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Coral reefs are dynamic systems whose composition is highly influenced by unpredictable

biotic and abiotic factors. Understanding the spatial scale at which long-term predictions of

reef composition can be made will be crucial for guiding conservation efforts. Using a 22-

year time series of benthic composition data from 20 reefs on the Kenyan and Tanzanian

coast, we developed Bayesian vector autoregressive state-space models for reef

dynamics, incorporating among-site variability, and quantified their long-term behaviour.

We estimated that if there were no among-site variability, the total long-term variability

would be approximately one third of its current value. Thus, our results showed that

among-site variability contributes more to long-term variability in reef composition than

does temporal variability. Individual sites were more predictable than previously thought,

and predictions based on current snapshots are informative about long-term properties.

Our approach allowed us to identify a subset of possible climate refugia sites with high

conservation value, where the long-term probability of coral cover \(\leq\) 0.1 was very

low. Analytical results show that this probability is most strongly influenced by among-site

variability and by interactions among benthic components within sites. These findings

suggest that conservation initiatives might be successful at the site scale as well as the

regional scale.
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Abstract17

Coral reefs are dynamic systems whose composition is highly influenced by unpredictable biotic18

and abiotic factors. Understanding the spatial scale at which long-term predictions of reef19

composition can be made will be crucial for guiding conservation efforts. Using a 22-year time20

series of benthic composition data from 20 reefs on the Kenyan and Tanzanian coast, we21

developed Bayesian vector autoregressive state-space models for reef dynamics, incorporating22

among-site variability, and quantified their long-term behaviour. We estimated that if there were23

no among-site variability, the total long-term variability would be approximately one third of its24

current value. Thus, our results showed that among-site variability contributes more to long-term25

variability in reef composition than does temporal variability. Individual sites were more26

predictable than previously thought, and predictions based on current snapshots are informative27

about long-term properties. Our approach allowed us to identify a subset of possible climate28

refugia sites with high conservation value, where the long-term probability of coral cover f 0.129

was very low. Analytical results show that this probability is most strongly influenced by30

among-site variability and by interactions among benthic components within sites. These findings31

suggest that conservation initiatives might be successful at the site scale as well as the regional32

scale.33

2
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Introduction34

“Probabilistic language based on stochastic models of population growth” has been proposed as a35

standard way to evaluate conservation and management strategies (Ginzburg et al., 1982). For36

example, a stochastic population model can be used to estimate the probability of abundance37

falling below some critical level. Such population viability analyses are widely used, and may be38

reasonably accurate if sufficient data are available (Brook et al., 2000). In principle, the same39

approach could be used for communities, provided that a sufficiently simple model of community40

dynamics can be found.41

A good candidate for such a model is the vector autoregressive model of order 1 or VAR(1)42

(Lütkepohl, 1993; Ives et al., 2003). This is a discrete-time model for the vector of log43

abundances of a set of species or groups, which includes environmental stochasticity and may44

include environmental explanatory variables. It makes the simplifying assumptions that inter- and45

intraspecific interactions can be represented by a linear approximation on the log scale, and that46

future abundances are conditionally independent of past abundances, given current abundances.47

Where possible, it is desirable to use a state-space form of the VAR(1) model, which also includes48

measurement error (Lindegren et al., 2009; Mutshinda et al., 2009).49

Hampton et al. (2013) review applications of VAR(1) models in community ecology, which50

include studying the stability of freshwater plankton systems (Ives et al., 2003), designing51

adaptive management strategies for the Baltic Sea cod fishery (Lindegren et al., 2009), and52

estimating the contributions of environmental stochasticity and species interactions to temporal53

fluctuations in abundance of moths, fish, crustaceans, birds and rodents (Mutshinda et al., 2009).54

Recently, VAR(1) models have been applied to the dynamics of the benthic composition of coral55

reefs (Cooper et al., 2015; Gross and Edmunds, 2015), using a log-ratio transformation (Egozcue56

et al., 2003) rather than a log transformation, to deal with the constraint that proportional cover of57

space-filling benthic groups sums to 1.58

Coral reefs are dynamic systems influenced by both deterministic factors such as interactions59

between macroalgae and hard corals (Mumby et al., 2007), and stochastic factors such as60
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temperature fluctuations (Baker et al., 2008) and storms (Connell et al., 1997), and are classic61

examples of non-equilibrium systems whose diversity is determined by both interspecific62

interactions and disturbance (Huston, 1985). In general, high coral cover is considered a desirable63

state for a coral reef, and there is some evidence that coral cover of at least 0.1 is important for64

long-term maintenance of reef function (Kennedy et al., 2013; Perry et al., 2013; Roff et al.,65

