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Low-cost Illumina sequencing of clinically-important bacterial pathogens has generated thousands of

publicly available genomic datasets. Analyzing these genomes and extracting relevant information for

each pathogen and the associated clinical phenotypes requires not only resources and bioinformatic skills

but organism-specific knowledge. In light of these issues, we created Staphopia, an analysis pipeline,

database and Application Programming Interface, focused on Staphylococcus aureus, a common

colonizer of humans and a major antibiotic-resistant pathogen responsible for a wide spectrum of hospital

and community-associated infections.

Written in Python, Staphopia9s analysis pipeline consists of submodules running open-source tools. It

accepts raw FASTQ reads as an input, which undergo quality control filtration, error correction and

reduction to a maximum of approximately 100x chromosome coverage. This reduction significantly

reduces total runtime without detrimentally affecting the results. The pipeline performs de novo

assembly-based and mapping-based analysis. Automated gene calling and annotation is performed on

the assembled contigs. Read-mapping is used to call variants (single nucleotide polymorphisms and

insertion/deletions) against a reference S. aureus chromosome (Type strain, N315).

We ran the analysis pipeline on more than 43,000 S. aureus shotgun Illumina genome projects in the

public ENA database in November 2017. We found that only a quarter of known multi-locus sequence

types (STs) were represented but the top ten STs made up 70% of all genomes. MRSA (methicillin

resistant S. aureus) were 64% of all genomes. Using the Staphopia database we selected 380 high

quality genomes deposited with good metadata, each from a different multi-locus sequence type, as a

non-redundant diversity set for studying S. aureus evolution. In addition to answering basic science

questions, Staphopia could serve as a potential platform for rapid clinical diagnostics of S. aureus isolates

in the future. The system could also be adapted as a template for other organism-specific databases.
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13 Abstract
14 Low-cost Illumina sequencing of clinically-important bacterial pathogens has generated 
15 thousands of publicly available genomic datasets. Analyzing these genomes and 
16 extracting relevant information for each pathogen and the associated clinical 
17 phenotypes requires not only resources and bioinformatic skills but organism-specific 
18 knowledge. In light of these issues, we created Staphopia, an analysis pipeline, 
19 database and Application Programming Interface, focused on Staphylococcus aureus, a 
20 common colonizer of humans and a major antibiotic-resistant pathogen responsible for 
21 a wide spectrum of hospital and community-associated infections. 
22

23 Written in Python, Staphopia9s analysis pipeline consists of submodules running open-
24 source tools. It accepts raw FASTQ reads as an input, which undergo quality control 
25 filtration, error correction and reduction to a maximum of approximately 100x 
26 chromosome coverage. This reduction significantly reduces total runtime without 
27 detrimentally affecting the results. The pipeline performs de novo assembly-based and 
28 mapping-based analysis. Automated gene calling and annotation is performed on the 
29 assembled contigs. Read-mapping is used to call variants (single nucleotide 
30 polymorphisms and insertion/deletions) against a reference S. aureus chromosome 
31 (Type strain, N315).
32

33 We ran the analysis pipeline on more than 43,000 S. aureus shotgun Illumina genome 
34 projects in the public ENA database in November 2017. We found that only a quarter of 
35 known multi-locus sequence types (STs) were represented but the top ten STs made up 
36 70% of all genomes. MRSA (methicillin resistant S. aureus) were 64% of all genomes. 
37 Using the Staphopia database we selected 380 high quality genomes deposited with 
38 good metadata, each from a different multi-locus sequence type, as a non-redundant 
39 diversity set for studying S. aureus evolution.
40 In addition to answering basic science questions, Staphopia could serve as a potential 
41 platform for rapid clinical diagnostics of S. aureus isolates in the future. The system 
42 could also be adapted as a template for other organism-specific databases.

43
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44 Introduction
45 Staphylococcus aureus is a common and deadly bacterial pathogen that has been 
46 frequently investigated by whole genome sequencing over the last decade. It was the 
47 subject of arguably the first large scale bacterial genomic epidemiology study using 
48 Illumina sequencing technology (Harris et al., 2010). The cumulative number of Illumina 
49 shotgun genome projects deposited in public repositories [the National Center for 
50 Biotechnology Information Short Read Archive (NCBI SRA) and the European 
51 Nucleotide Archive (ENA)] had grown to almost 50,000 by March 2018 (Figure 1). S. 

52 aureus is therefore on the front edge of a cohort of bacterial species that are acquiring 
53 broad whole genome shotgun coverage, offering possibilities of new types of large scale 
54 analysis.
55

56 S. aureus is a Gram-positive bacterium with a chromosome of ~2.8 Mbp. Plasmid 
57 content varies between strains. A multi-locus sequence typing (MLST) scheme that 
58 assigns each strain a 8sequence type9 (ST) based on seven core genes alleles has 
59 proven a robust way of describing individual strain genotypes and membership of larger 
60 8clonal complexes9 (CCs) (Planet et al., 2016). The accumulated public S. aureus 
61 genome datasets present an opportunity for investigating basic questions about how 
62 genetic variations that cause antibiotic resistance evolve within populations and how 
63 long genes traded by horizontal gene transfer persist in populations. However, there 
64 has been a problem of access, as few public tools fill the niche of providing fine scale 
65 access to very large datasets from a pathogen species. For example, PATRIC (Wattam 
66 et al., 2014) and BIGSdb (Jolley & Maiden, 2010) web based analysis sites focus on 
67 high quality annotation and complete genome MLST (cgMLST), respectively, while 
68 Aureowiki (Fuchs et al., 2017) and PanX (Ding, Baumdicker & Neher, 2018) provide 
69 very detailed information on a smaller number of strains. In this study we describe the 
70 creation of Staphopia, an integrated analysis pipeline, database and Application 
71 Programming Interface (API) to analyze S. aureus genomes.
72

