proportional to time) (Stokes, 1998), and hence, the stride velocity is the product of stride length 

113 and stride frequency (Kamen, 2002). The centre-of-mass heightfor each sprinter is 0.57hs for 

114 healthy men (Grimshaw et al., 2004; McGinnis, 2005) and the stride length is given by 1.35hs, 

115 wherehsis the standing height of the athlete (Hoffman, 1971; Rompottie, 1972).

116 2.1.3 Rate of change of anaerobic energy 
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117 Moreover, the rate of chemical energy conversion can also be expressed as the sum of the rate of 

118 energy produced from the aerobic and anaerobic metabolic pathways (Ward-Smith, 2000). By 

119 combining this sum with equation 2.1, therefore, the following formula as shown in equation 2.3 

120 can be derived:

121  =(  + ) - ...Equ2.3
𝑑𝐶𝑎𝑛𝑑𝑡 𝑑𝐻𝑑𝑡 𝑑𝑊𝑑𝑡 𝑑𝐶𝑎𝑒𝑑𝑡

122 The rate of aerobic energy is subtracted from the sum of the rate of heat energy and mechanical 

123 work to determine the rate for the anaerobic energy. The component on the left-hand side (Equ. 

124 2.3) is the rate of change of anaerobic energy (Can) and the components on the right-hand side 

125 are the rate of change of heat energy (H), mechanical work (W) and aerobic energy (Cae) 

126 respectively. The associated rate of change of aerobic energy is determined in accordance with 

127 theoretical equations previously developed by Van IngenSchenau (1991).

128

129 2.1.4 Modelling the rate of energy production for each anaerobic subsystem 

130 The mathematical model that was used to represent the rate of production and decay of each 

131 anaerobic energy subsystem, was based on a type of Gamma distribution model since it is a 

132 flexible distribution to model biochemical processes that are hypothetically to be exponentially 

133 distributed, and a good fit for the sum of independent random variables (Hogg and Craig, 1978; 

134 Wlodarczyka and Kierdassuk, 2006). The Gamma mathematical model is expressed and 

135 characterised with respect to different parameters in terms of a shape (α) parameter, and a scale 

136 (β) parameter which is also known as the rate parameter (Equ. 2.4). For this model, the shape α 

137 was taken as 2 in accordance with previous works of Hogg and Craig (1978) so that a first-order 

138 in time t (Equ. 2.5) was obtained to represent the characteristics of the three anaerobic subsystem 

139 power distribution curves and hence, this makes computations faster (Gu et al., 1996). The 

140 gamma distributionG (Equ. 2.4) comprises of the gamma function which is denoted by and this Γ
141 mathematical notation is the factorial of an integer number greater or equal to 1. The variables β, 
142 α, and t represent the scale, shape and time respectively, and the variable e represents the 

143 exponential value.

144

145 =  … Equ2.4𝐺(𝑡;𝛼,𝛽)
𝛽𝛼Γ(𝛼)
𝑡𝛼 - 1𝑒 - 𝛽𝑡

146

147 =  … Equ2.5𝐺(𝑡;𝛽)
𝛽2Γ(2)
𝑡2 - 1𝑒 - 𝛽𝑡

148 The initial estimates for the scale parameters β1, β2 and β3 for ATP endogenous, PCrutilization 

149 and oxygen-independent glycolysis were determined by finding the time constants corresponding 

150 to the respective maximum of the mean anaerobic power distribution curve for all the sprinters. 

151 These rate parameters served as initial estimates or inputs to run the computational program.

152 By using equation 2.5, the rate of change of the anaerobic metabolism was expressed as the sum 

153 of multiple gamma distributions to represent the three anaerobic subsystem powers, and this was 

154 mathematically represented in equations 2.6, 2.7 and 2.8. The symbol represents the 

155 instantaneous powers for each anaerobic subsystem measured in watts per kilogram. The 

156 nonlinear parameters are the rate parameters of the respective anaerobic subsystem, and they are 

157 initially determined by taking the inverse of the time constant for each anaerobic subsystem. The 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26919v1 | CC BY 4.0 Open Access | rec: 9 May 2018, publ: 9 May 2018



158 subscript n is an integer number ranging from 1 to 3 and it represents the three anaerobic 

159 subsystems. In equation 2.7, the variable P1 denotes the rate of energy released from endogenous 

160 ATP, the variable P2 is the rate of energy released from PCr utilisation, and the variable P3 

161 represents the rate of energy released from the oxygen-independent glycolysis anaerobic 

162 subsystem.