2015), although this threshold may differ among reefs dominated by different coral genera (Perry66

et al., 2015). Thus, coral cover of 0.1 might be an appropriate threshold against which to evaluate67

reef conservation strategies, and VAR(1) models can be used to estimate the probability of coral68

cover falling to or below this threshold (Cooper et al., 2015).69

There is evidence for systematic differences in reef dynamics among locations. For example, on70

the Great Barrier Reef up to 2012, coral cover had declined more strongly at southern and central71

than at northern sites (De’ath et al., 2012), and in the U.S. Virgin Islands, VAR(1) models showed72

that sites differed in their sensitivity to disturbance and speed of recovery (Gross and Edmunds,73

2015). Some sites in a region may therefore represent coral refugia, where reefs are either74

protected from or able to adapt to changes in environmental conditions (McClanahan et al., 2007).75

Alternatively, apparent differences among sites may simply be due to differences in recent76

disturbance history. Although it may be possible to associate differences in dynamics among sites77

with differences in environmental variables, it is also possible to treat among-site differences as78

another random component of a VAR(1) model. This will allow estimation of the relative79

importance of among-site variability and within-site temporal variability, which is important for80

the design of conservation strategies. If within-site temporal variability dominates, it will not be81

possible to identify good sites to conserve based on current status, while if among-site variability82

dominates, even a “snapshot” sample at one time point may be enough to identify good sites.83

Thus, for example, the reliability of among-site patterns from surveys at one time point, such as84

the relationship between benthic composition and human impacts on remote Pacific atolls (Sandin85

et al., 2008), depends on among-site variability dominating within-site temporal variability. Thus,86

even though a simple strategy based on a snapshot may turn out to be effective, it is not possible87

4
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to know this in advance of carrying out a more sophisticated analysis that treats the system as88

dynamic. Furthermore, since among-site variability will affect the probability of undesirable89

community composition (such as coral cover f 0.1), conservation strategies that explicitly90

address among-site variability may be effective. As far as we know, the use of VAR(1) models to91

estimate spatiotemporal heterogeneity and identify refugia is novel, although other applications of92

VAR(1) models with random subject effects exist (e.g. Gorrostieta et al., 2012; Driver et al.,93

2016). Our approach differs from existing methods for identifying refugia (Keppel et al., 2012) in94

that it explicitly focuses on spatial variability in dynamics over ecological timescales, rather than95

on patterns that are static or vary only over much longer timescales. Furthermore, rather than96

differences in physical factors (West and Salm, 2003), we focus on differences in community97

dynamics.98

Here, we develop a state-space VAR(1) model for regional dynamics of East African coral reefs,99

including random site effects and measurement error, and use it to answer four key questions100

about spatial and temporal variability. How important is among-site variability in the dynamics of101

benthic composition, relative to within-site temporal variability? How much variability is there102

among sites in the probability of low (f 0.1) coral cover? Which model parameters have the103

largest effects on the probability of low coral cover in the region? How informative is a single104

snapshot in time about the long-term properties of a site?105

Methods106

Data collection107

Surveys of 20 spatially distinct reefs in Kenya and Tanzania (supporting information, Table A1,108

Figure A1) were conducted annually during the period 1991-2013 (generally in November or109

December prior to 1998, but January or February from 1998 onwards). Those in the north were110

typically fringing reefs, 100 m to 2000 m from the shore, while those in the south were typically111

smaller and more isolated patch reefs, further from the shore (McClanahan and Arthur, 2001). We112
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categorized reefs as either fished or unfished, although there was substantial heterogeneity within113

these categories, because some fished reefs were community management areas with reduced114

harvesting intensity (Cinner and McClanahan, 2015), and some unfished reefs had only recently115

been designated as reserves. Of the 20 reefs, 10 were divided into two sites separated by 20 m to116

100 m, while the remaining 10 reefs comprised only one site. The selection of sites represents117

available data rather than a random sample from all the locations at which coral reefs are present118

in the geographical area (and all of the longest time series are from Kenyan fringing reefs). Thus,119

when we refer below to ‘a randomly-chosen site’ we strictly mean ‘a site drawn at random from120

the population for which data could have been available.’121

Each of the 30 sites was visited at least twice (data from sites visited once were omitted), with a122

maximum of 20 visits. A version of line-intercept sampling (Kaiser, 1983; McClanahan et al.,123

2001) was used to estimate reef composition. In total, 2665 linear transects were sampled across124

all sites and years, with between 5 and 18 transects (median 9) at each site in a single year.125

