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The ongoing evolution of tracer mixing models has resulted in a confusing array of

software tools that differ in terms of data inputs, model assumptions, and associated

analytic products. Here we introduce MixSIAR, an inclusive, rich, and flexible Bayesian

tracer (e.g. stable isotope) mixing model framework implemented as an open-source R

package. Using MixSIAR as a foundation, we provide guidance for the implementation of

mixing model analyses. We begin by outlining the practical differences between mixture

data error structure formulations and relate these error structures to common mixing

model study designs in ecology. Because Bayesian mixing models afford the option to

specify informative priors on source proportion contributions, we outline methods for

establishing prior distributions and discuss the influence of prior specification on model

outputs. We also discuss the options available for source data inputs (raw data versus

summary statistics) and provide guidance for combining sources. We then describe a key

advantage of MixSIAR over previous mixing model software4the ability to include fixed

and random effects as covariates explaining variability in mixture proportions and

calculate relative support for multiple models via information criteria. We present a case

study of Alligator mississippiensis diet partitioning to demonstrate the power of this

approach. Finally, we conclude with a discussion of limitations to mixing model

applications. Through MixSIAR, we have consolidated the disparate array of mixing model

tools into a single platform, diversified the set of available parameterizations, and provided

developers a platform upon which to continue improving mixing model analyses in the

future.
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22 Abstract

23 The ongoing evolution of tracer mixing models has resulted in a confusing array of software 

24 tools that differ in terms of data inputs, model assumptions, and associated analytic products. 

25 Here we introduce MixSIAR, an inclusive, rich, and flexible Bayesian tracer (e.g. stable 

26 isotope) mixing model framework implemented as an open-source R package. Using 

27 MixSIAR as a foundation, we provide guidance for the implementation of mixing model 

28 analyses. We begin by outlining the practical differences between mixture data error 

29 structure formulations and relate these error structures to common mixing model study 

30 designs in ecology. Because Bayesian mixing models afford the option to specify informative 

31 priors on source proportion contributions, we outline methods for establishing prior 

32 distributions and discuss the influence of prior specification on model outputs. We also 

33 discuss the options available for source data inputs (raw data versus summary statistics) and 

34 provide guidance for combining sources. We then describe a key advantage of MixSIAR 

35 over previous mixing model software4the ability to include fixed and random effects as 

36 covariates explaining variability in mixture proportions and calculate relative support for 

37 multiple models via information criteria. We present a case study of Alligator 

38 mississippiensis diet partitioning to demonstrate the power of this approach. Finally, we 

39 conclude with a discussion of limitations to mixing model applications. Through MixSIAR, 

40 we have consolidated the disparate array of mixing model tools into a single platform, 

41 diversified the set of available parameterizations, and provided developers a platform upon 

42 which to continue improving mixing model analyses in the future.

43

44
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48 Introduction

49 Mixing models, or models used to estimate the contribution of different sources to a mixture, are 

50 widely used in the natural sciences.  Typically, these models require tracer data that characterize 

51 the chemical or physical traits of both the sources and mixture 3 these traits are assumed to 

52 predictably transfer from sources to mixtures through a mixing process. In ecology, the majority 

53 of mixing model applications use stable isotope signatures as tracers in efforts to assess the 

54 contribution of prey (sources) to a consumer (mixture) diet, although other applications include 

55 pollutant sourcing, plant water use, carbon sources in soils, etc. (Phillips et al. 2014).  However, 

56 in recent years, researchers have leveraged other tracers, such as fatty acid signatures to assess 

57 predator-prey relationships (Neubauer and Jensen 2015, Galloway et al. 2015). Regardless of the 

58 tracers or mixing system considered, all mixing model applications are rooted in the same 

59 fundamental mixing equation:

60 ýÿ =  3ý ýýÿ ýÿý,

61 where the mixture tracer value, Yj, for each of j tracers is equal to the sum of the k source tracer 

62 means, , multiplied by their proportional contribution to the mixture, pk. This basic ÿ ýÿý
63 formulation assumes that (1) all sources contributing to the mixture are known and quantified, 

64 (2) tracers are conserved through the mixing process, (3) source mixture and tracer values are 

65 fixed (known and invariant), (4) the pk terms sum to unity, and (5) source tracer values differ.  

66 Given a mixing system with multiple tracers such that the number of sources is less than or equal 

67 to the number of tracers + 1, the pk terms in the set of Yj equations can be solved for analytically, 

68 given the unity constraint (Schwarcz 1991, Phillips 2001). In most natural mixing systems an 

69 analytical solution to the set of mixing equations is not possible without simplifying the mixing 

70 system or the data. In other words, in order to establish a solvable set of equations, researchers 
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71 have traditionally reduced the number of sources through aggregation. Additionally, because the 

72 analytic solution requires that the source and mixture signatures to be fixed (invariant), 

73 researchers used the mean variable tracer data and ignored uncertainty. 

74 More recently, researchers have turned to more sophisticated mixing model formulations 

75 that provide probabilistic solutions to the mixing system that are not limited by the ratio of 

76 sources to tracers (i.e. under-determined systems), and that integrate the observed variability in 

77 source and mixture tracer signatures. The first of such models, IsoSource (Phillips and Gregg 

78 2003), provided distributions of feasible solutions to the mixing system based on a <tolerance= 

79 term; IsoSource iteratively identified unique solutions for the pk terms that resulted in Yj 

80 solutions falling near the true value of the mixture (typically defined by the mean of mixture 

81 data), where <near= was arbitrarily defined by the model user through the specification of 

82 tolerance.  Subsequently, Moore and Semmens (2008) introduced a Bayesian mixing model 

83 formulation, MixSIR, that established a formal likelihood framework for estimating source 

84 contributions while accounting for variability in the source and mixture tracer data. An updated 

85 version of this modeling tool with a slightly different error parameterization, SIAR, continues to 

86 be broadly applied in the ecological sciences and beyond (Parnell et al. 2010). Since 2008, 

87 Bayesian mixing models have rapidly evolved to account for hierarchical structure (Semmens et 

88 al. 2009), uncertainty in source data mean and variance terms (Ward et al. 2010), covariance in 

89 tracer values (Hopkins and Ferguson 2012) and covariates within the mixing system (Francis et 

90 al. 2011). In short, Bayesian mixing models have developed into a flexible linear modeling 

91 framework, summarized by Parnell et al. (2013).