163

164  = + + ...Equ.2.6
𝑑𝐶𝑎𝑛𝑑𝑡 𝛽1

2
.𝑡.𝑒 - 𝛽𝑡 𝛽2

2
.𝑡.𝑒 - 𝛽𝑡 𝛽3

2
.𝑡.𝑒 - 𝛽𝑡

165

166 ...Equ.2.7
𝑑𝐶𝑎𝑛𝑑𝑡  =  𝑃1 (𝑡) +  𝑃2 (𝑡) + 𝑃3 (𝑡)

167

168  = ...Equ.2.8
𝑑𝐶𝑎𝑛𝑑𝑡 ∑3𝑛 = 1

𝑃𝑛 (𝑡)
169

170

171 2.3 Determination of the initial estimates of the nonlinear parameters 

172 The initial estimates of the nonlinear parameters were determined by taking the maxima (3 

173 maxima) from the curve obtained by calculating the mean of the anaerobic powers (i.e. rate of 

174 change of anaerobic energy) for all athletes over each 10-m interval, and it is illustrated in Figure 

175 1. It is important to find these first estimates to minimise computational time, and prevent 

176 divergence from solutions (Boutayeb and Darouach, 1995; Chen and Fassois, 1992). The 

177 computational program was run repeatedly until convergence is reached or until the error (ε) 
178 which is the difference between the computed anaerobic power, and the total of the anaerobic 

179 subsystem powers at each distance interval for each athlete was minimal. At first, the 10-m split 

180 times, the total anaerobic power and the estimated values of the nonlinear parameters (were 

181 initial inputs to the computational program to find an estimate of the individual subsystem 

182 anaerobic powers. The norm function (norm) was used to find the residual error so that the 

183 amplification errors were kept minimum (Kariya and Kurata, 2004; Wolberg, 2005). In addition, 

184 the pseudo-inverse function (pinv) was used, in this case, especially for a non-square matrix (6 

185 variables representing the anaerobic subsystem powers and the rate parameters x 10 equations 

186 representing the 10 split times) and this function works well when the number of equations are 

187 greater than the number of variables (Campbell and Meyer, 1991; Zheng and Bapat, 2004). In 

188 this particular case, the initial estimates of the time constants obtained from Figure 1, were 

189 determined as 1.1 s;  3.9 s;  7.9 s, and are used subsequently to estimate the rate parameters by 

190 taking the inverse of the respective time constants. In Figure 1, the variables m1, m2 and m3 

191 represent the three consecutive maxima of the anaerobic power curve.

192

193 Figure 1: Mean anaerobic power of a particular elite athlete and how the maxima (m1, m2, and 

194 m3) are being identified.

195

196 2.4 Validation of model 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26919v1 | CC BY 4.0 Open Access | rec: 9 May 2018, publ: 9 May 2018



197 The validation of the mathematical modelling was assessed with respect to the root mean square 

198 error (RMSE), in determining the total anaerobic powers derived for each athlete. The 

199 percentage RMSEwas calculated to find the error between the exact calculated total anaerobic 

200 power at each discrete time from the sum of the simulated individual anaerobic subsystem 

201 powers at these discrete times. The calculated total anaerobic power was the difference between 

202 the total aerobic power and the power lost due to mechanical work and heat. Figure 2 

203 summarises the energy processes involved to mathematically model and analyse the chemical 

204 energy produced from the anaerobic energy system pathway. The chemical energy produced 

205 from both the anaerobic and aerobic metabolisms was converted into heat energy and mechanical 

206 energy.

207 Consequently, from this relationship, the energy from the anaerobic process can be determined, 

208 and then subsequently compared to the sum of the energy produced from the three corresponding 

209 anaerobic subsystems (Laurent and Locatelli, 2002; Ward-Smith and Radford, 2000).

210 Figure 2: The flowchart diagrams summarise the mathematical model in simulating the various 

211 anaerobic energy subsystems (Laurent and Locatelli, 2002; Ward-Smith and Radford, 2000).