Transects were randomly placed between two points 10m apart, but as the transect line was126

draped over the contours of the substrate, the measured lengths varied between 10m and 15m.127

Cover of benthic taxa was recorded as the sum of draped lengths of intersections of patches of128

each taxon with the line, divided by the total draped length of the line. Intersections with length129

less than 3cm were not recorded. Taxa were identified to species or genus level, but for this study130

cover was grouped into three broad categories: hard coral, macroalgae and other (algal turf,131

calcareous and coralline algae, soft corals and sponges). Sand and seagrass were recorded, but132

excluded from our analysis, which focussed on hard substrate. The dynamics of a subset of these133

data were analyzed using different methods in Żychaluk et al. (2012).134

Data processing135

The three cover values form a three-part composition, a set of three positive numbers whose sum136

is 1 (Aitchison, 1986, Definition 2.1, p. 26). Standard multivariate statistical techniques are not137

appropriate for untransformed compositional data, due to the absence of an interpretable138
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covariance structure and the difficulties with parametric modelling (Aitchison, 1986, chapter 3).139

To avoid these difficulties, the proportional cover data were transformed to orthogonal,140

unconstrained, isometric log-ratio (ilr) coordinates (Egozcue et al., 2003). It is of course true that141

the model presented below for transformed data has an analogous model for untransformed data142

(Mateu-Figueras et al., 2011). However, working with transformed data allows us to use familiar143

methods.144

The transformed data at site i, transect j, time t were represented by the vector145

yi, j,t = [y1,i, j,t ,y2,i, j,t ]
T , in which the first coordinate y1,i, j,t was proportional to the natural log of146

the ratio of algae to coral, and the second coordinate y2,i, j,t was proportional to the natural log of147

the ratio of other to the geometric mean of algae and coral (supporting information, section A1).148

The T denotes transpose: throughout, we work with column vectors. Note that both raw and149

transformed data are dimensionless.150

The model151

The true value xi,t = [x1,i,t ,x2,i,t ]
T of the isometric log-ratio transformation of cover of hard corals,152

macroalgae and other at site i at time t was modelled by a vector autoregressive process of order 1153

(i.e. a process in which the cover in a given year depends only on cover in the previous year), an154

approach used in other recent models of coral reef dynamics (Cooper et al., 2015; Gross and155

Edmunds, 2015). Unlike previous models, we include a random term representing among-site156

variation, and explicit treatment of measurement error (making this a state-space model). The full157

model is158

xi,t+1 = a+αi +Bxi,t +εi,t ,

αi > N (0,Z),

εi,t > N (0,Σ),

yi, j,t > t2(xi,t ,H,ν),

(1)

where all variables and parameters are dimensionless.159

The column vector a represents the among-site mean proportional changes in xi,t evaluated at160
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xi,t = 0. The column vector αi represents the amount by which these proportional changes for the161

ith site differ from the among-site mean, and is assumed to be drawn from a multivariate normal162

distribution with mean vector 0 and 2×2 covariance matrix Z. The 2×2 matrix B represents the163

effects of xi,t on the proportional changes, and can be thought of as summarizing intra- and164

inter-component interactions such as competition. The column vector εi,t represents random165

temporal variation, and is assumed to be drawn from a multivariate normal distribution with mean166

vector 0 and covariance matrix Σ. We assume that there is no temporal or spatial autocorrelation167

in ε, and that ε is independent of the among-site variation α.168

The observed transformed compositions yi, j,t vary around the corresponding true compositions169

xi,t due to both small-scale spatial variation in true composition among transects within a site, and170

measurement error in estimating composition from a transect. We cannot easily separate these171

sources of variation because transects were located at different positions in each year, and there172

were no repeat measurements within transects. Observed log-ratio transformed cover yi, j,t in the173

jth transect of site i at time t was assumed to be drawn from a bivariate t distribution (denoted by174

t2) with location vector equal to the corresponding xi,t , and unknown scale matrix H and degrees175

of freedom ν , so that yi, j,t has mean vector xi,t if ν > 1, and covariance matrix νH/(ν 22) if176

ν > 2 (Lange et al., 1989). The bivariate t distribution can be interpreted as a mixture of bivariate177

normal distributions whose covariance matrices are the same up to a scalar multiple (Lange et al.,178