92 In light of these analytic innovations, we have created an open-source R software 

93 package, MixSIAR, that unifies the existing set of mixing model parameterizations into a 
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94 customizable tool that can meet the needs of most environmental scientists studying mixing 

95 systems. MixSIAR can be run as a graphical user interface (GUI) or script, depending on the 

96 user9s familiarity with R. Either version can be used to load data files and specify model options; 

97 then MixSIAR writes a custom JAGS (Just Another Gibbs Sampler, Plummer 2003) model file, 

98 runs the model in JAGS, and produces diagnostics, posterior plots, and summary statistics. As 

99 with any sophisticated modeling tool, researchers should take care in establishing situation-

100 specific applications of the tool based on the data in hand and the mixing system targeted for 

101 inference. At present, however, guidance on the parameterization and implementation of 

102 Bayesian mixing model analyses is lacking in the literature. As a consequence, many researchers 

103 are unsure of the correct application and interpretation of existing mixing model tools such as 

104 MixSIR (Semmens and Moore 2008) and SIAR (Parnell et al. 2010). 

105 In this paper we introduce and provide guidance on using MixSIAR for the application of 

106 Bayesian mixing models.  Given early debate in the literature regarding appropriate error 

107 parameterizations (Jackson et al. 2009, Semmens, Moore, & Ward 2009), we begin by clarifying 

108 the underlying error structures for MixSIAR and provide recommendations for the use of 

109 specific error formulations based on the methods of data collection.  The integration of prior 

110 information is a key advantage of Bayesian approaches to model fitting. However, since Moore 

111 and Semmens (2008), few studies have implemented methods for generating prior distributions 

112 in mixing model formulations. We therefore provide a set of basic approaches to establishing 

113 prior distributions for the proportional contribution terms, and demonstrate how to incorporate 

114 informative priors in MixSIAR. Next, we provide guidance for source assignment in the mixing 

115 system (e.g. lumping or splitting source groupings). Arguably, the primary advantage of 

116 MixSIAR over previous mixing model software is the ability to incorporate covariate data to 
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117 explain variability in the mixture proportions via fixed and random effects. As such, we provide 

118 guidance on applying covariate data within mixing models and illustrate this using MixSIAR in a 

119 case study on American alligator (Alligator mississippiensis) diet partitioning. Finally, we 

120 discuss limitations of mixing models and issues with under-determined systems. The complete 

121 set of MixSIAR equations with additional explanation is attached as Article S1, and the 

122 MixSIAR code is available at https://github.com/brianstock/MixSIAR.

123 Understanding MixSIAR error structures for mixture data

124 In most published results stemming from Bayesian mixing models, little if any detail is reported 

125 regarding the assumed error structure of the mixture data. However, assumptions about 

126 variability, and the specific parameterizations used to characterize this variability, in the mixing 

127 system have been the focus of most of the innovations in mixing model tools in recent years 

128 (Parnell et al. 2010, 2013, Ward et al. 2010, Hopkins and Ferguson 2012, Stock and Semmens 

129 2016b). The specific error formulation matters both because it relates to the assumptions 

130 regarding how the process of mixing occurs (e.g. how consumers feed on prey populations), and 

131 because the estimates of proportional source contributions can be affected (Stock and Semmens 

132 2016b). In this section, we discuss the suite of error parameterizations available in MixSIAR that 

133 account for variability in the tracer values of the mixture. Note that this section deals only with 

134 <residual= variability in the mixture tracer data after accounting for variability resulting from 

135 fixed or random effects (see case study and Article S1 for how these effects interact with the 

136 error terms). For simplicity in the equations below, we ignore discrimination factors, 

137 concentration dependence and tracer covariance in our notation. Note, however, that MixSIAR 

138 accounts for each of these components, should an analyst specify a model appropriate to do so 

139 (see Article S1 for complete MixSIAR equations).
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140 Researchers sometimes use <integrated sampling=4pooling many subsamples into one 

141 sample that is then analyzed4to characterize the source means while keeping processing time 

142 and costs low. Thus, the most basic formulation for mixing models implemented in MixSIAR 

143 assumes that the k source means for the j tracers, , are fixed and invariant (but might be ÿ ýÿý
144 observed imperfectly; Fig. 1A).  Under this assumption the mixture value for each tracer will 

145 also be an invariant weighted (by source proportions, ) combination of the source means. ýý
146 Observations of these means, however, are imperfect and thus the i mixture data for tracer j, Yij, 

147 are assumed to follow the distribution,

148 ýÿÿ ~ ý(3ý ýýÿ ýÿý,ÿ2ÿ),#(1)

149 where  represents residual error variance, or the variability in observations associated with the ÿ2ÿ
150 mixture data points for the jth tracer. This error distribution is appropriate in situations where, for 

151 instance, each source and/or mixture data point was generated through the combination of many 

152 samples from the source population.  For instance, if an analyst were interested in assessing the 

153 relative contribution of dissolved organic carbon (DOC) and particulate organic matter (POM) to 

154 a filter feeder9s diet, this model formulation would be appropriate since each source isotope 

155 signature comes from an integrated sample of the source isotopic signatures (as opposed to 

156 isotopic signatures of individual particles).

157 In contrast, for many mixing models applied to ecological systems, the tracers of 

158 individual source items (prey, e.g. individual deer) and mixtures (consumers; e.g. individual 

159 wolves) are analyzed separately, and the variability across source tracers is assumed to translate 

160 into consumer signature variability4in other words, different wolves eat different deer, and their 

161 tracer signatures should differ accordingly. Since the introduction of Bayesian stable isotope 
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162 mixing models, nearly all published formulations have assumed that each mixture data point i for 

163 tracer j is derived from a normal distribution with the same mean as in Eq. 1, and, importantly, a 

164 variance similarly generated from a weighted combination of source variances, :ÿ ýÿý2

165 ýÿÿ~ý(3ý ýýÿ ýÿý,3ý ý2ýÿ ýÿý2).#(2)

166 In situations where there is covariance in tracers (typical of stable isotope studies), Eq. 2 can be 

167 modified to account for a weighted average of source covariance matrices (Stock and Semmens 

168 2016b).

169 MixSIAR uses this model formulation only in the special case where the analyst provides 

170 a single mixture value for each of the j tracers considered.  This formulation must be used in this 

171 special case because it is not possible to estimate a variance term, , from a single data point. In ÿ2ÿ
172 diet partitioning applications, the above formulation assumes that, for a given tracer j, a 

173 consumer i takes a single IID sample from each of k sources and combines these samples in 

174 accordance with the proportional estimates . In other words, each wolf eats exactly one deer, ýý
175 and thus incorporates the tracer value of only that deer. Because the prey-specific isotopic 

176 signatures will be different for each consumer due to sampling error, the weighted combination 

177 of sampled source isotopic signatures will also vary. We refer to this model of mixture variance 

178 as <process error= because it is derived from an assumption about the mixing process.