212

213 3 Results

214 The velocity-time graphs (Fig. 3a and Fig. 3b) of the elite sprinters showed clearly the increase 

215 in speed from 0 ms-1 to a maximum speed where, during this period, the acceleration was 

216 maximal as shown by the steep slope of the velocity-time curve during the first 2 seconds. 

217 Subsequently, around 5 to 8 seconds, the sprinters started to decelerate slowly which continued 

218 in the same trend till the completion of this sprinting race

219

220 Figure 3: (A) Velocity of all the 100m-dash elite sprinters (n = 8); (B) Velocity of all the 100m-

221 dash elite sprinters (n = 8) to show the change in velocity for each sprinter between time = 3s to 

222 time = 11s.

223

224 3.1 Anaerobic and aerobic power contributions 

225 The total power, anaerobic power and aerobic power per unit body mass for all sprinters were 

226 determined (See Figure 5). Respective measured reaction time for each sprinter was excluded 

227 from the respective finishing time since during this brief period of about 0.141 (±0.01)s, the 

228 sprinters were still at rest, and hence equations 2.1 and 2.3 do not apply as the rate of change of 

229 heat energy and mechanical energy were assumed to be zero at time t = 0. It was found that the 

230 anaerobic power contributed to approximately 95% of the total power for this 100-m sprint.

231

232 3.2 Anaerobic subsystems (ATP endogenous, PCr Utilisation and oxygen independent 

233 glycolysis) 

234 Figure 4 shows the normalised maximum rate of energy production for each subsystem for the 

235 anaerobic metabolism for a particular athlete to illustrate the difference among the anaerobic 

236 subsystems. The time T1 (Figure 5) represents the time when the ATP endogenous curve 

237 intersects the oxygen independent glycolysis energy curve measured as 2.71 s, and T2 represents 
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238 the time when there is anintersection between the PCr utilisation and oxygenindependent 

239 glycolysis energy curves measured as 5.17 s. Furthermore, the mean and standard deviation of 

240 the power variables (watts per kilogram) P1, P2 and P3 were 6.6±1.78 Wkg-1, 40.5±2.97 Wkg-1 

241 and 9.98±1.04 Wkg-1 respectively and the nonlinear parameters (1, 2, 3) representing the rate 

242 parameters of theanaerobic subsystems were 0.94±0.05 s-1, 0.31±0.015 s-1and 0.11±0.004 s-1 

243 respectively. As shown in Figure 3.3, the endogenous ATP concentrations decreased rapidly at 

244 the start of the race and contributed to most energy during the first 2 to 3 seconds of this 100-m 

245 sprint race. Then, PCr utilisation process buffered the drop in ATP for another 5 to 8 seconds 

246 during which the PCrutilisation curve reached its maximum much before the oxygen independent 

247 glycolysis energy-curve reached its maximum at about 9.1 seconds.

248

249 Figure 4: Total power, anaerobic power and aerobic power for all sprinters (n=8) are plotted vs. 

250 finishing times excluding measured reaction times.

251

252 Figure 5: Normalised maximum rate of energy production of the first rank sprinter (Maurice 

253 Greene) for each subsystem of the anaerobic metabolism vs. time excluding reaction times. The 

254 arrows represent the x and y coordinates of the points of intersection of the anaerobic subsystem 

255 curves.

256

257 By extrapolating the mathematical results, the effect of increasing the percentage of energy 

258 released from the PCrutilisation anaerobic subsystem was investigated using the computed 

259 anaerobic subsystem powers and the rate parameters for the first rank sprinter. The mathematical 

260 model predicted that if the percentage of energy released from the PCrUtilisation was increased 

261 to 110%, the finishing time of the first rank sprinter would have been 9.27 s, and if the 

262 percentage of energy contribution from this particular anaerobic subsystem was increased further 

263 to 120%, the finishing time would have been 8.88 s and these results are shown in Figure 6.

264

265 Figure 6: The effect of increasing the percentage of energy released from the PCr utilisation 

266 anaerobic subsystem for the first rank sprinter. The arrows represent the effect of increasing the 

267 percentage of energy produced from the PCr anaerobic subsystem and the expected finishing 

268 times for Maurice Greene.