73 Materials & Methods

74 Staphopia Analysis Pipeline

75 The Staphopia Analysis Pipeline (StAP) processed FASTQ files from a single genome 
76 through quality control steps and bioinformatic analysis software. StAP ( 
77 https://github.com/staphopia/staphopia-ap/) consisted of custom Python3 scripts and 
78 open source software organized by the the Nextflow (Di Tommaso et al., 2017) 
79 (v0.28.2) workflow management platform (Figure 2). When available we used 
80 BioConda (Grüning et al., 2017) to install the open source software. Summary statistics 
81 of the original input and subsequent downstream results files were collected at each 
82 step of the pipeline. For portability, StAP was wrapped in a Docker container. The 
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83 version of the pipeline used in this work was Docker Image Tag: 112017 
84 (https://hub.docker.com/r/rpetit3/staphopia/). 
85

86 The input to StAP was either single or paired end FASTQ file (or files). StAP contained 
87 an option that allowed FASTQ data to be pulled from the ENA based on the experiment 
88 accession number (ena-dl v0.1, https://github.com/rpetit3/ena-dl). A MD5 hash 
89 (md5sum) was generated from the input FASTQ data and cross-referenced against a 
90 list generated from processed genomes to prevent reanalysis of the same input. BBduk 
91 (Bushnell, 2016) (v37.66) was used to filter out adapters associated with Illumina 
92 sequencing and trim reads based on quality. Read errors were corrected using SPAdes 
93 (Bankevich et al., 2012) (v3.11.1). Based on the corrected reads, low quality reads were 
94 filtered out and the total dataset was subsampled to a maximum of 281 Mbases (100x 
95 coverage of the N315 reference chromosome (Kuroda et al., 2001)) with illumina-
96 cleanup (v0.3, https://github.com/rpetit3/illumina-cleanup/). This file (or files, if paired 
97 end) we termed <processed FASTQ= or <pFASTQ=.
98

99 pFASTQ reads were assembled de novo using SPAdes (Bankevich et al., 2012) 
100 (v3.11.1). SPAdes also marked assembles as putative plasmids based on evidence 
101 such as relative read coverage (Antipov et al., 2016). Summary statistics of the 
102 assembly are created using the assembly-summary script 
103 (https://github.com/rpetit3/assembly-summary). A BLAST nucleotide database was 
104 created from the assembled contigs to be used subsequently for sequence query 
105 matching. Open reading frames and their putative functions were predicted and 
106 annotated using PROKKA (Seemann, 2014) (v1.12) and its default database. 
107

108 The S. aureus type strain N315 (Kuroda et al., 2001) chromosome (ST5 MRSA; 
109 accession NC_002745.2; length 2,814,816 bp) was used as a reference for calling 
110 consensus SNPs and indels in the pFASTQ reads using the GATK (McKenna et al., 
111 2010) (v3.8.0) pipeline. GATK pipeline also incorporated BWA (Li & Durbin, 2009) 
112 (v0.7.17), SamTools (Li et al., 2009) (v1.6) and PicardTools (v2.14.1, 
113 http://broadinstitute.github.io/picard/) software. Identified variants were annotated using 
114 the vcf-annotator script (v0.4, https://github.com/rpetit3/vcf-annotator). Jellyfish (Marçais 
115 & Kingsford, 2011) (v2.2.6) was used to count k-mers of length 31 base pairs (31-mers) 
116 in the pFASTQ file. If the pFASTQ was paired-end, Ariba (Hunt et al., 2017) (v2.10.2) 
117 was used to make antibiotic resistance and virulence predictions. Resistance 
118 phenotypes were predicted using the MegaRes reference database (Lakin et al., 2017) 
119 and virulence using the Virulence Factor Database (Chen et al., 2016) core dataset.
120

121 MLST was determined by two or three methods depending on the whether the pFASTQ 
122 was paired end. All methods used the S. aureus MLST allele sequence database 
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123 downloaded from http://saureus.mlst.net/ (November 2017). Alleles for each for each of 
124 the seven loci were aligned against the assembled genome using BLAST (Altschul et 
125 al., 1990, 1997) (v2.7.1+). Alleles and sequence type (ST) were determined based on 
126 perfect matches (100% nucleotide identity with no indels). We also used the MentaLiST 
127 (Feijao et al., 2018) (v0.1.3) software to call MLST and cgMLST (complete genome 
128 MLST) based on k-mer matching of the alleles to the pFASTQ file. Unlike the BLAST-
129 based MLST method, MentaLiST did not require exact matches to alleles to predict a 
130 ST. If the pFASTQ was paired-end, Ariba (Hunt et al., 2017) (v2.10.2) also determined 
131 MLST alleles and ST. The default ST call for each genome was determined in the 
132 following order: agreement between each method, agreement between MentaLiST and 
133 Ariba, agreement between MentaLiST and BLAST, agreement between Ariba and 
134 BLAST, Ariba alone without a novel or uncertainty call, MentaLiST alone, and finally 
135 BLAST alone.
136