179 Recently, Stock and Semmens (2016b) modified the above formulation to include an 

180 additional multiplicative error term for each tracer considered, such thatÿÿ, 
181 ýÿÿ~ý(3ý ýýÿ ýÿý,3ý ý2ýÿ ýÿý2

 ×  ÿÿ).#(3)

182 The intent of the  term is to both add biological realism in the mixing equation, and to provide ÿÿ
183 flexibility on the likelihood error structure such that mixing data not conforming to the mixing 
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184 process assumed in the previous likelihood formulation can still be fit appropriately. As before, 

185 Eq. 3 can be modified to account for a weighted average of source covariance matrices (see 

186 Article S1). This model formulation is appropriate for most ecological mixing model 

187 applications (e.g. diet partitioning), with the exception of integrated sampling studies or studies 

188 with a single consumer sample, as outlined above. Stock and Semmens (2016b) showed that, 

189 compared to existing models (MixSIR, SIAR), Eq. 3 had lower error in pk point estimates and 

190 narrower 95% CI when the true mixture variance is low ( ).ÿÿ < 1

191 When  is less than 1, the variance in consumer tracer signatures shrinks, presumably ÿÿ
192 due to the biological process of sampling each prey source multiple times from a distribution of 

193 tracer values (Fig. 1C). As the number of IID samples a consumer takes from a source population 

194 increases, the tracer signature transferred from the source to the consumer will conform more 

195 and more closely to the mean source signature. In other words, each wolf eats more than one 

196 deer, and thus each wolf incorporates a sample mean of deer tracer values, which becomes closer 

197 to the deer tracer mean as the number of deer sampled increases. Thus,  indicates the amount of ÿÿ
198 food a consumer integrates within a time frame determined by tissue turn-over; the methods for 

199 estimating this consumption rate are outlined in Stock and Semmens (2016b).  As the value of  ÿÿ
200 approaches zero, an analyst can assume that the consumers are essentially <feeding at the mean= 

201 of the source populations. 

202 Estimates of  much greater than one indicate that the variability in transfer of tracer ÿÿ
203 signatures from source to consumer is swamping the reduction in consumer variability expected 

204 when consumers integrate over multiple samples from prey populations. This could be due to 

205 factors such as isotopic routing (Bearhop et al. 2002), or important consumer population 

206 structure being absent from the model (e.g. most variability in wolf stable isotope values is 
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207 explained by random effects of region and pack in Semmens et al. 2009). Alternatively, the 

208 mixing model could be missing a source or underestimating the source variances. In any case, 

209 values of much greater than one are an indication that the model mixing system is not ÿÿ 
210 conforming to one or more of the basic assumptions of the mixing model, namely that tracers are 

211 not being consistently conserved through the mixing process, all mixtures are identical and have 

212 the same source proportions (often not the case in biological systems), and/or that the model is 

213 missing at least one source pool. 

214 Constructing informative Bayesian priors 

215 Priors for compositional data

216 The analysis of compositional data is not unique to mixing models. Examples of statistical 

217 models for compositional data are widespread in ecology (Jackson 1997), fisheries (Thorson 

218 2014), as well as non-biological fields (Aitchison 1986). The most common choice of prior on 

219 the estimated vector of proportions p is the Dirichlet distribution; MixSIAR uses this distribution 

220 for estimates of source proportions. The Dirichlet is often referred to as a multivariate extension 

221 of the Beta distribution, and it is important to understand the Beta before transitioning to the 

222 Dirichlet. The Beta distribution has a convenient property that when both its shape parameters 

223 are 1, it is equivalent to a uniform distribution. In other words, if a model tries to estimate the 

224 relative contribution of a 2-component mixture,  is equivalent to ý1 ~ ýÿýÿ(1,1) ý1

225 . Because the vector of proportions is constrained so that ,  can  ~ ýÿÿÿýÿÿ(0,1) 3ÿ = 2ÿ = 1 ýÿ = 1 ý2

226 be treated as the derived parameter , and thus doesn9t require a prior. For the ý2 = 1 2 ý1

227 parameter of interest , one way to describe the prior distribution is that the  prior is ý1 ýÿýÿ(1,1)
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228 uniform, and an equivalent description is that all possible combinations of  and  are equally ý1 ý2

229 likely a priori.

230 For mixtures with more than 2 components, MixSIAR uses the Dirichlet distribution to 

231 specify a prior on p. The hyperparameter of the Dirichlet distribution is a vector , whose length ÿ
232 is the same as p. Like the Beta distribution, the only constraint on the elements of  is that they ÿ
233 be positive (they may be discrete or continuous, and the elements of  don9t have to be equal). A ÿ
234 common choice of hyperparameters for a 3-component mixture is , which we refer to ÿ = (1,1,1)

235 as the <uninformative=/generalist prior because 1) while every possible set of proportions has 

236 equal probability, the marginal prior likelihood of a given pk differs across values of pk, and 2) its 

237 mean is , corresponding to the assumption of a generalist diet (McCarthy 2007).  The first (1

3, 
1

3, 
1

3)

238 point is illustrated by Figure 2, which shows that the marginal distributions of the proportions are 

239 not uniform, instead favoring small values. Part of this confusion can be resolved by examining 

240 the joint pairwise distributions of p (Fig. 2), which illustrates that using a hyperparameter of ÿ
241  implies that all combinations of ( , , ) are equally likely. Thus, this prior is = (1,1,1) ý1 ý2 ý3

242 noninformative on the simplex, but is non-uniform with respect to individual pk parameters. 

243 Other choices of a prior may be Jeffreys9 prior, , or the more recently used logit-ÿ = (1

2,
1

2,
1

2)

244 normal and extensions (Parnell et al. 2013). By default, MixSIAR uses the 

245 <uninformative=/generalist prior, where all  are set to 1. ÿý
246

247 Constructing an informative prior

248 One of the benefits to conducting mixture models in a Bayesian framework is that 

249 information from other data sources can be included via informative prior distributions (Moore 
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250 and Semmens 2008, Franco-Trecu et al. 2013). Once an informative prior for the proportional 

251 contribution of sources is established, MixSIAR can accept the prior as an input during the 

252 model specification process (for details and example, see Stock and Semmens 2016a). For diet 

253 studies, these other sources may include fecal or stomach content samples, data from other 

254 studies, or expert knowledge. As a simplified example from Moore and Semmens (2008), 

255 suppose we wish to construct an informative prior for a 3-source mixing model of 10 rainbow 

256 trout diet using sampled stomach contents (30 eggs, 8 fish, 25 invertebrates). The sum of the 

257 Dirichlet hyperparameters roughly correspond to prior sample size, so one approach would be to 

258 construct a prior with , where each  corresponds to the source k sample size ÿ = (30, 8, 25) ÿý
259 from the stomach contents. A downside of this prior is that a sample size of 63 represents a very 

260 informative prior, with much of the parameter space given very little weight (Fig. 3). Keeping 

261 the relative contributions the same, the  can be rescaled to have the same mean, but different ÿý
262 variance. One starting point is to scale the prior to have a total weight equal to the number of 

263 sources, K, which is the same weight as the <uninformative=/generalist prior:

264 ÿý =  
ÿÿý3ÿý#(4)

265 The prior constructed from Eq. 4 is shown in Figure 3. Though this rescaling process of Dirichlet 

266 hyperparameters may seem arbitrary, it provides a powerful tool for incorporating additional 

267 information.

