
An artificial immune system approach to automated program
verification: Towards a theory of undecidability in biological
computing

An immune system inspired Artificial Immune System (AIS) algorithm is presented, and is

used for the purposes of automated program verification. Relevant immunological

concepts are discussed and the field of AIS is briefly reviewed. It is proposed to use this

AIS algorithm for a specific automated program verification task: that of predicting shape

of program invariants. It is shown that the algorithm correctly predicts program invariant

shape for a variety of benchmarked programs. Program invariants encapsulate the

computability of a particular program, e.g. whether it performs a particular function

correctly and whether it terminates or not. This work also lays the foundation for applying

concepts of theoretical incomputability and undecidability to biological systems like the

immune system that perform robust computation to eliminate pathogens.
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Abstract — An immune system inspired Artificial Immune
System (AIS) algorithm is presented, and is used for the
purposes of automated program verification. Relevant
immunological concepts are discussed and the field of AIS is
briefly reviewed. It is proposed to use this AIS algorithm for
a specific automated program verification task: that of
predicting shape of program invariants. It is shown that the
algorithm correctly predicts program invariant shape for a
variety of benchmarked programs. Program invariants
encapsulate the computability of a particular program, e.g.
whether it performs a particular function correctly and
whether it terminates or not. This work also lays the
foundation for applying concepts of theoretical
incomputability and undecidability to biological systems like
the immune system that perform robust computation to
eliminate pathogens.

Index Terms — Artificial Immune System, Evolutionary
Computing, Program Invariant, Automatic Program
Verification, Shape of Invariant, Undecidability,
Incomputability, Biological Computing, Immuno-computing

I. INTRODUCTION

he biological immune system has proved to be a rich
source of inspiration for computing [1-7, 28-35].

Artificial immune systems take inspiration from the immune
system to provide powerful metaphors for robust and
distributed computing.

In this paper, I employ an immune system inspired
approach to solve a problem in program verification: that of
finding a program invariant.

An invariant of a program is a mathematical formula that
captures the semantics of the program [8] and is used in
automatic program verification. The shape of an invariant is
its approximate polynomial representation. Once the shape

of the invariant is predicted, deterministic techniques can be
used to generate the exact form of the invariant [9]. Hence,
the prediction of invariant shape is of paramount importance
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for program verification.

An artificial immune system algorithmic framework is
proposed to carry out the machine-learning task of predicting

invariant shape from an instance of a program. Program
invariants encapsulate the computability of a particular
program, e.g. whether it performs a particular function
correctly and whether it terminates or not. We hope this
work will also lay the foundation for applying concepts of
theoretical incomputability and undecidability to biological
systems like the immune system that perform robust

computation to eliminate pathogens [28-35].

II. INTRODUCTION TO CLONAL SELECTION THEORY

A chemical species that can be recognized by the adaptive
immune system is known as an antigen (Ag). When an
organism is exposed to an Ag, some specialized immune

system cells called B cells respond by producing chemicals
called antibodies (Ab’s). Ab’s are molecules attached
primarily to the surface of B cells whose aim is to recognize
and bind to Ag’s. By binding to these Ab’s the Ag stimulates
the B cell to proliferate and mature into plasma cells that
secrete Ab. An organism is expected to encounter a given Ag
repeatedly during its lifetime. The effectiveness of the
immune response to secondary encounters is enhanced by the

presence of memory cells associated with the first infection,
capable of producing high-affinity Ab’s after repeat
encounters. Such a strategy ensures that the speed and
accuracy of the immune response becomes successively

higher after each infection. This gives rise to associative
memory where the stored pattern is recovered through the
presentation of an incomplete version of the pattern. The
repertoire of activated B cells is diversified [20]–[23] and B-

cells with higher affinity for the antigen are selected to enter
the pool of memory cells.
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III. AUTOMATED PROGRAM VERIFICATION AND PROGRAM

INVARIANTS

The field of automated program verification started with

seminal work by Floyd [24] and Hoare [25]. They introduced
the concept of a loop invariant: a mathematical formula that
remains true throughout the execution of a loop. The loop
invariant completely captures the semantics of the loop, and
along with the program preconditions and postconditions,
can be used to show correctness of the program [25].