137 Evidence for SCCmec predictions were based on multiple approaches. The primary 
138 approach was to align the primers developed for PCR-based SCCmec typing against 
139 the assembled genome using BLAST (Altschul et al., 1990, 1997; Zhang et al., 2005; 
140 Chongtrakool et al., 2006; Milheiriço, Oliveira & de Lencastre, 2007; Kondo et al., 2007) 
141 (v.2.7.1+). Based on both primer pairs for a given amplicon having a perfect match, an 
142 SCCmec type was assigned following the Kondo et. al. algorithm (Kondo et al., 2007). 
143 We labelled a genome <MRSA= only if there was at least one match to mecA specific 
144 primer but no conclusive SCCmec assignment. We also aligned proteins associated 
145 with SCCmec are also aligned against the assembled genome using TBLASTN and 
146 mapped the pFASTQ BWA (Li & Durbin, 2009) (v0.7.17) to to each SCCmec cassette 
147 using BWA. The overall cassette and mec region coverage statistics were determined 
148 as well as the per-base coverage determined for each cassette using 
149 genomeCoverageBed (Quinlan & Hall, 2010) (v2.26.0). The methods described above 
150 were based on on the 11 SCCmec types currently listed in the http://www.sccmec.org (I 
151 - XI) and hence did not include recently described types XII and XIII (Wu et al., 2015; 
152 Kaya et al., 2018).
153

154 Web Application, Relational Database and Application Programming Interface

155 We used Django (v2.0), a Python web framework, to develop a PostgreSQL (v10.1) 
156 backed relational database for storing the results from the analysis pipeline 
157 (Supplemental Figure 1). A Django application was created for each module of the 
158 pipeline, automating the creation of database tables for the results. Python scripts 
159 building off Django were developed for insertion of results from each StAP module or 
160 the StAP as a whole. A web front-end was developed (staphopia.emory.edu) using the 
161 Bootstrap (v4.0) and jQuery (v3.2.1) web frameworks. We used the Django REST 
162 framework to develop an extensive application programming interface (API) that allowed 
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163 users to create queries accessing multiple samples. We also developed an R package, 
164 Staphopia-R (https://github.com/staphopia/staphopia-r), to programmatically access the 
165 API. The API and its endpoints were documented to allow users to further develop their 
166 own packages in a language of their choice. The source code for our web application 
167 was made available at https://github.com/staphopia/staphopia-web/. 
168

169 Processing Public Data

170 We used the Cancer Genomics Cloud (CGC) Platform, powered by Seven Bridges 
171 (http://www.cancergenomicscloud.org/), to process S. aureus genomes through StAP in 
172 November 2017. CGC allows users to create custom workflows based on Docker 
173 containers, then execute these workflows on the Amazon Web Services (AWS) cloud 
174 platform. We obtained a list of publicly available S. aureus sequencing projects from the 
175 ENA web API using the following search term:
176

177  <tax_tree(1280) AND library_source=GENOMIC AND (library_strategy=OTHER 

178 OR library_strategy=WGS OR library_strategy=WGA) AND 

179 (library_selection=MNase OR library_selection=RANDOM OR 

180 library_selection=unspecified OR library_selection="size fractionation")=.

181

182 CGC opened AWS r3.xlarge instances (30.5GB RAM, 4 processors) that downloaded 
183 FASTQ files from the ENA using ena-dl for each genome and ran the StAP pipeline. 
184 Results files were returned to the CGC, then uploaded into the Staphopia database 
185 server.

186 Metadata Collection

187 We used the ENA API to download and store any information linked to the 8Experiment9, 
188 8Study9, 8Run9 and 8BioSample9 accessions into the database for each genome. We also 
189 determined each sample9s publication status using three approaches. #1 using NCBI9s 
190 Entrez Programming Utilities web API(Entrez Programming Utilities Help, 2010), we 
191 created a script to identify existing links between SRA, a mirror of ENA, and PubMed. 
192 For any links identified, we used the corresponding PubMed ID to extract information 
193 corresponding to the publication and stored them in the database. #2 for datasets not 
194 linked to a publication in SRA we searched for links in the text of scientific articles. We 
195 searched PubMed using the term, <Staphylococcus aureus=, limited to the years 
196 between and including 2010 (the date of the first publicly available Illumina data 
197 upload), and 2017. The saved results, stored as XML, were then loaded into Paperpile, 
198 a subscription-based reference management tool, and the corresponding main-text 
199 PDFs were automatically downloaded. This process did not include supplementary 
200 information files, which required a manual operation. For those articles in which a PDF 
201 could not be automatically downloaded, attempts to manually acquire the PDF were 
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202 made. Using the text search program 8mdfind9, available on Apple OS X, each 
203 accession (BioSample, Experiment, Study and Run) in the Staphopia database was 
204 used as a separate query to search all the PDF files. Experiment accessions with a 
205 corresponding PubMed ID were then stored in the database. In cases where a Study, 
206 BioSample or Run accession was identified in PDF text, each associated Experiment 
207 accession was linked to the corresponding PubMed ID. #3 a collection of PubMed 
208 articles with primary descriptions of S. aureus genome sequencing studies was 
209 manually curated 
210 (https://gist.github.com/plasmid02/48d1fb293c0d394ae650922cdaa62302). For these 
211 studies, the PDF and all available supplementary information were downloaded. The 
212 process of text-mining the articles and linking Experiment information to PubMed ID was 
213 repeated as described for approach #2.
214