268 Importantly, choosing a prior4including the <uninformative=/generalist prior4requires 

269 explicit consideration of how much weight the prior should have in any analysis. An additional 

270 consideration is the turnover time for different types of data. In our example of rainbow trout 

271 diet, stomach contents might represent a daily snapshot of prey consumption, whereas stable 
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272 isotope and fatty acid signatures likely change on a much longer time scale (e.g. weeks to 

273 months). In such cases, we would want to downweight the prior9s significance, since a prior 

274 constructed from daily information should only be loosely informative on the mixture 

275 proportions averaged over weeks to months. Exactly how much to downweight is unclear. 

276 However, this challenge lies within the broader issue of how to weight multiple data types, and 

277 we follow Francis9 (2011) recommendation that users conduct  a sensitivity analysis4fit the 

278 model using different informative priors (as well as the <uninformative=/generalist prior) and 

279 determine how sensitive the primary result is to the choice of prior (as in deVries et al. 2016).

280

281 Priors for other model parameters

282 In addition to specifying prior distributions on proportional contributions, MixSIAR requires 

283 priors on variance parameters (Parnell et al. 2013). Because mixing models ultimately are a class 

284 of linear models, MixSIAR uses the same weakly informative prior distributions for variances 

285 that are widely used in other fields (Gelman et al. 2014). For specific prior formulations 

286 associated with residual error, multiplicative error, and variance associated with random effects, 

287 we refer the reader to the full set of MixSIAR equations (Article S1). Note, however, that 

288 because MixSIAR generates a model file in the JAGS language  (Just Another Gibbs Sampler; 

289 Plummer, 2003) during each model run, the analyst can access the complete set of prior 

290 specifications associated with the model run. Moreover, the model file can be modified and used 

291 in a separate model run out side of MixSIAR, should the analyst care to evaluate the sensitivity 

292 of model outputs to changes in prior specification.

293 In some cases, an analyst may wish to incorporate discrete or continuous covariates to 

294 explain differences between individual signatures (detailed in the next section; Francis et al., 
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295 2011; Ogle et al., 2014). Ecological examples of these types of covariates may include 

296 environmental variables (habitat, temperature) or variables specific to individuals (sex, age, 

297 size). Like simple linear regression, including covariates introduces new parameters to be 

298 estimated (intercept, slope), but because MixSIAR includes these covariates in transformed 

299 compositional space (isometric log ratio, ILR; Aitchison 1986), their prior specification is not 

300 straightforward. MixSIAR uses diffuse normal priors in transform space, which are sufficient to 

301 establish priors that yield parameter estimates that are essentially informed only by the data 

302 (Gelman et al. 2014, McElreath 2016). Analysts who wish to create informative priors in 

303 transform space should proceed with caution, because they can have counterintuitive effects 

304 when transformed back to proportion space.

305 Incorporating source data into mixing models

306 Early versions of Bayesian mixing models treated the estimates of source-specific tracer means 

307 and variance as fixed (user specified), and thus only used raw mixture data in calculating the 

308 likelihood of source proportions (Moore and Semmens 2008, Parnell et al. 2010).  In so doing, 

309 the uncertainty in the estimates of source means and variances, typically derived from source 

310 isotope data, was ignored. However, Ward et al. (2010) introduced what they termed a <fully 

311 Bayesian= model that accounts for estimation uncertainty in source-specific tracer means and 

312 variances, and thus treats both the mixture and source information as data within the model 

313 framework. More recently Hopkins and Ferguson (2012) incorporated multivariate normality 

314 into estimates of source-specific covariance matrices. This multivariate normality accounts for 

315 the fact that tracer values often co-vary, particularly for stable isotope studies.  

316 In MixSIAR, the analyst has two options for inputting source data, (1) providing source 

317 tracer value summary statistics (mean, variance and sample size), or (2) providing raw tracer data 
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318 for each source. In both cases, MixSIAR fits a fully Bayesian model by estimating the <true= 

319 source means and variances for each tracer (Ward et al. 2010, Parnell et al. 2013). However, in 

320 the case where summary statistics are provided, the tracers are assumed to be independent, since 

321 it is not possible to generate estimates of tracer covariance from the summary statistics. Where 

322 raw source data are provided, MixSIAR assumes multivariate normality and estimates the 

323 variance covariance matrix associated with the tracers for each source (Hopkins and Ferguson 

324 2012). In the event that an analyst wishes to specify fixed (known) means and variances for a 

325 particular source-by-tracer combination, we recommend that they provide MixSIAR with 

326 summary statistics (mean and variance) with an arbitrarily large sample size (~10,000). In 

327 essence, this approach fixes the estimated source means and variances at the values provided. 

328

329 Combining sources

330 No amount of increased sophistication in mixing model methods can overcome the problem of 

331 poorly specified mixing systems. If, for instance, an analyst specifies a mixing model with >7 

332 sources contributing to a mixture based on 2 tracers (e.g., ·13C, ·15N), it is unlikely the model 

333 products will be precise or interpretable. The source data (number of sources and their sample 

334 sizes, means, and variances relative to mixture data) have a large influence on the estimated 

335 proportions. As such, including several largely extraneous sources with few mixture data points 

336 will divert pk from the truly important sources (as ). We note, however, that there are 3ýý = 1

337 ways to constrain the pk such that models converge4two methods are discussed in sections to 

338 follow: informative priors, and including covariates on the pk as fixed or random effects. 

339 Nonetheless, MixSIAR can estimate posterior distributions of source proportions regardless of 

340 how under-determined the mixing system is (e.g., many more sources than tracers).  This under-
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341 determination, together with the variability in source and mixture isotopic values, often results in 

342 quite diffuse probability distributions for many of the proportional contribution estimates, 

343 limiting the interpretability of the results (Phillips et al. 2014).  Reducing the number of sources 

344 by combining several of them together may improve model inference.  Either a priori or a 

345 posteriori aggregation (Phillips et al. 2005)  may be used with MixSIAR (see <combine_sources= 

346 function for a posteriori aggregation).

347 The a priori approach typically involves pre-processing the input data by conducting 

348 frequentist tests for equality of means of sources and subsequently combining sources without 

349 significant differences before running a mixing model (e.g. Ben-David et al. 1997). If tracer data 

350 are approximately normally distributed, a Hotelling9s T2 test can be used to evaluate whether 

351 sources are not different from each other, given multivariate data (multiple tracers; Welch and 

352 Parsons 1993). If tracers are not normally distributed, a K nearest-neighbor randomization test 

353 can be used to assess differences in sources (Rosing et al. 1998). Note that in both cases, a 

354 Bonferroni-type correction is typically used when multiple source comparisons are made. 

355 Regardless of the test used, if sources appear similar, their data can be aggregated.  In general, 

356 mixing model outputs will be more interpretable if the sources combined have a logical 

357 connection (e.g. same trophic guild, taxon, etc.) so that the aggregated source has some 

358 biological meaning, rather than a disparate set of unrelated sources that happen to have similar 

359 isotopic values, although this is not an absolute requirement. 