Previous work [8] has shown how the loop invariant for a
particular program can be generated by a priori agreement

on the shape of the invariant: the approximate polynomial
representation of the invariant. However, the shape of the
loop invariant can be hard to deduce for many programs.
The following shows an example program:

{A ≥ 0, B ≥ 0}
x := A;
y := B;
z := 0;

while x > 0 do
if odd(x) then z := z + y;
y := 2 * y;
x := x/2;

end while

Assuming the shape of the program invariant as

Ishape: Ax + By + Cz + Dxy + Eyz + Fxz + Gxyz + H = 0,
(where A, B, C, D, E, F, G and H are constants or program
variables), using quantifier elimination [8] the final loop
invariant is Ifinal: z + xy - AB = 0. Coupled with a

precondition P: {A ≥ 0 ^ B ≥ 0 ^ x = A ^ y = B ^ z = 0}

and a postcondition Q: {z = A*B}, it can be shown that this

invariant is consistent with Q i.e. the program correctly
multiplies 2 numbers A and B and stores the result in z.

Finding the precise shape of the loop invariant is generally

a non-trivial process and the AIS algorithm proposed aims to
use “cues” from the program to make informed predictions
about the invariant shape and ultimately help in automated
program verification.

IV. PROPOSED COMPUTATIONAL FRAMEWORK

Here we propose a computational framework for
predicting program invariants. An AIS algorithm will be
used to generate shapes of program invariant. Initially the
AIS will be trained on programs, for which the shape of
invariant is known. Then a program will be presented to the
AIS and it will try to predict the form of the invariant.

An AIS approach presents many advantages over a
traditional Machine Learning (ML) approach. In an AIS,

recognition can be sloppy [26] i.e. if it has previously
recognized program P (with an invariant I), then a new
program P’ “similar” to P, can also be recognized, and an
invariant I’ can be generated (that is similar in form to I).

This is akin to our immune system recognizing a previously

encountered pathogen (program), and generating antibodies
(invariant) similar to the previously produced antibodies.

The natural immune system produces antibodies by a
process of mutation, and the same process is emulated in AIS
algorithms. A candidate solution (invariant) will be
generated, and then the solution will be improved by in-
silico mutation.

Previously encountered programs and their corresponding
invariants will be stored as memory B cells. When a program
similar to a stored one is presented, the time taken to
generate the invariant will be shorter than the time taken to

generate the original invariant (secondary response).

V.COMPONENTS OF THE AIS

Here we define the specific components of the AIS have
to be determined. What is the program analogue of an
antigen and an antibody?

A program fragment is defined to be either an assignment
statement, a statement containing an iteration construct (for,
while, repeat, etc), or a statement having a conditional check

(if <condition> then) e.g. x := x + 2, and while (x > 0) do,
and if (x > 3) then, are all program fragments.

The analogue of an antigen is a program fragment and the
corresponding analogue of an antibody is an invariant for the

program fragment it recognizes. Hence, the AIS will be
presented with an antigen (program fragment), and the
immune system cells will either produce the antibody
(invariant) immediately if it has encountered this antigen

before, or will undergo mutations to generate the correct
antibody (invariant).

The individual invariants for each program fragment will
then be recombined to generate the invariant for the whole
program.

VI. A SHAPE SPACE AND ANTIGENIC DISTANCE FOR

PROGRAMS

We need a measure of distance between disparate program
fragments, so that the AIS can recognize them and generate
an antibody in response. For a natural immune system, the
antibody combining region relevant to antigen binding can
be specified by a number of “shape” parameters [27] which

denote the size and shape of the combining site or physical
characteristics of the amino acids.

If there are N shape parameters, they can be combined into
a vector, and antibody combining sites and antigenic

determinants can be described as points Ab and Ag, in an N-
dimensional Euclidean vector-space called shape space [27].

Antigenic distance between 2 antigens is the distance in
shape space [14] between them e.g. ||Ag1 - Ag2|| is the

distance between antigens Ag1 and Ag2 in shape space S.
The antibody distance is the distance ||Ab1 - Ab2|| in shape

space between 2 antibodies Ab1 and Ab2.
I define the program fragment shape space as the N-

dimensional Euclidean vector space of program fragment
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characteristics like identifier name, exponent on the
identifier, operator, etc. I define the corresponding program
fragment antigenic distance as the distance ||P1 - P2|| between

2 program fragments P1 and P2 in program fragment shape
space. The program fragment antibody (invariant) distance
is the distance ||I1 - I2|| between 2 program fragments I1 and

I2 in program fragment shape space.