215 Creating non-redundant S. aureus diversity set

216 Using available metadata, we selected a non-redundant diversity (NRD) set of genomes 
217 that were gold quality, linked to a publication and each had a unique ST. When more 
218 than one strain from a ST was available, we randomly selected one individual giving 
219 priority to samples with collection date, site of isolation and location of isolation fields 
220 filled.
221

222 Using predicted variants against N315, we extracted a list of genes that had complete 
223 sequence coverage (ie <core= genes) but no predicted indels. We extracted the 
224 reference gene sequence and created an alternative gene sequence with SNPs 
225 predicted in each sample. The alternative gene sequences were split into 31-mers. 
226 Presence on these 31-mers in the pFASTQ file were cross-validated using the Jellyfish 
227 (Marçais & Kingsford, 2011) tool. These reconstructed gene sequences or all genomes 
228 were stored in the database and made available through the API for rapid phylogenetic 
229 comparisons. 
230

231 A set of 31-mer validated genes in which no more than 3 samples contained 
232 unvalidated 31-mers were selected for phylogenetic analysis. The set of validated 
233 genes were extracted and concatenated into a single sequence for each sample and 
234 saved in multi-FASTA and PHYLIP formats. A guide tree was generated with IQ-Tree 
235 (Nguyen et al., 2015) (v8.2.11, -fast option) for identification recombination events with 
236 ClonalFrameML (Didelot & Wilson, 2015)(v1.11). A recombination free alignment was 
237 created with maskrc-svg (https://github.com/kwongj/maskrc-svg). We used IQ-Tree to 
238 generate the final maximum likelihood tree with the GTR model and bootstrap support. 
239 Bootstrap support was generated from 1000 UFBoot2 (Hoang et al., 2018) (ultrafast 
240 bootstrap) replicates. We annotated the tree using iTOL (Letunic & Bork, 2016).
241
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242 Results

243 Design of the Staphopia Analysis Pipeline and processing 43,000+ genomes

244 The Staphopia analysis pipeline (StAP; Figure 2) was written to automate processing of 
245 individual S. aureus genomes from Illumina shotgun data. The pipeline was designed as 
246 a series of modules running individual software packages, organized by the Nextflow (Di 
247 Tommaso et al., 2017) workflow language, which made it possible to run the entire 
248 pipeline or individual components as needed. The first step of the pipeline was to import 
249 single- or paired-end FASTQ files either as local files, or from the ENA database. We 
250 selected ENA over SRA due to ENA offering direct FASTQ downloads. Following 
251 quality-based trimming and down selection of the FASTQ to 281 Mbases (~100x 
252 coverage of the N315 reference chromosome (Kuroda et al., 2001), NC_002745.2), 
253 analyses were run on the raw processed FASTQ (pFASTQ) files directly, or on de novo 
254 genome assemblies constructed by the SPAdes program (see Methods for more 
255 details). We decided to down sample the input FASTQ files for two reasons: to manage 
256 the computational burden when running thousands of genome projects and also to 
257 achieve genome datasets with consistently sized pFASTQ input files. The threshold of 
258 ~100x coverage was chosen after preliminary studies showed that there was either 
259 small or no improvements in outcome for downstream assembly and remapping steps 
260 for input files > 100x but large increases in processing time and memory requirement. 
261 We created a Postgres database to store results from the StAP analysis and a web front 
262 end and a web API for mining the data. An R package (Staphopia-R) was written for 
263 interacting with the API and was used for most analysis presented in the results. 
264

265 In November 2017 there were 44,012 publicly-available shotgun sequencing projects 
266 with FASTQ files in ENA. Illumina technology was the dominant platform, accounting for 
267 99% of samples (N=43,972). Eighty-one percent (N=35,580) of them had at least 281 
268 Mbases sequence data. We processed all Illumina genomes through the StAP using 
269 cloud servers (please see Methods section). On r3.xlarge instances with 30.5 Gb RAM 
270 and 4 processors, the mean time to process a genome was 52 minutes with an 
271 interquartile range of 47 to 56 minutes (Figure 3).
272

273 Sequence and assembly quality trends

274 We identified samples that were likely not S. aureus whole genome shotgun projects 
275 and/or were of low technical quality and marked them to not be included in subsequent 
276 analysis. We removed genomes that did not have a match to any known allele of the 
277 seven MLST loci (232 genomes), had a total assembly size that differed by more than 
278 1Mb from a typical S. aureus chromosome (<1.8Mb or >3.8Mb; 764 genomes), or had a 
279 GC content differing more than 5% (<28% or > 38%; 467 genomes) of the expected 
280 33% GC content. Failure to complete the StAP pipeline due to poor data quality, and 
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281 coverages less than 20x were flagged in 101 and 142 genomes, respectively. In total, 
282 we removed 1,023 genome projects, leaving 42,949 for further analysis.
283