360 Using a frequentist approach (e.g. Hotelling9s T2 test) to decide on whether sources 

361 should be combined a priori often presents problems. The amount of data available for each 

362 source directly influences the equality of the means tests; the power to reject a null hypothesis of 

363 no mean difference between tracer values of sources is thus related to the amount of tracer data, 
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364 and is not exclusively a function of the mixing system. Furthermore, in situations when many 

365 tracers are available (e.g. fatty acids as tracers; Galloway et al. 2015) there is a high probability 

366 that at least some equality of mean tests will fail (reject the null hypothesis) even if the sources 

367 are, in reality, identical. Finally, when only the mean, variance and sample size of each source is 

368 available (rather than raw data), there is no easy test for equality of the means and methods for 

369 aggregating sources are not apparent. 

370 Using the a posteriori procedure, the analyst uses the full set of sources to generate 

371 posterior distributions of proportional source contributions, and then post-processes the results to 

372 combine several sources together. For each posterior draw, the new combined source proportion 

373 is simply the sum of the proportions of the original sources.  Thus, we obtain a posterior 

374 distribution for the new combined source proportion that accounts for correlation between the 

375 original source proportions. This new posterior distribution may then be analyzed as before. 

376 Importantly, this approach does not require that the isotopic signatures of the combined sources 

377 are similar; thus, an analyst is free to combine sources based on functional similarities in the 

378 mixing system, regardless of isotopic similarity. 

379 Like the a priori approach, combining posteriors from multiple sources as a means of 

380 source aggregations is not without issues. One caveat is that each additional source included in 

381 the mixing model increases the number of parameters to be estimated, particularly when the 

382 model includes random effects. We could easily imagine that a mixing model with 20 sources 

383 and random effects may take days to run successfully, and may not converge at all. In models 

384 with many more sources than tracers, the source proportions are more likely to be confounded, 

385 and therefore highly negatively correlated. In such cases, it is less likely the model will converge. 

386 Another potential issue with the a posteriori approach is that the combination of multiple diet 
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387 proportions estimated with an <uninformative=/generalist Dirichlet prior (each source given 

388 equal prior weight) also combines the prior weight for these sources. For instance, given an 

389 <uninformative=/generalist Dirichlet prior, the act of aggregating two source posteriors results in 

390 a combined source posterior that reflect an aggregated prior with twice the weight of the 

391 remaining non-aggregated source priors. As such, the more sources that are combined into an 

392 aggregate source group a posteriori, the more strongly the prior will be weighted towards 

393 increased proportional contributions of this aggregate source to the consumer diet. MixSIAR 

394 alerts users to this issue by plotting the aggregated prior when combining sources using the 

395 <combine_sources= function (Fig. 4). This is not an issue, however, when the same number of 

396 sources are combined into new groupings (e.g. deVries et al. 2016, where six sources were 

397 combined into two groups of three). In general, combining sources a posteriori can lead to lower 

398 variance in diet proportion estimates, particularly when the posteriors for the combined sources 

399 show strong negative correlation (Semmens et al. 2013). For most situations, we prefer the a 

400 posteriori approach to source aggregation, provided the analyst is aware of the cautions 

401 mentioned above. 

402 These a priori and a posteriori approaches to combining sources may be accomplished 

403 by simple pre-processing of MixSIAR input data sets and post-processing of MixSIAR output 

404 using the <combine_sources= function, respectively.  Ward et al. (2011) outlined a Bayesian 

405 approach that probabilistically identifies source groupings and generates weighted posterior 

406 probabilities associated with various combinations of sources. However, their method requires 

407 specialized MCMC sampling, and is computationally impractical for complicated mixing 

408 systems. We expect that future refinements to the modeling approach they outlined will yield 
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409 more robust techniques for treating source combinations as parameters to be estimated, rather 

410 than fixed a priori or a posteriori. 

411 Incorporating covariates via fixed and random effects

412 In many cases, covariate data (also called explanatory or independent variables) are available for 

413 incorporation into a Bayesian mixing model to answer important questions about the mixture 

414 (Francis et al. 2011, Ogle et al. 2014). Neglecting to include covariates that are relevant to the 

415 mixture proportions can lead to pseudoreplication, since the model assumes all mixtures are 

416 independent and identically distributed (Hurlbert 1984). Some examples from diet partitioning 

417 applications include:

418 1. Consumers (mixtures) are of different sexes and an analyst has interest in whether the 

419 dietary proportions differ between sexes (fixed categorical effect).

420 2. An analyst has additional numerical measures on the consumers such as weight, length, 

421 etc., and would like to see whether the dietary proportions are affected by this value 

422 (fixed continuous effect).

423 3. An analyst has samples of consumers and/or sources in different regions. It is likely that 

424 the consumers9 dietary proportions are similar between regions so it makes sense that the 

425 estimates should 8borrow strength9 between the groups (random effect).

426 In each case it is possible to run a traditional mixing model separately for each sex, region, time 

427 point, etc. However, this process can be time-consuming and will often lead to inefficient 

428 inference with greater uncertainties in the dietary proportions for three main reasons. First, there 

429 will be no direct estimate of the effect size between groups. Second, additional residual error 

430 terms will be fit (a residual error term for each level of the fixed/random effect, instead of one 

431 error term shared across levels). Third, there is no way to <borrow strength= between groups, 
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432 since each set of dietary proportions must be estimated independently. The solution lies in 

433 adding the extra information as covariates through the dietary proportions in the mixing model 

434 directly. To illustrate the application of fixed and random effects using MixSIAR software we 

435 describe a case study on Alligator mississippiensis diet partitioning, which executes multiple 

436 model formulations and evaluates their relative support using information criteria (Nifong et al. 

437 2015; for data and R code see Data S1).

438 A common question is how to choose whether to use fixed or random effects. We recognize 

439 that the terms <ûxed= and <random= eûects are unclear (Gelman 2005), and in Gelman9s 

440 <constant= versus <varying= terminology, both ûxed and random eûects in MixSIAR are varying 

441 (diûerent for each factor level). Nonetheless, Gelman (2005) recommends using random effects 

442 (as defined in MixSIAR, Article S1) when possible, since borrowing strength between groups is 

443 a desirable property, and always allows for the model to choose large random effect standard 

444 deviations that will yield nearly equivalent estimates to those resulting from fixed effects 

445 structure when the analyst has reasonably informative isotopic data. The random eûects model 

446 draws oûsets from a shared distribution, which is appropriate if the factor levels are related, as 

447 they often are in biological systems. The random effects model also allows inference on the 

448 relative importance of multiple factors through variance partitioning. For example, Semmens et 

449 al. (2009) showed that for British Columbia wolves,  >   >  , which means ÿ 2ýÿýÿýÿ ÿ 2ÿÿýý ÿ 2ýÿýÿÿÿýÿÿý
450 that Region explained most variance in wolf diet, followed by Pack and Individual. However, 

451 when the number of groups is small (<5) there can be difficulties in estimating the random effect 

452 standard deviations, and fixed effects should always be used when a factor has only two groups.