Let us consider 2 program fragments P1: x := x + 2 and
P2: t := t + 2. The corresponding antibody (invariant) for

P1 is I1: x = x + 2n, where n is a program variable or
constant (since upon n - 1 iterations, x gets the value x + 2n).

Let P1 and I1 constitute the training set. Then the AIS should
be able to produce an antibody (invariant) for the program

fragment P2 even though it has never encountered this

antigen (program) before. The correct invariant is I2 : t = t +
2n (where n is a program variable or constant) and this is

indeed what the AIS generates by somatic hypermutation.
The program P1 differs from P2 by 1 mutation (replacing x
by t on both sides of the assignment) i.e. the program

fragment antigenic distance ||P1 - P2|| is 1. The invariants I1

and I2 also differ by 1 mutation (replacing x by t) i.e. the

program fragment antibody (invariant) distance ||I1 - I2|| is 1.

Hence, when an AIS trained on (P1, I1) is presented with P2,

it produces I2 using one mutation from I1 (Fig. 1).

Fig. 1. AIS mutation from the assignment statement Ag1 (x := x +
2;) and invariant Ab1 (x + 2n) to Ag2 (t := t + 2;) and
invariant Ab2 (t + 2n) in shape space S.

VII. PROPOSED ALGORITHM

In this section we outline the proposed AIS algorithm. The

AIS would be trained on the antigen (program fragment) P1:

x := x + 2 and given the antibody (invariant) I1: x = x + 2n
as a solution (training phase). The AIS stores the solution I1

as a memory detector.
When an entire program (as opposed to a program

fragment) is presented to the AIS, it breaks the program up
into program fragments (all the assignment statements in the

program), and then “presents” each of these antigens
(fragments) to itself.

If an antigen (program fragment) P2 “similar” to P1 is

detected, it will generate I1 as a candidate solution. If I1 itself
does not act as an invariant, the AIS will keep on carrying

out randomly on I1 until it evolves the final antibody

(invariant) I2 that will act as the invariant for the program
presented (somatic hypermutation phase). This is akin to
how the natural immune system mutates B cell receptors and

ultimately produces a receptor that can recognize the antigen.
The algorithm may also use some heuristics to guide the
mutation process e.g. if an antigen (program fragment) of the
form p := p + 5 is encountered, it would search its

repertoire for a program fragment that is closest in program
shape space to this e.g. x := x + 5 is closer to the

presented antigen (1 mutation) than y := y + 7 (2

mutations). Additionally, we will have to ensure that each
mutation is sound i.e. there is no such mutation that would
generate a wrong invariant for the corresponding mutated

program fragment. In the last step, the AIS incorporates Ii

into its memory pool (learning phase).

The AIS then presents the next program fragment P3,
generates the invariant I3 and stores it in the memory
population, and so on until all program fragments have been
presented. Finally, the AIS combines all invariants linearly,

producing a polynomial (shape of invariant) that captures the
semantics of the entire program.

VIII.RESULTS

The AIS (trained on P1, I1) presented with suites of entire
programs would successfully generate the shape of the
invariant. The first program is shown below:

(x,y,u,v) := (a,b,b,0);
x := a; y := b;
u := b; v := 0;

while (x ≠ y) do
while (x > y) do x := x - y; v := v + u;
end while;
while (x < y) do y := y - x; u := u + v;
end while;

end while

This program takes 2 positive integers a and b, and
calculates their g.c.d and l.c.m. The AIS presents itself with

each assignment statement sequentially. The first 4
assignment statements (lines 1-2) have no invariant, since
they are not contained inside any loop. Hence, the AIS does
not generate any invariant for them. The progress of the
algorithm on the next 2 assignment statements (x := x -

y; v := v + u;) is shown below in Fig. 2.
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Fig. 2. AIS mutations for the assignment statements x := x - y; v
:= v + u;