1989), and therefore allows a simple form of among-site or temporal variation in the distribution179

of measurement error or small-scale spatial variation, whose importance increases as the degrees180

of freedom decrease. Preliminary analyses suggested that it was important to allow this variation,181

because the model in Equation 1 fitted the data much better than a model with a bivariate normal182

distribution for yi, j,t (supporting information, section A3).183

We make the important simplifying assumptions that B is the same for all sites, and that the184

causes of among-site and temporal variation are not of interest. A separate B for each site, or even185

a hierarchical model for B, would be difficult to estimate from the amount of data we have. It186

might be possible to explain some of the random temporal variation using temporally-varying187
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environmental covariates such as sea surface temperature, and some of the among-site variation188

using temporally constant covariates such as management strategies (Cooper et al., 2015).189

However, it is not necessary to do so in order to answer the questions listed at the end of the190

introduction, and keeping the model as simple as possible is important because parameter191

estimation is quite difficult. Furthermore, some of the relevant environmental variables may be192

associated with management strategies, making it difficult to separate the effects of environmental193

variation and management. For example, although some water quality variables were not strongly194

associated with protection status (Carreiro-Silva and McClanahan, 2012), unfished reefs were195

designated as protected areas due to their relatively good condition and are generally found in196

deeper lagoons with lower and more stable water temperatures than fished reefs (T. R.197

McClanahan, personal observation).198

To understand the features of dynamics common to all sites, we plotted the back-transformations199

from ilr coordinates to the simplex of the overall intercept parameter a and the columns a1 and a2200

of a matrix A, which is related to B and describes the effects of current reef composition on the201

change in reef composition from year to year (Cooper et al., 2015). We plotted A rather than B202

because it leads to a simpler visualization of effects (supporting information, section A4). For203

example, a point lying to the left of the line representing equal proportions of coral and algae (the204

1:1 coral-algae isoproportion line) corresponds to a parameter tending to increase coral relative to205

algae.206

Parameter estimation207

We estimated all model parameters and checked model performance using Bayesian methods208

implemented in the Stan programming language (Stan Development Team, 2015), as described in209

the supporting information (section A5). Stan uses the No-U-Turn Sampler, a version of210

Hamiltonian Monte Carlo, which can converge much faster than random-walk Metropolis211

sampling when parameters are correlated (Hoffman and Gelman, 2014). For most results, we212

report posterior means and 95% highest posterior density (HPD) intervals (Hyndman, 1996),213
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calculated in R (R Core Team, 2015). We showed using simulations that our estimated credible214

intervals had close to the specified coverage (section A5.2 and Figure A3).215

Long-term behaviour216

In the long term (as t ³ ∞), the true transformed composition x7 of a randomly-chosen site will217

converge to a stationary distribution, provided that all the eigenvalues of B lie inside the unit218

circle in the complex plane (e.g. Lütkepohl, 1993, p. 10). If the eigenvalues of B are complex, the219

system will oscillate as it approaches the stationary distribution. Details of long-term behaviour220

are in the supporting information, section A6.221

This stationary distribution is the multivariate normal vector222

x7 > N (µ7,Σ7+Z7), (2)

whose stationary mean µ
7 depends on B and a, and whose stationary covariance is the sum of the223

stationary within-site covariance Σ
7 (which depends on B and Σ) and the stationary among-site224

covariance Z7 (which depends on B and Z).225

For a fixed site i, the value of αi is fixed and the stationary distribution is given by226

x7i > N (µ7
i ,Σ

7), (3)

whose stationary mean µ
7
i depends on B, a and αi, and whose stationary covariance matrix is Σ7.227

Note that B, which describes intra- and inter-component interactions on an annual time scale,228

affects all the parameters of both stationary distributions, and therefore affects both within- and229

among-site variability in the long term. Also, the back-transformation of the stationary mean µ
7

230

of the transformed composition, rather than the arithmetic mean vector of the untransformed231

composition, is the appropriate measure of the centre of the stationary distribution (Aitchison,232

1989).233
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How important is among-site variability?234

The covariance matrix of the stationary distribution for a randomly-chosen site (Equation 2)235

contains contributions from both among- and within-site variability. To quantify the contributions236

from these two sources, we calculated237

ρ =

(

|Σ7|

|Σ7+Z7|

)1/2

, (4)

(supporting information, section A7), which is the ratio of volumes of two unit ellipsoids of238

concentration (Kenward, 1979), the numerator corresponding to the stationary distribution in the239

absence of among-site variation (or for a fixed site, as in Equation 3), and the denominator to the240

full stationary distribution of transformed reef composition in the region. The volume of each241

ellipsoid of concentration is a measure of the dispersion of the corresponding distribution. Thus ρ242

provides an indication of how much of the total variability would remain if all among-site243

variability was removed. A similar statistic was used by Ives et al. (2003) to measure the244

contribution of species interactions to stationary variability.245

How much variability is there among sites in the probability of low coral246

cover?247

For a given coral cover threshold κ , we define qκ ,i as the long-term probability that site i has coral248

cover less than or equal to κ . This can be interpreted either as the proportion of time for which the249

site will have coral cover less than or equal to κ in the long term, or as the probability that the site250

will have coral cover less than or equal to κ at a random time, in the long term. We set κ = 0.1,251

which has been suggested as a threshold for a positive net carbonate budget, based on simulation252

models and data from Caribbean reefs (Kennedy et al., 2013; Perry et al., 2013; Roff et al., 2015).253