453
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454 Technical details

455 For covariates to be included, the model must allow for dietary proportions to be specified per 

456 individual, e.g. the mixture likelihood must be of a form similar to:

457 ýÿÿ~ý(3ý ýÿýÿ ýÿý,3ý ý 2ÿýÿ 2ÿý 7 ÿÿ).

458 Where  is now the dietary proportion for source k on individual i. ýÿý
459 Regardless of which fixed or random effects are used, MixSIAR establishes a base set of 

460 diet proportions p using a Dirichlet prior that can be modified with prior information. Once 

461 specified, these proportions are isometric log-ratio (ILR) transformed into ILR-space parameters, 

462  (Parnell et al. 2013). This transformation maps a composition in the k-part Aitchison-simplex ÿÿ
463 isometrically to a k-1 dimensional Euclidean vector. Each of the  transformed components are ÿÿ
464 normally distributed and independent of each other and can thus be broached by standard 

465 multivariate analysis methods. 

466 Once transformed, these  terms can be modified through the incorporation of ÿÿ
467 covariates, and then subsequently back-transformed into individual-specific vectors of diet 

468 proportions .  For instance, for a simple fixed effects structure like that described in example 1 ýÿ
469 above, we have:

470 ýÿ = ÿÿÿÿÿýÿ.ýÿý (ÿÿ + ÿÿÿÿýÿ).

471 The parameters in the vector  cumulatively represent the change in dietary proportions for the  ÿÿ
472 difference between female and male. In this instance, the categorical fixed effect is coded so ÿÿýÿ 
473 that male=1 and female=0 (or vice versa).

474 If the covariate is continuous, as in example 2, the structure changes only very slightly:

475 ýÿ =  ÿÿÿÿÿýÿ.ýÿý(ÿÿ + ÿÿÿÿÿý/ýÿ).
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476 Now the parameters in the vector represent the change in dietary proportions according to a ÿÿ 

477 unit increase in the weight of the consumer. 

478 Covariates are included as random effects in a similar manner. For example 3 given 

479 above, we might have:

480 ýÿ =  ÿÿÿÿÿýÿ.ýÿý(ÿÿ + ÿýÿýÿýÿ(ÿ))

481 where each of the k-1 random effect terms in the vector  , have an extra constraint: ÿýÿýÿýÿ(ÿ)
482 . This constraint allows the model to borrow strength between groups. ÿýÿýÿýÿ(ÿ),ý ~ ý(0, ÿ 2ýÿýÿýÿ)

483 If is small, then the groups are similar and the dietary proportions will not change much ÿ 2ýÿýÿýÿ 

484 between regions. If  is large however, the regions will be very different and this will be ÿ 2ýÿýÿýÿ
485 reflected in the dietary proportions. If multiple random effects are included in the model, the 

486 differences between  terms for each covariate illustrate their relative importance to the ÿ2

487 consumer diet (as in Semmens et al. 2009, where  >   >  , indicating that ÿ 2ýÿýÿýÿ ÿ 2ÿÿýý ÿ 2ýÿýÿÿÿýÿÿý
488 Region explained more of the diet variability than Pack or Individual).

489 Since there is no one-to-one relation between the original parts and the transformed 

490 variables (i.e. each  acts on all terms simultaneously), interpretation of model findings after ÿý ýý
491 back-transforming is prudent. MixSIAR therefore provides summary output statistics and 

492 preserves posterior draws on the back-transformed proportions for fixed categorical and random 

493 effects. In the case of continuous fixed effects (see below), MixSIAR generates a plot of the 

494 fitted line in the untransformed proportion space that spans the range of the provided covariate 

495 data. For the full set of MixSIAR equations and additional explanation, see Article S1.

496
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497 Case study: Alligator mississippiensis diet partitioning

498 This case study highlights the main advantage of MixSIAR over previous mixing model 

499 software4the ability to include fixed and random effects as covariates explaining variability in 

500 mixture proportions and calculate relative support for multiple models via information criteria. 

501 Nifong et al. (2015) analyzed stomach contents and stable isotopes to investigate cross-

502 ecosystem (freshwater vs. marine) resource use by the American alligator (Alligator 

503 mississippiensis), and how this varied with ontogeny (total length), sex, and between individuals. 

504 They used 2-source (marine, freshwater), 2-tracer ( C, N) mixing models and posed three ÿ13 ÿ15

505 questions:

506 Q1. What is pmarine vs. pfreshwater?

507 Q2. How does pmarine vary with the covariates Length, Sex, and Individual?

508 Q3. How variable are individuals9 diets relative to group-level variability?

509 Nifong et al. (2015) grouped the consumers into eight subpopulations (all combinations of Sex : 

510 Size Class, where Sex * {male, female} and Size Class * {small juvenile, large juvenile, 

511 subadult, adult}) and ran separate mixing models for each using SIAR (Parnell et al. 2010). To 

512 calculate pmarine estimates for the overall population, they also ran a mixing model with all 

513 consumers. In addition to inadequately addressing Q3 on individual diet variability, this 

514 approach is likely inefficient, as it fits nine residual error terms for each tracer and does not 

515 capitalize on the fact that diets of different-sex and different-sized alligators are probably related. 

516 We propose that a more natural, statistically efficient approach is to fit several models with fixed 

517 and random effects as covariates, and then evaluate the relative support for each model using 

518 information criteria (see <compare_models= function in MixSIAR).
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519 We used MixSIAR to fit eight mixing models with different covariate structures (Table 1, 

520 Data S1). Since each model is fit to the same data ( C and N values for each of 181 ÿ13 ÿ15

521 alligators), we can compare the models using information criteria. Deviance information 

522 criterion (DIC) is a commonly-used generalization of Akaike information criterion (AIC) for 

523 Bayesian model selection which estimates out-of-sample predictive accuracy using within-

524 sample fits. DIC, however, has several undesirable qualities (e.g. can produce negative estimates 

525 of the effective number of parameters, is not defined for singular models, and is not invariant to 

526 model parameterization; Vehtari, Gelman, & Gabry 2017). Therefore, MixSIAR implements the 

527 widely applicable information criterion (WAIC) and approximate leave-one-out cross-validation 

528 (LOO), both of which are more robust to the concerns associated with DIC (Vehtari, Gelman, & 

529 Gabry 2017). For a set of candidate models fit to the same mixture data, we can calculate the 

530 relative support for each model using LOO and Akaike weights, which are estimates of the 

531 probability that each model will make the best predictions on new data (Burnham and Anderson 

532 2002, McElreath 2016).