284 We placed genomes into an arbitrary ranking of 1-3 (<Bronze=, <Silver= and <Gold=) 
285 based on the pFASTQ coverage and average sequencing quality. Paired-end genomes 
286 that had read lengths exceeding 100bp, a coverage of 100x and an average per base 
287 quality score of at least 30 were given a Gold rank. The purpose of the Gold rank was to 
288 group together high-quality samples with near-identical coverage. Paired-end genomes 
289 with similar read length and quality cutoffs but a lower sequence coverage (between 
290 50x and 100x) were classified as Silver. The remaining samples were given a rank of 
291 Bronze. Single-end reads were classified as Bronze no matter the read length, quality or 
292 coverage. More than 70% of the samples were of rank Gold (N=31,014). There were 
293 5,931 Silver and 6,004 Bronze rank samples. Each year since 2012, the number of Gold 
294 ranked genomes have exceeded Silver and Bronze (Figure 4).
295

296 Changes in sequence quality and de novo genome assembly metrics over time 
297 reflected the development of Illumina technology. Mean per based quality scores 
298 increased from ~ 32 in 2010 to > 35 in 2012 and have stayed at that level since. The 
299 mean sequence read length rose in steps from < 50 in 2010 to ~ 150 bp in 2017. 
300 Assembly metrics such as N50 (Earl et al., 2011), and mean and maximum contig 
301 length have gradually increased since 2010. Bronze ranked genome projects had 
302 similar (or sometimes even higher) mean per read quality scores than Gold and Silver 
303 since 2011. However, Silver and Gold assembly metrics such as N50 and mean contig 
304 size were generally quite similar and higher than Bronze.
305

306 Genetic diversity measured by MLST

307 We obtained a view into the genetic diversity of the sequenced S. aureus genomes by 
308 in silico MLST using Ariba (Hunt et al., 2017), MentaLiST (Feijao et al., 2018) (both 
309 taking pFASTQ as input, but using different algorithms) and BLASTN against 
310 assembled contigs. A sequence type (ST) was assigned to 42,337 (98.6%) genomes. 
311 Of these, 41,226 (97.7%) calls were in agreement between MentaLiST, BLAST and (if 
312 paired-end) Ariba methods; 828 had agreement between two methods and a no-call on 
313 the other, and 189 were supported by one program with no-calls from the other two. Of 
314 the remaining 612 genomes not assigned to a known ST, 306 were predicted to be in a 
315 novel ST based on matches to known alleles of each of the 7 loci. The remaining 306 
316 genomes had 1-6 known S. aureus MLST alleles.
317

318 The 42,337 genomes assigned to existing STs represented only 1,090 STs of 4,466 in 
319 the saureus.mlst.net database (November 2017). The abundance distribution was 
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320 weighted toward common strains, with the top ten sequence types (STs 22, 8, 5, 239, 
321 398, 30, 45, 15, 36, and 105) representing 70% (N=29,851) of the genomes (Figure 5).
322

323 The cgMLST (complete genome MLST) set of 1861 loci (November 2017) were 
324 assigned to the genome set using MentaLiST. There were 38,677 distinct patterns, with 
325 only 1,850 patterns found in more than one sample, the remaining 36,827 patterns were 
326 represented by a single genome.
327

328 Antibiotic resistance genes

329 Treatment of S. aureus infections has been complicated by the evolution of strains 
330 resistant to many commonly used antibiotics (Foster, 2017). In particular, methicillin-
331 resistant S. aureus (MRSA), carrying the mecA gene encoding the PBP2a protein that 
332 confers resistance to beta-lactam antibiotics, has become a global problem. We 
333 designated a genome as MRSA if each mecA typing primer (Kondo et al., 2007) had a 
334 perfect BLASTN match on the de novo assemblies (26,743 strains), a predicted mecA 
335 gene ortholog had a BLASTN score ratio of at least 95% (26,430 strains), or the Ariba 
336 (Hunt et al., 2017) algorithm predicted reads in the paired-end pFASTQ file matching a 
337 mecA target in the MegaRes (Lakin et al., 2017) database (27,120 strains). The number 
338 of genomes having at least one of these criteria (27,548) was 64% of the total number. 
339 Of these, 95% (26,076) of the samples had agreement between each of the three 
340 criteria. The top five most common STs had a large portion of MRSA strains (Figure 6), 
341 which reflects the selection bias of the research community in investigating these 
342 significant hospital and community pathogen strains over other S. aureus.
343

344 The mecA gene is usually horizontally acquired as part of a mobile genetic element 
345 called <Staphylococcal Cassette Chromosome mec= (SCCmec) (Katayama, Ito & 
346 Hiramatsu, 2000). SCCmec elements have been classified into at least eleven classes 
347 that vary in composition of mec genes, ccr cassette recombinase genes and spacer 
348 regions (http://www.sccmec.org). Knowledge of the SCCmec type can be useful for 
349 high-level characterization of MRSA strain types (Kaya et al., 2018). We showed that 
350 ten of the eleven cassettes in the current schema map to at least one genome with 
351 highest coverage (an approximate method for assigning SCCmec type) (Table 1). Of 
352 the 26,462 (26,185 paired-end) genomes with at least 50% cassette coverage, 96%, 
353 96% and 99% are MRSA based on primer BLASTN, protein BLASTN or MegaRes, 
354 respectively. All type XI cassettes were mecA negative by primer BLASTN because 
355 these contained the mecC allele (García-Álvarez et al., 2011; Shore et al., 2011), which 
356 was sufficiently different to be outside the normal distance for a positive match. We 
357 found 53 genomes which matched to at least 50% of a SCCmec cassette but were not 
358 MRSA and had no reads mapping to the mec region of the cassette.
359
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360 In addition to mecA, we found numerous other classes of non-core genes using the 
361 MegaRes (Lakin et al., 2017) class designations (Table 2). We did not consider 
362 SNPs/indels in core genes associated with resistance for this analysis. The most 
363 common class of resistance genes were beta-lactamases found in 37,758 genomes. 
364 Following this, the most common were the genes putatively conferring fosfomycin, 
365 macrolide-lincosamide-streptogramin (MLS), and aminoglycosides resistance (24,205, 
366 22,322, 17,968 genomes respectively). As with MRSA, the other common resistance 
367 genes were not distributed evenly among the top ST groups (Figure 7), reflecting 
368 sampling ascertainment bias and also possibly differences in geographic distribution 
369 and prevalence of healthcare-isolated strains in the most common genotypes.
370