269 3.3 RMSE of mathematical model

270 The percentage RMSE was calculated to determine the error between the exact calculated total 

271 anaerobic power at each discrete time from the sum of the simulated individual anaerobic 

272 subsystem powers at each discrete time (Figure 7). This total anaerobic power is the difference 

273 between the total aerobic power and power lost due to mechanical work and heat. The minimum 

274 percentageRMSE was 0.0022 and the maximum percentage RMSE was 0.018. The variability of 

275 the percentage errors were caused by the distinct kinematics as well as the distinct weights, 

276 heights and reaction times of the elite sprinters in finding convergent solutions to the variables.

277
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278 Figure 7: Percentage RMSEin estimating the totalanaerobic power for all athletes (n = 8). The 

279 average value of RMSE was 0.009W.

280

281 4 Discussions and Conclusion

282 4.1 Model validation

283 The average value of the RMSE for this developed mathematical model in calculating the total 

284 anaerobic powers for all athletes was 0.009W. This indicates that is a good model (Ward-Smith 

285 and Radford, 2000; Wargon et al., 2009) in defining the total anaerobic power for this data, 

286 under these physical conditions and environmental as well. However, muscle biopsy studies 

287 conducted by Gaitanos et al. (1993) and Bogdanis (1996) found in maximal 6 seconds and 10 

288 secondscycling sprints that power output was advocated by energy acquired mainly from PCr 

289 degradation (the concentration of that reduced by 57%). Also,there was a causal relationship 

290 between the percentage of PCr and speed which influenced sprint performance.

291

292 4.2 Aerobic and anaerobic metabolisms

293 The percentage of chemical energy derived from the anaerobic process was 95%, comparing 

294 with the literature where they found mathematically that 92% of chemical energy during the 

295 100m sprint running was produced from anaerobic sources (Peronnet and Thibault, 1989; Ward-

296 Smith, 1985). Thus, the calculated percentage of energy production from the anaerobic process 

297 as compared with the literature it offers that mathematical modelling may be a reliable tool in 

298 assessing the anaerobic and aerobic energy system pathways. The difference between the 

299 literature the mathematical in the percentage of the energy which derived from the anaerobic 

300 processmay be related to reducing finishing times of the 100-m sprint running over the last 

301 decades (IAAF, 2008). Furthermore, the values that are gained by both mathematical modelling 

302 and previous related studies (Peronnet and Thibault, 1989; Laurent and Locatelli, 2002) signals 

303 that it is possible for modelling physiological systems accurately by mathematical models.

304

305 4.3 PCr utilisation anaerobic subsystem 

306 All the athletes speed started to reduce at around 5 to 7 seconds during this sprint race and also in 

307 the previous studies (Hirvonen et al., 1987). Figure 5 shows this reduce in speed synchronised 

308 with the highest rate of decay of the PCr utilisation energy curve. Over the total sprint, in PCr 

309 system the energy contribution was 12.8% that was higher than the energy contribution acquired 

310 from oxygen independent glycolysis. Bogdanis et al. (1996), had tested the contribution of PCr 

311 during repeated bouts of cycle ergometer sprints (10 to 30-s), demonstrated that there was a high 

312 correlation (r) between the percentage of PCr and the percentage of restoration of mean power 

313 output (MPO) and also the speed during the initial 10 seconds of the sprints (r = +0.84 and r = 

314 +0.91).Moreover, Bogdanis et al. (1996) did not detect any correlation between power output 

315 recovery and concentration of any other metabolites (lactate, hydrogen and dihydrogen 

316 phosphate ions). Nevertheless, Bogdanis’ observations find that there was no correlation between 

317 the percentage of PCr and MPO during the last 20-s of the sprint (Bogdanis et al., 1996). In 

318 addition, the observations ofBogdanis that an independent study by Hirvonen et al. (1987) 

319 established, in a series of maximal cycling sprints (40 – 100m), that skeletal PCr stores were 

320 severely drained after 5 to 7-s. Interestingly, the elite sprinters used more of their available PCr 
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321 stores over the first 5 to 7-s than sprinters of slightly less ability. In addition, in this mathematical 

322 modelling, it was found that the rate constant for the PCr anaerobic metabolic energy process 

323 (0.31s-1) as determined in this research was greater than that of the oxygen-independent 

324 glycolysis metabolic process (0.11s-1). This observed metabolic behaviour could be explained 

325 due to more time taken for ATP to be produced from the oxygen independent glycolysis process 

326 than that from the PCrutilisation energy process (Baechle and Earle, 2000; Wilmore and Costill, 

327 2005).