533 We found that the models with Length as a continuous fixed effect are heavily preferred 

534 over the models that break length into four size classes (combined weight of 8Length9 and 

535 8Length + Sex9 = 99%, Table 1). There is little evidence for including sex in addition to length or 

536 size class, although it cannot be ruled out (adding sex increases LOO in both cases, but 8Length 

537 + Sex9 still receives 20% weight, Table 1). While the original analysis by Nifong et al. (2015) 

538 predicts pmarine as a function of subpopulation membership, the 8Length9 model predicts pmarine as 

539 a function of length (Fig. 5). Under the 8Size class : Sex9 model of Nifong et al. (2015), the 

540 pmarine estimate for adult males is 0.76 (median, 95% CI 0.68-0.84), while the 8Length9 model 

541 estimate of pmarine for the largest individual, a 315.5 cm adult male, is 0.96 (median, 95% CI 
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542 0.91-0.99). Although Nifong et al. (2015) clearly document an ontogenetic shift in alligator 

543 resource use, the data support the conclusion that this shift likely occurs as a continuous function 

544 of body size, instead of in discrete stages.

545 This case study also highlights the interaction between covariates and the multiplicative 

546 error term, . As covariates are included that increasingly explain the observed variability in ÿÿ
547 alligator isotope values, the estimates of  shrink (  decreases from 8.4 to 5.2,  decreases ÿÿ ÿÿ ÿý
548 from 2.2 to 1.0; Table 1). The  estimate from the 8Length9 model (1.0) is about what we expect ÿý
549 given the assumptions about how predators sample prey. The  estimate (5.2) is very high, ÿÿ
550 however, indicating that there remains an important process that is unaccounted for in the model. 

551 There are several possible explanations (see section on 8Understanding MixSIAR error structures 

552 for mixture data9), with one being that individuals9 diets likely differ based on other processes 

553 than sex or length4all models in Table 1 assume that individuals of the same sex, length, and/or 

554 size class share the same diet proportions. We can, however, relax this assumption by including 

555 Individual as a random effect in addition to Length (or other covariates). Then the diet proportion 

556 for the ith individual becomes:

557 ýÿ =  ÿÿÿÿÿýÿ.ýÿý(ÿ0 + ÿ1ÿÿÿýý/ÿ + ÿÿÿý),

558 ,ÿ1 ~ ý(0, 1000)
559 ,ÿÿÿý ~ ý(0, ÿ 2ÿÿý)

560 .ÿ 2ÿÿý ~ ý(0, 20)
561 This 8Length + Individual9 model allows pmarine for individual alligators to vary around the 

562 expectation based on Length (Fig. 6).

563 Like many ecologists, Nifong et al. (2015) were interested in how variable individuals9 

564 diets are, relative to group-level variability (Q3). They calculated the specialization index (·) of 
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565 Newsome et al. (2012) for their overall population model, 0.26 ± 0.05, concluded that alligators 

566 are mostly generalists, and <the diet of the majority of individuals is expected to be comprised of 

567 similar proportions of freshwater and marine prey.= The proper interpretation, however, is 

568 clearer with the best performing model (8Length9)4the specialization index of an alligator of 

569 average length is low, but small and large alligators are highly specialized (Fig. 7). Additionally, 

570 since the 8Length + Individual9 model estimates individuals9 diet proportions, we can plot the 

571 distribution of  and see directly that most alligators are specialists ( Fig. 8). Nifong et ÿÿÿý ÿ > 0.8, 

572 al. (2015) performed a well-designed study, and their main conclusions are robust4we only 

573 reanalyze their data here to highlight advantages of MixSIAR over other mixing model software.

574 Limitations of Bayesian Mixing Models

575 Like any statistical model, inference from mixing models is only as good as the data being used. 

576 In some situations, data may not be informative 3 these situations may arise when models are 

577 mis-specified, or data are limited. These situations may be difficult to diagnose, because they 

578 often require a detailed examination of the likelihood or posterior distributions (which may 

579 appear flat with respect to the parameter of interest). Similar situations arise in all statistical 

580 models 3 for example fitting a regression model to a constant response  returns an ý = (3,3,3,&)

581 estimate that is a perfect fit to the data, but does not produce standard errors or test-statistics (the 

582 response is assumed to be normally distributed, but the variance of Y = 0). Several recent papers 

583 have illustrated some of these same points with respect to mixing models, and we detail those 

584 here. 

585 As a first limitation, Bond and Diamond (2011) illustrated that recently developed mixing 

586 models are sensitive to the choice of discrimination factors (systematic changes in the tracer 

587 values through the mixing process). This issue arises because the discrimination factors and 
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588 estimated source contributions are not completely identifiable. In other words, these parameters 

589 are difficult to estimate simultaneously, and one or the other is generally fixed (in food web 

590 studies, the discrimination factor is typically specified as fixed a priori). At present, MixSIAR 

591 does not provide the option to estimate discrimination from user-provided data, although such 

592 functionality could easily be added; we anticipate adding this functionality into a future software 

593 release. 

594 A second limitation of mixing models is that systems may be under-determined (as 

595 discussed in the introduction). Phillips and Gregg (2003) demonstrated several examples of this 

596 problem for the 2-tracer scenario, but the issue of underdetermined problems generally arises 

597 when the number of sources exceeds the number of tracers plus one. In such instances, posterior 

598 estimates of source contributions can be broad and multi-modal, owing to the fact that multiple, 

599 often disparate, solutions to the underlying mixing equations exist. Fry (2013) proposed a 

600 graphical approach to separate data-supported aspects of solutions from any assumed aspects of 

601 solutions method. Essentially, this approach is a post hoc means of evaluating model 

602 performance, and can easily be applied to the products of any mixing model (including the 

603 products of a MixSIAR model run). 

604 A larger issue with underdetermined systems is that in some cases, the choice of 

605 Bayesian prior will play a large role. In completely determined systems with reasonable sample 

606 sizes and separation of sources, the choice of prior has little impact on results. When systems are 

607 underdetermined, however, data may be less informative, and as a result the priors can be 

608 relatively influential. Moreover, as the variability within sources increases (the variability around 

609 source means), the prior plays an even larger role. Brett (2014) described the interaction between 

610 the prior and the shape of the mixing polygon (which arises from the sources and their 
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611 variability) as a bias of mixing models. This phenomenon may be better described as weakly 

612 informative data, but we agree that approaches like Brett (2014)9s surface area metric may be 

613 useful in recognizing a priori when these situations may arise. As such, we have incorporated 

614 Brett9s surface area metric as a diagnostic output in MixSIAR (<calc_area= function). However, 

615 work still needs to be done to generalize this metric to situations with any number of tracers and 

616 sources. 

617 Conclusion

618 Analysts applying modern mixing model software typically must navigate a challenging array of 

619 model choices, from source groupings to covariate data, to error parameterization. In the past, 

620 those analysts not capable of developing their own models have been faced with the choice 

621 between different software packages, each with differing statistical model structures and 

622 assumptions. Through the creation of MixSIAR, we have incorporated the disparate suite of 

623 mixing model advances into a single tool with the flexibility to meet most analyst9s needs. 