371 Publication, metadata and strain geographic distribution 

372 One challenge to using publicly available datasets through ENA or SRA is determining 
373 whether there is a published article describing the sequenced genome. We found 
374 through NCBI9s Entrez Tools (eLink) that 6,712 genomes were linked to 48 publications 
375 in PubMed (March 2018). We attempted to add to the number by using text-mining 
376 methods to find S. aureus accession numbers in PDFs of S. aureus genome 
377 publications, ascertaining an additional 5,209 genomes in 30 publications. Therefore, of 
378 the 42,949 samples deposited between 2010 and 2017, only 28% (N=11,921) could be 
379 linked to a publication (Figure 8). Since many genomes have been deposited in the last 
380 1-3 years, this reflected the often significant time lag between depositing sequence data 
381 and final publication.
382

383 We noted that collection of metadata from public sequencing projects was another 
384 challenge. When submitting genome sequences to databases only a limited number of 
385 metadata fields are required, leading to the bulk of the information needing to be 
386 extracted manually from a publication, if it can be found. Only 40% (N=17,034) 
387 genomes had a collection date, 35% (N=14,983) had a geographic location and 35% 
388 (N=14,768) had isolate source metadata. Using the available geographic data to 
389 geocode the sites of collection, we found that strains were from five continents and at 
390 least 40 countries. There was a strong bias toward strains from Europe (N=7,314) and 
391 North America (N=5,882), reflecting where the funding for most of the early sequencing 
392 studies had originated.
393

394 A non-redundant S. aureus diversity set

395 The number of SNPs compared to the N315 reference strain varied from 6 to 141,893 
396 within our collection of 42,949 genomes. The stepped pattern of the distribution (Figure 

397 9) reflected the organization of S. aureus into clonal complexes. Apart from CC5 strains 
398 closely related to N315, the majority of S. aureus had ~50-50,000 SNPs and ~500-1500 
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399 indels called by the GATK pipeline (McKenna et al., 2010). There were a group of 240 
400 most distant strains with > 55,000 SNP (Figure 9) that were found to be closer to the 
401 sister species, S. argenteus (Holt et al., 2011) based on ANI imputed by mash (Ondov 
402 et al., 2016), although 230 of these were assigned a S. aureus ST.
403

404 Of the 6,904 S. aureus genomes of Gold rank linked to a publication we selected a 
405 group of 380 each having a distinct ST as a non-redundant diversity (NRD) set of 
406 genomes. Of the 2,756 annotated N315 genes (excluding RNAs), 1,113 genes had no 
407 indels when reads from each genome in the NRD dataset were mapped. Of these, 838 
408 were <core= genes found in every genome. We reconstructed these genes for each of 
409 the NRD genomes starting with the N315 sequence and substituting predicted SNPs. 
410 These predicted sequences were then validated by decomposing into 31-mers and 
411 cross-checking whether each k-mer was present in pFASTQ files processed by Jellyfish 
412 (Marçais & Kingsford, 2011). We concatenated the 838 genes for each member of the 
413 NRD set and created a tree based on the 60,191 variant SNP positions (Figure 10). 
414 The structure of the unrooted species tree resembles previous S. aureus phylogenies 
415 (Planet et al., 2016). 
416

417 Discussion
418 The huge public library of genome sequence projects of S. aureus and other pathogens 
419 are a resource for microbiologists for testing genetic hypotheses in silico. Unfortunately, 
420 this has been a library of blank covers: most projects cannot be browsed to identify 
421 features such as ST, key SNPs and non-core genes. Staphopia makes the library 
422 searchable for a number of important attributes, and we have described example 
423 workflows in the results section.
424

425 We used three strategies for analysis of raw sequence data: mapping reads to a 
426 reference chromosome to identify variants; de novo genome assembly, and direct 
427 analysis of the reads. Each has its strengths and weaknesses. Reference mapping 
428 retains quality information about variant calls but is limited to regions of the core 
429 genome and accuracy is reduced as genetic distance increases between the query and 
430 the reference. De novo assembly allows for discovery of novel accessory genes and is 
431 reference independent but could be affected by genomic contamination and with 
432 Illumina short read data, and small portions of the sequence could be lost in gaps 
433 between contigs. Direct analysis of reads based on k-mer decomposition approaches 
434 allows examination of sequence independent of mapping and assembly algorithms but 
435 are susceptible to false results arising from contamination and random sequence error. 
436 Using different approaches to cross-validate wherever possible builds confidence and 
437 we showed that MLST and MRSA/MSSA identification were robust with different 
438 underlying data types collected.
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439