We calculated q0.1,i for each site numerically (supporting information, section A8). In order to254

determine whether differences in q0.1,i were related to current coral cover, we plotted q0.1,i against255

the corresponding sample mean coral cover for each site, over all transects and years. In order to256
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determine whether differences in q0.1,i had obvious explanations, we distinguished between fished257

and unfished reefs, and patch and fringing reefs. In order to determine whether there was strong258

spatial pattern in the probability of low coral cover, we calculated spline correlograms (Bjørnstad259

and Falck, 2001) for a sample from the posterior distribution of q0.1,i (supporting information,260

section A9).261

Which model parameters have the largest effects on the probability of low262

coral cover?263

For a given coral cover threshold κ , we define qκ as the long-term probability that a264

randomly-chosen site has coral cover less than or equal to κ . This is equal to the expected265

long-term probability that coral cover is less than or equal to κ over the region, and can be266

calculated numerically (supporting information, section A8). To find the parameters with the267

largest effects on qκ , we calculated its derivatives with respect to each model parameter. As268

above, we concentrated on κ = 0.1. However, we also compared results from κ = 0.05 and269

κ = 0.20. The probability qκ is a function of 12 parameters: all four elements of B; both elements270

of a; elements σ11, σ21 and σ22 of Σ; and elements ζ11, ζ21 and ζ22 of Z. The negative of the271

gradient vector of derivatives of qκ with respect to these parameters describes the direction of272

movement through parameter space in which the probability of low coral cover will be reduced273

most rapidly, and the elements of this vector with the largest magnitudes correspond to the274

parameters to which qκ is most sensitive. To understand why qκ responds to each model275

parameter, note that qκ depends on the parameters µ7, Σ7 and Z7 of the stationary distribution276

(Equation 2), which are in turn affected by the model parameters. We therefore used the chain277

rule for matrix derivatives (Magnus and Neudecker, 2007, p.108) to break down the derivatives278

into effects of µ7, Σ7 and Z7 on qκ , and effects of model parameters on µ
7, Σ7 and Z7

279

(supporting information, section A10). We also calculated elasticities of qκ with respect to each280

parameter, which measure the rate of relative change in qκ with respect to relative change in the281

parameter (supporting information, section A11).282
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How informative is a snapshot about long-term site properties?283

In a stochastic system, how much can a “snapshot” survey at a single point in time tell us about284

the long-term behaviour of the system? For example, are differences among sites that appear to be285

in good and bad condition likely to be maintained in the long term? To make this question more286

precise, suppose that we draw a site at random from the region, and at one point in time, draw the287

true state of the site at random from the stationary distribution for the site. This scenario matches288

Diamond’s definition of “natural snapshot experiments” as “comparisons of communities289

assumed to have reached a quasi-steady state” (Diamond, 1986). For simplicity, we assume that290

we can estimate the true state accurately (for example, by taking a large number of transects). To291

quantify how informative this is about the long term properties of the site, we computed the292

correlation coefficients between corresponding components of the true state at a given site at a293

given time and of stationary mean for that site (supporting information, section A12). If these294

correlations are high, then a snapshot will be informative about long term properties.295

Results296

Overall dynamics297

At all sites, the back-transformed posterior mean true states from the model (e.g. Figure 1, grey298

lines) closely tracked the centres of the distributions of cover estimates from individual transects,299

although there was substantial among-transect variability at a given site in a given year (e.g.300

Figure 1, circles). Figure 1 shows two examples, and time series for all sites are plotted in the301

supporting information, Figures A6 to A35. There were also substantial differences in patterns of302

temporal change among sites. For example, Kanamai1 (Figure 1a-c), a fished site, had303

consistently low algal cover and no dramatic changes in cover of any component. In contrast,304