624 Because MixSIAR is open source and collaborative, we anticipate that new developments in 

625 mixing model methods, from parameterizations to model performance diagnostics, will continue 

626 to be incorporated into the functionality of MixSIAR.  As such, the software provides a single 

627 tool that can meet the diverse needs of the rapidly increasing pool of stable isotope analysts, and 

628 affords developers a platform upon which to continue improving and diversifying mixing model 

629 analyses.

630
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Table 1(on next page)

Comparison of mixing models fit using MixSIAR on the alligator diet partitioning data

from Nifong et al. (2015).

dLOOic is the difference in LOOic between each model and the model with lowest LOOic. The

'Length' model had the lowest LOOic and received 79% of the Akaike weight, indicating a

79% probability it is the best model. The 'Length + Sex' model cannot be ruled out (20%

weight). Note that as variability in the mixture data is better explained by covariates, the

estimates of ¿j decrease.
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Model LOOic SE(LOOic) dLOOic SE(dLOOic) Weight ¿C ¿N
Length 820.8 31.4 0 -- 0.789 5.3 1.0

Length + Sex 823.6 31.4 2.8 2.1 0.195 5.2 1.0

Size class 829.5 31.6 8.7 11.7 0.010 5.4 1.1

Size class + Sex 831.4 31.5 10.6 12.1 0.004 5.3 1.1

Size class : Sex 832.9 29.8 12.1 13.6 0.002 4.9 1.1

Habitat 890.7 28.7 69.9 43.4 0 6.4 1.5

Sex 973.8 17.7 153.0 30.1 0 8.4 2.2

-- 977.0 16.7 156.2 31.5 0 8.4 2.2

1

2 Table 1. Comparison of mixing models fit using MixSIAR on the alligator diet partitioning 

3 data from Nifong et al. (2015). dLOOic is the difference in LOOic between each model and 

4 the model with lowest LOOic. The 8Length9 model had the lowest LOOic and received 79% 

5 of the Akaike weight, indicating a 79% probability it is the best model. The 8Length + Sex9 

6 model cannot be ruled out (20% weight). Note that as variability in the mixture data is 

7 better explained by covariates, the estimates of  decrease.ÿÿ
8
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Figure 1(on next page)

Representation of the 3 different methods MixSIAR uses for modeling variability in

mixture data, assuming a two source (k), 1 tracer (j) scenario

A) In the "residual error only" formulation, the means of each source (upper black dots;

typically estimated within the model based on source data) are additively combined, after

weighting based on estimated proportional source contributions, in order to generate the

expected mean value of the mixture signatures (Eq. 1). Actual mixture measurements

deviate from this mean due to residual error, Ãj
2. B) Given a single mixture data point,

MixSIAR assumes this mixture value is drawn from a normal distribution defined by the same

mean, with the variance generated by a weighted combination of source variances (Eq. 2). C)

In the "multiplicative error" formulation (Eq. 3), the model assumes the mixture data are

generated from the process as in (B), but the variance of this distribution is modified by a

multiplicative term, ¿j, that allows the distribution to shrink (as would be expected if

consumers are sampling multiple times from each source pool) or expand (as would be

expected if the model is missing a non-negligible source, or processes such as isotopic

routing introduce significant additional variability into the mixing system).
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Figure 2(on next page)

Examples of joint and marginal distributions of p1 and p2 for a 3-component Dirichlet

distribution, across 4 sets of hyperparameters.

(A) ³ = 1, (B) ³ = 0.5, (C) ³ = 10, and (D) ³ = 100. All simulations were done with the

8rdirichlet9 function in the 'compositions' library in R (Van Der Boogaart and Tolosana-Delgado

2006).
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Figure 3

Illustration of alternative priors for a mixing model of rainbow trout (consumers/mixture)

diet comprised of 3 sources: eggs, fish, and invertebrates

(Left) The "uninformative"/generalist Dirichlet prior MixSIAR uses by default, ³ = (1,1,1).

(Middle) A strongly informative prior with ³ = (30,8,25), where each ³k corresponds to the

sample size of source k from stomach contents. (Right) A moderately informative prior with

the same mean, but each ³k rescaled such that £³k = 3, the number of sources. Note that

both informative priors have the same mean but differ in their "informativeness".
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Figure 4(on next page)

Effect of aggregating sources a posteriori on priors in mixing models, produced by the

"combine_sources" function in MixSIAR as a warning to the user.

Columns from left to right: the original, unaggregated prior on 6 sources from the mantis

shrimp example (dark blue); the "uninformative"/generalist prior on 6 sources (grey); the

prior resulting from aggregating the 6-source prior in dark blue into 2 sources (hard-shelled =

clam + crab + snail, soft-bodied = alphworm + brittlestar + fish, red); and the prior resulting

from aggregating the 6-source "uninformative"/generalist prior into the same 2 sources

(grey).
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Figure 5

Posterior distributions for alligator diet proportions as a function of length from the best

performing model, 'Length'.

Small/young alligators depend upon freshwater prey and shift to a marine-based diet as they

increase in size. Lines depict posterior medians, and shading displays the 90% credible

intervals. The 8Length9 model estimate of pmarine (blue curve) for the largest individual, a 315.5

cm adult male, is 0.96 (median, 95% CI 0.91-0.99). Estimates of pmarine for the smallest (37.7

cm) and median-sized (116.9 cm) alligators are 0.09 (0.04-0.15) and 0.32 (0.24-0.39),

respectively.
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Figure 6

Posterior distributions for the marine proportion, pmarine, of alligator diet as a function of

length from the 'Length + Individual' model.

Whereas the 'Length' model estimates one diet for all alligators of a given length, the 'Length

+ Individual' model allows pmarine for individual alligators to vary around the expectation based

on Length. For most alligators around 100 cm total length, the pmarine is very low, but for some

it is above 80%. Likewise, the model estimates that most large (> 200 cm) alligators' diets

are dominated (> 95%) by marine prey, but pmarine for three large individuals is less than 10%.

Dark blue line and points indicate posterior medians, light lines and shading show 90%

credible intervals.
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Figure 7

Posterior distribution of the specialization index (·) as a function of length from the

'Length' model.

Small and large alligators are highly specialized (on freshwater and marine prey,

respectively), whereas average-length alligators have low specialization index (i.e. are

consuming both freshwater and marine prey). Specialization index is calculated using Eq. 5 in

Newsome et al. (2012) from individual MCMC draws of pfreshwater and pmarine as a function of

length. The line depicts the posterior median and shading displays the 95% credible interval.
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Figure 8

Distribution of the specialization index calculated for each individual (·ind, n = 181) from

the 'Length + Individual' model estimates of individuals9 diet proportions (posterior

median of pind).

The model estimates that most alligators sampled by Nifong et al. (2015) are specialists (· >

0.8).
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