328

329 Conclusion

330 In this research, the developed mathematical model for calculating the total anaerobic powers for 

331 all the athletes was very good as the root mean square error was very low. It was found that 95% 

332 of the chemical energy during 100 metres sprint running was derived from the anaerobic 

333 processes. PCr utilisation sub anaerobic system plays a very important part in the sprint 

334 performance of the 100m track and field elite athletes as the reduce in speed synchronised with 

335 the highest rate of decay of the PCr Utlisation energy curve.

336
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Table 1(on next page)

Table 1

10-m split data intervals for the 100m sprint race in Sevilla Spain 1999. (Rivera, A.; Pagola, I.;

Ferreruela, M.; Martín, A.; Rocandio, "Biomechanical Analysis of the World Championships in

Athletics Sevilla'99: 100, 200, 400m sprint events". New Studies in Athletics, 16 1\2 (2001)).
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1

Distance covered/metres and the split times in seconds

10 20 30 40 50 60 70 80 90 100
Sprinter

Ranking

number

1 1.86 2.89 3.81 4.69 5.55 6.39 7.24 8.09 8.94 9.80

2 1.88 2.88 3.79 4.68 5.53 6.38 7.24 8.10 8.96 9.84

3 1.87 2.89 3.81 4.71 5.57 6.41 7.29 8.18 9.06 9.97

4 1.91 2.93 3.85 4.76 5.63 6.50 7.36 8.24 9.12 10.00

5 1.87 2.89 3.81 4.71 5.60 6.47 7.33 8.22 9.11 10.02

6 1.91 2.95 3.88 4.77 5.65 6.52 7.39 8.28 9.16 10.04

7 1.91 2.93 3.85 4.74 5.62 6.51 7.40 8.28 9.17 10.07

8 1.97 2.99 3.93 4.83 5.72 6.61 7.50 8.38 9.31 10.24

2

3

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26919v1 | CC BY 4.0 Open Access | rec: 9 May 2018, publ: 9 May 2018



Figure 1(on next page)

Figure 1

Mean anaerobic power of a particular elite athlete and how the maxima (m1, m2, and m3) are

being identified.
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Figure 2(on next page)

Figure 2

The flowchart diagrams summarise the mathematical model in simulating the various

anaerobic energy subsystems (Laurent and Locatelli, 2002; Ward-Smith and Radford, 2000).

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26919v1 | CC BY 4.0 Open Access | rec: 9 May 2018, publ: 9 May 2018



 

 

 

 

 

 

 

 

 

 

 

 

 

Chemical Energy 

produced from 

Anaerobic 

metabolism 

 

This chemical energy is also the sum of the 

energy from the anaerobic subsystems that are 

endogenous ATP, Phosphocreatine (PCr) 

utilisation and oxygen independent glycolysis 

that modelled using the gamma distribution. 

Chemical Energy 

produced from 

Anaerobic metabolism 

HeatEnergy, and 

Mechanical Energy 

(Kinetic Energy, Potential 

Energy and energy to 

overcome dragforce) 

Chemical 

Energy from 

aerobic 

metabolism 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26919v1 | CC BY 4.0 Open Access | rec: 9 May 2018, publ: 9 May 2018



Figure 3(on next page)

Figure 4

Total power, anaerobic power and aerobic power for all sprinters (n=8) are plotted vs.

finishing times excluding measured reaction times.
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Figure 4(on next page)

Figure 5

Normalised maximum rate of energy production of the first rank sprinter (Maurice Greene)

for each subsystem of the anaerobic metabolism vs. time excluding reaction times. The

arrows represent the x and y coordinates of the points of intersection of the anaerobic

subsystem curves.
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Figure 5(on next page)

Figure 6

The effect of increasing the percentage of energy released from the PCr utilisation anaerobic

subsystem for the first rank sprinter. The arrows represent the effect of increasing the

percentage of energy produced from the PCr anaerobic subsystem and the expected

finishing times for Maurice Greene.
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Figure 6(on next page)

Figure 7
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Figure 7(on next page)

Figure 3

(A) Velocity of all the 100m-dash elite sprinters (n = 8); (B) Velocity of all the 100m-dash

elite sprinters (n = 8) to show the change in velocity for each sprinter between time = 3s to

time = 11s.
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