Mombasa1 (Figure 1d-f), an unfished site, had a sudden decrease in coral cover in 1998, and algal305

cover was high from 2007 onwards. As a result, Mombasa1 was unusual in that the current306
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estimate of true algal cover was well above the stationary mean estimate (Figure 1e: black circle307

at end of time series). For most other sites, current estimated true cover was close to the stationary308

mean (supporting information, Figures A6 to A35, black circles at ends of time series). The309

uncertainty in true states (Figure 1, grey polygons represent 95% highest posterior density (HPD)310

credible intervals) was higher during intervals with missing observations (e.g. 2008 in Figure 1).311

In general, uncertainty in true states (grey polygons) and stationary means (black bars at end of312

time series) was highest for sites with few observations (e.g. Bongoyo1, Figure A6).313

The overall intercept parameter a (Figure 2, green), which describes the dynamics of reef314

composition at the origin (where each component is equally abundant) was consistent with the315

observed low macroalgal cover in the region (e.g. Figure 1b, e). The back-transformation of a lay316

close to the coral-other edge of the ternary plot, and slightly above the 1:1 coral-other317

isoproportion line. It therefore represented a strong year-to-year decrease in algae, and a slight318

increase in other relative to coral, at the origin.319

Current reef composition acts on year-to-year change in composition (through matrix A) so as to320

maintain fairly stable reef composition. The first column a1 of A, which represents the effects of321

the transformed ratio of algae to coral on year-to-year change in composition, lay (when322

back-transformed) to the left of the 1:1 coral-algae isoproportion line, above the 1:1 other-algae323

isoproportion line, and below the 1:1 coral-other isoproportion line (Figure 2, orange). Thus,324

increases in algae relative to coral resulted in decreases in algae relative to coral and other, and325

increases in coral relative to other, in the following year. The second column a2 of A, which326

represents the effects of the transformed ratio of other to algae and coral on year-to-year change327

in composition, lay (when back-transformed) on the 1:1 coral-algae isoproportion line, below the328

1:1 other-algae isoproportion line, and below the 1:1 coral-other isoproportion line (Figure 2,329

blue). Thus, increases in other relative to algae and coral resulted in little change in the ratio of330

coral to algae, but decreases in other relative to both coral and algae. Consistent with the above331

interpretation of year-to-year dynamics, every set of parameters in the Monte Carlo sample led to332

a stationary distribution, since both eigenvalues of B lay inside the unit circle in the complex333
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plane (supporting information, section A13). The magnitudes of these eigenvalues were smaller334

than those for a similar model for the Great Barrier Reef (Cooper et al., 2015), indicating more335

rapid approach to the stationary distribution. There was some evidence for complex eigenvalues336

of B, leading to rapidly-decaying oscillations in both components of transformed reef337

composition on approach to this distribution. This contrasts with the Great Barrier Reef, where338

there was no evidence for oscillations (Cooper et al., 2015).339

How important is among-site variability?340

There was substantial among-site variability in the locations of stationary means (Figure 3,341

dispersion of points). Stationary mean algal cover was always low, but there was a wide range of342

stationary mean coral cover. Although our primary focus is not on the causes of among-site343

variability, there was a tendency for most of the reefs with highest stationary mean coral cover to344

be patch reefs (Figure 3, circles). In the light of these observations, we experimented with a model345

in which reef type was included as an explanatory variable. Although the estimated effects of reef346

type were consistent with lower long-term probabilities of coral cover f 0.1, including reef type347

did not improve the expected predictive accuracy of the model (F. Chong, unpublished results),348

probably because only 482 out of 2665 transects were from patch reefs, and all but one patch349

reefs had only very short time series (supporting information, Table A1). The stationary means350

did not clearly separate by management (Figure 3, open symbols fished, filled symbols unfished).351

The long-term temporal variability around the stationary means was also substantial (Figure 3,352

green lines). The ρ statistic (Equation 4), which quantifies the posterior mean contribution of353

within-site variability to the total stationary variability in reef composition in the region, was 0.29354

(95% HPD interval (0.20,0.39)), or approximately one third. Thus, while within-site temporal355

variability around the stationary mean was not negligible, among-site variability in the stationary356

mean was more important in the long term. As noted above, uncertainty in the location of the357

stationary means (Figure 3, grey dashed lines) was much higher for reefs with few observations358

than for reefs with many observations. Nevertheless, most parameters of the model are not359
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reef-specific, and data from reefs with few observations contribute to the estimation of these.360

For all three components of variability (within-site, among-site, and measurement361

error/small-scale spatial variability), variation in algal cover was larger than variation in coral or362

other. This can be seen in the shapes of the back-transformed unit ellipsoids of concentration363

(Figure 4: within-site, green; among-site, orange; measurement error and small-scale spatial364

variability, blue) which were all elongated to some extent along the 1:1 coral-other isoproportion365

line. This was similar to, but less extreme than, the pattern observed in the Great Barrier Reef366