440 There are many possible avenues for future extensions of the project. New tools for 
441 efficient direct querying of raw reads have recently become available (e.g BigSI 
442 (Bradley et al., 2017), and mash (Ondov et al., 2016)) and we plan to incorporate them 
443 in future iterations of the pipeline. Some of the principal improvements need to be in 
444 protein functional annotation. For speed and simplicity, we elected to map genes called 
445 from de novo assemblies against the included PROKKA (Seemann, 2014) RefSeq 
446 database. This has the advantage of giving consistent proteins naming that can be 
447 linked to many functional annotation databases through UniProt cross-references. 
448 However, for fine resolution studies of sets of genomes from Staphopia, we recommend 
449 reprocessing with ROARY (Page et al., 2015) to incorporate paralog detection and to 
450 use more extensive databases for homology matching. Even then, specific modules 
451 would need to be incorporated to improve naming of intrinsically hard to annotate 
452 protein families (e.g MSCRAMMs (microbial surface components recognizing adhesive 
453 matrix molecules) (Foster et al., 2014)).
454

455 A key problem highlighted in this study is the difficulty in tracing publications linked to 
456 public genome data and finding typical metadata on strains (date and place of isolation, 
457 body site). We were able here to link thousands of records to publications through 
458 searching text in PDFs. For this reason, we urge researchers publishing microbial 
459 genomes to quote the project id (ie the PRJN ID) of publically submitted data in the full 
460 text of the publication. Extracting metadata from publications to link from strains was 
461 much more manual. We believe that journals need to start to enforce machine readable 
462 standards for metadata associated with deposited strains. The routine usage of 
463 BioSample id (https://www.ncbi.nlm.nih.gov/books/NBK169436/), which links strains to 
464 genomic information, would be a major step forward.
465

466 Staphopia was designed with Illumina shotgun data in mind but increased use of 
467 alternative sequencing technologies in the future may necessitate new development. 
468 <Long read= technologies (e.g. PacBio, Oxford Nanopore) tend to have assemblies with 
469 fewer gaps, higher per base errors and lower coverage. A <gold standard= PacBio 
470 assembly will have a different quality profile to Illumina technology data (which itself is 
471 also evolving). Another challenge for automated assembly of public data will be to 
472 identify projects sequenced with multiple technologies and assembled as hybrids (e.g. 
473 as demonstrated by the Unicycler tool (Wick et al., 2017)). To do this would mean 
474 altering the pipeline to perform hybrid assembly when experiments with multiple 
475 technologies are associated with a strain. Currently, within ENA (and SRA) a BioSample 
476 can be associated with multiple Experiments, but an Experiment can only be associated 
477 with a single BioSample. When a BioSample was linked to more than one Experiment, it 
478 was difficult to determine in an automated way if it is actually the same genomic DNA 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26890v2 | CC BY 4.0 Open Access | rec: 25 Apr 2018, publ: 25 Apr 2018

https://paperpile.com/c/BllH2G/5DnF
https://paperpile.com/c/BllH2G/MaKW
https://paperpile.com/c/BllH2G/eAmk
https://paperpile.com/c/BllH2G/UzWZ
https://paperpile.com/c/BllH2G/bMTY
https://www.ncbi.nlm.nih.gov/books/NBK169436/
https://paperpile.com/c/BllH2G/48wW


479 input to multiple experiments or, in rare cases, a mistaken assignment of a set of 
480 genetically non-identical isolates with the BioSample (e.g. all isolates from a study given 
481 the common strain name <USA300=). Because of this, Staphopia treated each ENA 
482 Experiment as a unique sample, rather than the BioSample.
483

484 It is unclear at this time whether the approach of processing of every public dataset will 
485 be sustainable as sequencing data production grows in the future. It would only be 
486 possible if storage and processing costs fall faster than the accumulation of new data, 
487 and multi-genome database queries may still be prohibitively slow. An alternative 
488 strategy to processing all strains, would be to filter the isolates for redundancy, by 
489 removing isolates that are less than n SNPs from any member of a canonical genome 
490 set. However, there is still information in deep sequencing studies that can be captured 
491 from distributions of reads and kmer distribution, even if the consensus sequences of 
492 the strains are identical. Plasmid copy number may differ between clones grown under 
493 different conditions and the distribution of reads across the genome can itself be used to 
494 infer relative growth rate (Brown et al., 2016). No two shotgun genome sequencing 
495 projects are identical, and all have some potential value, especially if they have strong 
496 supporting metadata.

497 Conclusions
498 ï We analyzed 43,972 S. aureus public Illumina genome projects using the newly 
499 developed <Staphopia= analysis pipeline and database. 42,949 genomes were 
500 retained for subsequent analysis after filtering against low quality 
501 ï The data quality was high overall: 36,945 (86%) were from paired end projects 
502 with greater than 50-fold coverage and 35 average quality (<Gold= and <Silver= 
503 quality)
504 ï There has been a great concentration of effort on a sequencing a small number 
505 of sequence types: only 1,090 STs of 4,466 previously collected STs were 
506 recovered and 10 STs make up 70% of all genomes.
507 ï 26,050 to 27,548 genomes were predicted MRSA depending on the criteria used 
508 for classification.
509 ï We could link only 28% of the genomes to a PubMed referenced publication.
510 ï We identified 380 non-redundant highly quality published genomes as a 
511 reference subset for diversity within the species.
512 ï We identified 838 cores genes that can be reliably used for rapid tree building 
513 based on SNPs compared to the reference N315 genome.
514
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530 Links
531 Code for most analysis described in the results section - 
532 https://github.com/staphopia/staphopia-paper
533 R Package - https://github.com/staphopia/staphopia-r 
534 StAP - https://github.com/staphopia/staphopia-ap
535 Web Package - https://github.com/staphopia/staphopia-web 
536 Docker Image - https://hub.docker.com/r/rpetit3/staphopia/
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Figure 1(on next page)

Figure 1. Cumulative submissions of Staphylococcus aureus genome projects 2010 -

March 2018.
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Figure 2(on next page)

Figure 2. Staphopia Analysis Pipeline (StAP) Workflow.