The AIS starts from the training set (P1: x := x + 2 & I1:
x = x + 2n) and then mutates the operators and operands to

create the invariant I3: x = x - yn for the program fragment
P3: x := x - y. The AIS stores I3 in the memory population
and for the next assignment statement (v := v + u;), it

starts mutating from (P3,I3) until it creates the invariant I4: v

= v + un for the program fragment P4: v := v + u.
For the next set of assignment statements (y := y - x;

u := u + v;), the AIS then generates the invariants I5: y =

y - xn and I6: u = u + vn (not shown). The 4 invariants I1, I2,

I3 & I4 are then combined linearly (with n being substituted

for all program variables, namely x, y, u, v) to yield the
invariant shape Ishape: Ax + Bv + Cy + Du + Exy + Fy2 +
Guy + Hvy + Jxu + Ku2 + Lvu + Mx2 + Nvx + Pv2 + Q =
0, where A, B, C, D, E, F, G, H, J, K, L, M, N, P and Q are

constants or program variables. This is the correct invariant
shape, since using quantifier elimination [8], the final

invariant yielded is Ifinal: xu + yv - ab = 0 (with A = B = C =
D = E = F = G = K = L = M = N = P = 0, Q = -ab, H = J
= 1).

Finally we test the AIS on another standard program [8]
shown below:

{A ≥ 0, B ≥ 0} 
x := A;
y := B;
z := 1;

while y > 0 do
if odd(y) then y := y - 1; z := x * z;
else x := x * x; y := y/2;

end while

This program calculates AB and stores it in z. The AIS would

calculate the invariant for the program fragment P5: z := x *

z as I5: z = xn * z. For the program fragment P6: x := x * x, it
generates the invariant I6: x = exp(x, exp(2,n)), where exp()

is the exponentiation function. Combining all the program
fragment invariants, gives us the following invariant shape:

Ishape: Azxx + Bzxy + Czxz + D.exp(x,exp(2,x)) +
E.exp(x,exp(2,y)) + F.exp(x,exp(2,z)) +G = 0.
This is the exact shape of the invariants, since quantifier
elimination yields the final invariant

Ifinal: zxy = AB (with A = C = D = E = F = 0, G = -AB).

We can now readily verify the working of the program.
When the loop terminates, the invariant is true and y = 0,
which yields the correct postcondition: z = AB.

IX. COMPUTATIONAL COMPLEXITY AND OTHER THEORETICAL

CONSIDERATIONS

The proposed algorithm would use a sequence of
mutations, guided by heuristics, to generate the correct
invariant for a program invariant. We can calculate the
computational complexity if each mutation is sound and the
algorithm for finding an invariant for a program fragment is
guaranteed to terminate within n steps, where n is the number

of elements in a program fragment e.g. the program fragment
y := y + 7 has 3 elements (‘y’, ‘+’ and ‘7’) and the

algorithm will generate the correct invariant in at most 3
mutations in program shape space. Hence if the above

assumptions are correct the proposed algorithm will have a
computational complexity of O(n) where n is the number of
elements in the presented program fragment.

X.CONCLUSION AND FUTURE WORK

We have proposed a computational framework for an
immune system inspired approach for automated program
verification. The AIS algorithm breaks up a program into
fragments and presents them to itself. It then generates an

invariant in response to each program fragment and
ultimately combines them to create the general shape of the
invariant. We show how this approach can be used to
generate the general form of the program invariant for non-

trivial benchmark programs [8].
Future work will focus on theoretical research into

whether there are classes of programs for which a linear
combination of individual program fragment invariants might
not generate the invariant for the entire program. Another
avenue of future investigation would be to look into how
mutations on exponentiation would affect the invariant e.g. x
:= x + 2 getting mutated to x := x2 + 2. Lastly, our approach

does not consider program fragments having iteration
constructs like while, repeat, etc. and future research will
investigate how incorporation of such program fragments can
enhance the predictive power of the algorithm.

A lot of work has been done on incomputability,
undecidability and program termination in theoretical
computer science. The best characterization of this comes in
the form of the Halting Problem formulated by Alan Turing.

Biological systems also perform computing, e.g. the immune
system computes the most efficient way to eliminate
pathogens in a timely manner without harming the host [28-
35]. However it has been more difficult to define
incomputability and undecidability for biological systems.

Program invariants encapsulate the computability and
correctness of a particular program, e.g. what it does and
whether it terminates or not. This work lays the foundation of

applying computability to biological systems especially the
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immune system that performs computation. The present work
also applies immune system inspired algorithms to find
program invariants and prove correctness and termination. In
summary, the present work applies the theoretical concepts
of undecidability to immuno-computing and possibly
biological computing in general.
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