A Review of Crypto Networks

Mian Zhang1 and Yuhong Ji2

1College of Art and Science, Roosevelt University
2College of Education and Human Development, Texas A&M University

Corresponding author:
Mian Zhang1

Email address: mzhang1@mail.roosevelt.edu

ABSTRACT

Bitcoin is a crypto currency system that has been rapidly adopted due to its anonymity and decentralized properties. Blockchain is the underpinning technology that maintains the Bitcoin transaction ledger. The blockchain network operates in a state of consensus, which automatically checks in with itself periodically. One of biggest innovation by Bitcoin system is that it is a new way to develop open networks. Anything that happens on the blockchain is a function of the network as a whole. Crypto networks represent a fundamental shift in the way our society transacts, organizes, and works with each other, which could be explained and deciphered by econophysics of the network itself. From a networking perspective, we reviewed a list of current literatures that studied the crypto networks, mostly Bitcoin transaction networks. We identified the potential research areas that would further provide insights into the design of a more resilient and secure crypto networks.

INTRODUCTION

Bitcoin was originally proposed as a peer-to-peer electronic cash system without relying on the trust of any third parties \cite{1}. It also solves the problem of double-spending. The intrinsic decentralized characteristic of blockchain allows it to propagate information in a peer-to-peer manner. The decentralized approach is consistent in all aspects of the Bitcoin system including data generation, storage, dissemination, and acknowledgement. Blockchain and crypto-networks as the underlying technologies that power Bitcoin has many advantages over traditional internet services. As a self-auditing ecosystem of a digital value, the Bitcoin blockchain network reconciles every transaction that happens in ten-minute intervals.

Unlike traditional giant internet service providers such as Google and Facebook who completely dominate the way to distribute the wealth, the fair distribution of blockchain is built in the protocol from the born time. The blockchain potentially cuts out the middleman for these types of transactions. This enables the developers and users of the platform to grow in a healthy manner, since all the values created by network participants go back to the value creators. Like any other networks, Bitcoin network is no exception when it comes to malicious attacks. One of the notable form of attack against Bitcoin network topology is eclipsing attack by using information propagation knowledge \cite{2}. Hence, it is critical that future crypto-network should be designed as both robust and secure by learning and improving early crypto-network such Bitcoin. We review some preliminary researches in this domain, and in particularly from the perspective of network science and engineering.

A NETWORKING PERSPECTIVE

Bitcoin as fully decentralized global currency has been analyzed from a networking perspective. As information flows among different nodes in bitcoin network, Bitcoin transaction is slow due to the fact that information needs to be propagated across the network to synchronize the ledger replicas. The slow dissemination of information exposes a potential security hole for the malicious attacks. This also causes the blockchain to fork frequently. Some measures have been implemented to mitigate the number of the blockchain forks in the network by 50%. However, a long-term solution is still needed \cite{2}. Bitcoin peer-to-peer network topology can be inferred and utilized by malicious attackers to perform precise attacks such as eclipsing attack. By observing the flooding process of the information flow, a flooding
network’s topology can be inferred. A network topology inference method has been proposed along with a proof of concept in real network [3].

Bitcoin’s decentralized fair peer-to-peer operation can be attributed to the notion of peers being able to reach a global consensus. The broadcast substrate in Bitcoin protocol is the key components by which peers can communicate with each other. Nodes have been identified to have disproportionate influence on the entire bitcoin network. An efficient and scalable technique called AddressProbe has been proposed to scan the entire network in minutes regularly without affecting bitcoin peers [4]. Estimably 2% of the nodes accounts 75% of mining power. A resilient topological structure has been identified, although it does not resemble a traditional random graph behavior. The degree distribution of Bitcoin’s transaction graph converges to a scale-free network over time [5]. A more comprehensive study of network characteristics could be extended to various centrality metrics and temporal graphs [6–15]. Spectral clustering properties of the network can also be studied on Bitcoin transaction networks to compare with scale-free networks [16]. A detailed analysis of Bitcoin network has been performed in [17]. Two phases of bitcoin transaction network has been observed. Before Bitcoin gets popular, large fluctuations in network characteristics such as degree distribution have been observed. After Bitcoin gets wide public attention, the network involvement is driven by preferential attachment.

The same as Bitcoin, Ethereum is a decentralized public blockchain network [18]. Although there are some significant technical distinctions between them, the most important difference is that Bitcoin and Ethereum differ substantially in purpose and capability. While the Bitcoin blockchain is primarily used to keep track of digital currency ownership, the Ethereum blockchain concentrates on executing the programming code of any decentralized application. In the Ethereum blockchain, instead of mining for bitcoin, miners work to earn Ether, a type of crypto token that fuels the network. Denial-of-service attacks have been identified by exploiting an Ethereum Virtual Machine instruction. The attacker floods the network with that instruction, causing a decrease of its computational power, and a substantial slowdown to the blockchain synchronization process [19].

CONCLUSIONS AND FUTURE WORK

We reviewed the existing researches of crypto networks from a networking science perspective. A list of graph attributes have been studied. The distribution pattern of the currency has been identified from an econophysics perspective. Ethereum and Bitcoin networks are the two major crypto-networks under most extensive research. We expect more researches into other types of crypto-networks. Other aspects of crypto network security could also be studied. Machine learning techniques can be applied to predict the network attack probabilities in the future [20–24].

REFERENCES