The diagram describes basic operations of the pipeline on a single genome input (FASTQ file)

before uploading into the Postgres relational database. Details of the programs used are in

the methods and https://github.com/staphopia/staphopia-ap . Green arrows indicate input

from de novo assembled contigs, blue arrows were operations performed on pFASTQ files.
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Figure 3(on next page)

Figure 3. StAP run time using Cancer Genomics Cloud (CGC) platform.

Overall run time statistics were available for 31,587 of the completed CGC jobs. Mean run

time was 51 minutes (median 52 minutes). There were 983 jobs that took more than 80

minutes to complete.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26890v2 | CC BY 4.0 Open Access | rec: 25 Apr 2018, publ: 25 Apr 2018

https://github.com/staphopia/staphopia-ap


0

500

1000

1500

2000

2500

25 50 75 100 125

Run Time (In Minutes)

C
o

u
n

t

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26890v2 | CC BY 4.0 Open Access | rec: 25 Apr 2018, publ: 25 Apr 2018



Figure 4(on next page)

Figure 4. Sequencing quality ranks per year 2010-2017.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26890v2 | CC BY 4.0 Open Access | rec: 25 Apr 2018, publ: 25 Apr 2018

https://github.com/staphopia/staphopia-ap


00
292

5521

1452

2895

1096

1599

4928

473428

8113

994

575

7282

554553

3480

984

460

4261

1809

645

0

2000

4000

6000

8000

2010 2011 2012 2013 2014 2015 2016 2017

Year

C
o

u
n

t Bronze

Gold

Silver

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26890v2 | CC BY 4.0 Open Access | rec: 25 Apr 2018, publ: 25 Apr 2018
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Figure 5. Top ten STs.
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Figure 6(on next page)

Figure 6. Breakdown of predicted MRSA and MSSA genomes in the top ten STs

MRSA was predicted based with Ariba (Hunt et al., 2017) using the MegaRes (Lakin et al.,

2017) database.
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Figure 7(on next page)

Figure 7. Resistance genes to aminoglycoside, fosfomycin, and macrolide-lincosamide-

streptogramin (MLS) antibiotic in the top 10 STs.

The presence of resistance genes was predicted by Ariba (Hunt et al., 2017) using the

reference MegaRes (Lakin et al., 2017) database. Calls were based on MegaRes classes. Core

genes (found in > 41,000 genomes were excluded).
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Figure 8(on next page)

Figure 8. Cumulative genomes linked to publications 2010-2017.
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Figure 9(on next page)

Figure 9. S. aureus SNP distance from reference S. aureus N315.

For each genome, the number of SNPs found by mapping reads to the N315 reference using

GATK (McKenna et al., 2010) was plotted, with genomes ordered from least to most SNPs.

240 genomes with > 55,000 SNPs (dotted line) that had best matches to S. argenteus using

mash (Ondov et al., 2016) were indicated by silver bars, the rest were S. aureus (gold).
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Figure 10(on next page)

Figure 10. Unrooted phylogeny of the S. aureus Non-Redundant Diversity (NRD) dataset.

An unrooted phylogenetic representation of the 380 genome non-redundant set (one

representative per ST, all published and gold rank) using IQ-Tree (Nguyen et al., 2015) .

Recombination sites were identified with ClonalFrameML (Didelot & Wilson, 2015) were

filtered from the alignment. Clonal complexes containing the top ten most common STs are

indicated with colored circles. The tree was built from 838 reconstructed core genes (please

see Methods section) with 44,377 sites. Branches supported with probability > 0.9 are

marked by red dots. The likelihood score for the tree was -1,890,510.
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Table 1(on next page)

Table 1. Predicted SCCmec cassette type representation.

There were 26,462 samples with reads mapped to at least 50% of a SCCmec cassette. The

table is a breakdown of the SCCmec cassettes with the highest percent match for each

sample.
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SCCmec Type Count

I 689

II 5,183

III 2,807

IV 14,526

V 1,684

VI 171

VII 19

VIII 468

IX 0

X 20

XI 895
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Table 2(on next page)

Table 2. Antibiotic resistance classes predicted by non-core genes.

Number of genomes with genes of resistance classes predicted by Ariba using the reference

MegaRes database naming scheme.
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Antibiotic Resistance Class Count

Aminocoumarin 46

Aminoglycoside 17,968

Beta-lactam 37,758

Fluoroquinolone 69

Fosfomycin 24,205

Fusidic Acid 346

Glycopeptide 5,777

Lipopeptide 44

Macrolide-Lincosamide-Streptogramin (MLS) 22,322

Multi-Drug Resistance 13,653

Phenicol 852

Rifampin 46

Sulfonamide 36

Tetracycline 8,638

Trimethoprim 6,605
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