(Cooper et al., 2015). The among-site ellipsoid almost entirely enclosed the within-site ellipsoid,367

consistent with the estimate above that within-site variability contributed only around one-third of368

the total stationary variability in reef composition. The large estimated measurement369

error/small-scale spatial variability component was consistent with the substantial observed370

variability in cover among transects at any given site and time (Figure 1, circles and supporting371

information, Figures A6 to A35, circles). The low estimated degrees of freedom ν for the372

bivariate t distribution of measurement error/small-scale spatial variability (posterior mean 2.99,373

95% HPD interval (2.64,3.35)) suggested that some aspect of the process leading to variation in374

measured composition among transects at a given site was varying substantially over space or375

time, although we cannot determine the mechanism.376

How much variability is there among sites in the probability of low coral377

cover?378

There was also substantial among-site variability in the probability of low coral cover. For a379

randomly-chosen site, the posterior mean probability of coral cover less than or equal to 0.1 (q0.1)380

in the long term was 0.12 (95% credible interval (0.04,0.21)). The corresponding site-specific381

probabilities q0.1,i varied from 8×1025 to 0.52 but were low for most sites, with a strong negative382

relationship between probability of low coral cover and observed mean coral cover (Figure 5).383

There was no clear distinction between fished and unfished reefs (Figure 5, open symbols fished,384

filled symbols unfished). However, probability of low coral cover appeared to be systematically385
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lower on patch reefs, which were mainly in Tanzania (Figures 5 and A1, circles: median of386

posterior means 2×1023, first quartile 4×1024, third quartile 0.04) than on fringing reefs387

(Figures 5 and A1, triangles: median of posterior means 0.08, first quartile 0.04, third quartile388

0.11). One site (Ras Iwatine) had a much higher probability of low coral cover than all others, and389

is relatively polluted compared to other sites in this study, due to high levels of nutrient effluent390

from a large hotel (T.R. McClanahan, personal observation).391

There was little evidence for strong spatial autocorrelation in the probability of low coral cover,392

because the 95% envelope for the spline correlogram included zero for all distances other than393

261 km to 322 km (supporting information, Figure A38). The general lack of strong spatial394

autocorrelation reflects the substantial variation in probability of coral cover less than or equal to395

0.1 (q0.1,i) among nearby sites, while the possibility of negative spatial autocorrelation at scales of396

around 300km may reflect the generally low values of q0.1,i for Tanzanian patch reefs, separated397

from sites in the north of the study area with generally higher q0.1,i by approximately 300km398

(Figure A1).399

Which model parameters have the largest effects on the probability of low400

coral cover?401

Both among-site variability and internal dynamics, particularly of other relative to algae and coral402

(component 2), were important in determining the probability q0.1 of coral cover f 0.1 in the403

region. Figure 6 shows the direction in parameter space along which the probability of low coral404

cover will reduce most rapidly (the estimated gradient vector of q0.1 with respect to all the model405

parameters). The four parameters to which q0.1 was most sensitive were (in descending order:406

Figure 6) ζ21 (among-site covariance between transformed components 1 and 2), b22 (effect of407

component 2 on next year’s component 2), ζ22 (among-site variance of component 2), and b12408

(effect of component 2 on next year’s component 1). Although there was substantial variability409

among Monte Carlo iterations in the values of these derivatives, the rank order of magnitudes was410

fairly consistent (supporting information, Figure A39). All four most important parameters had411
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positive effects on q0.1 (Figure 6), so reducing these parameters will reduce q0.1. The effects of412

within-site temporal variability on the probability of low coral cover were relatively unimportant413

(Figure 6, derivatives of q0.1 with respect to σ11, σ21 and σ22 all had posterior means close to414

zero). The signs of the effects of each parameter on q0.1, sensitivities for coral cover thresholds415

0.05 and 0.2, and elasticities, are discussed further in the supporting information (sections A14416

and A15).417

How informative is a snapshot about long-term site properties?418

For both components of transformed composition, a snapshot of reef composition at a single time419

on a randomly-chosen site will be informative about the stationary mean (correlations between420

true value at a given time and stationary mean: component 1 posterior mean 0.84, 95% HPD421

interval (0.75,0.91); component 2 posterior mean 0.82, 95% HPD interval (0.73,0.90)). This is422

consistent with the negative relationship between long-term probability of coral cover f 0.1 and423

observed mean coral cover (Figure 5). Thus, while long-term monitoring of East African coral424

reefs is important for other reasons, it should be possible to identify those with high conservation425

value (in terms of benthic composition) from a single survey.426

Discussion427

In the long term (as t ³ ∞), among-site variability dominated within-site temporal variability in428

East African coral reefs. In consequence, the long-term probability of coral cover f 0.1 varied429

substantially among sites. This suggests that it is in principle possible to make reliable decisions430

about the conservation value of individual sites based on a survey of multiple sites at one point in431

time, and to design conservation strategies at the site level. This was not the only possible432

outcome: if within-site temporal variability dominated among-site variability, among-site433

differences would be neither important nor predictable in the long term. Given the large positive434

effect of among-site variability on the long-term probability of coral cover f 0.1, reducing435
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among-site variability in compositional dynamics may be an effective conservation strategy.436

The dominance of among-site variability has important implications for conservation. There was437

clear evidence for the existence of a stationary distribution of long-term reef composition in East438

Africa. The overall shape of this distribution (Figure 3) was similar to that estimated by Żychaluk439

et al. (2012) for a subset of the same data, using a different modelling approach. However, our440

new analysis shows that this distribution is generated by a combination of spatial and temporal441

processes, with substantial long-term differences among sites. Thus, the distribution in Żychaluk442

et al. (2012) may be a good approximation to the long-term distribution for a randomly-chosen443

site, but there will be much less variability over time in the distribution for any fixed site. In444

consequence, the sites having the highest long-term conservation value can be identified even445

from single-survey snapshots, and conservation strategies at the site scale may be possible.446

Furthermore, in cases where among-site variability in dynamics is dominant, it will be misleading447

to generalize from observations of a few sites to regional patterns (Bruno et al., 2009).448

In our study, the sites with the highest long-term conservation value are those with very low449

long-term probabilities of coral cover f 0.1 (Figure 5), a threshold chosen based on evidence that450

coral cover f 0.1 is detrimental to reef persistence (Kennedy et al., 2013; Perry et al., 2013; Roff451

et al., 2015). Many of these sites are Tanzanian patch reefs, which may have maintained high452

coral cover despite disturbance because of local hydrography (McClanahan et al., 2007), and are453

priority sites for conservation, with high alpha and beta diversity (Ateweberhan and McClanahan,454

2016). Thus, it seems likely that sites of high conservation value based on community dynamics455

may also be sites of high diversity resulting from a combination of physical factors and biological456

interactions (Huston, 1985; West and Salm, 2003). However, the absence of strong spatial457

autocorrelation in long-term probabilities of coral cover f 0.1 suggests that it will be necessary to458

consider conservation value at small spatial scales, rather than simply to identify subregions with459

high conservation value. Similarly, Vercelloni et al. (2014) found that trajectories of coral cover460

on the Great Barrier Reef were consistent at the scale of km2, but not at larger spatial scales. They461

argued that it would therefore be appropriate to focus management actions at the km2 scale. Also,462
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it may be easier to persuade local communities to accept management at such scales than at larger463

scales (McClanahan et al., 2016).464

A key result is that if we want to minimize the long-term probability q0.1 that a randomly-chosen465

site has coral cover f 0.1, we should minimize among-reef variability in dynamics, other things466

being equal. This is because the centre of the stationary distribution lies outside the set of467

compositions with coral cover f 0.1 (Supporting Information, Section A14). Conversely, if the468

centre lay inside this set, then (other things being equal) maximizing among-site variability would469

minimize q0.1. This result is very general, applying to any model of community composition470

which has a stationary distribution, for which increasing among-site variability increases471

stationary variability, and for any conservation objective based on a composition threshold. Note472

that even though our conservation objective is based on coral cover alone, and is therefore473

one-dimensional, it was strongly affected (through parameters such as ζ12 and b12) by processes474

involving all three components of reef composition. Thus, our multivariate approach provides475

information that could not be obtained from a one-dimensional model.476

Conservation strategies that might minimize among-site variability include distributing a fixed477

amount of human activity such as coastal development or fishing evenly, rather than concentrating478

it in a few locations. On the other hand, many conservation strategies will affect both the mean479

dynamics and the among-site variability in dynamics. For example, protecting the sites that are480

already in the best condition will tend to increase among-site variability, while moving the centre481

of the stationary distribution away from the set of compositions with coral cover f 0.1.482

Minimizing among-site variability in dynamics may conflict with other proposed conservation483

strategies. For example, it has been suggested that increased beta diversity is associated with484

lower temporal variability in metacommunities, for at least some taxa, and that regions of high485

beta diversity may therefore be priority regions for conservation (Mellin et al., 2014). It is likely486

that increased beta diversity will also be associated with increased among-site variability in487

dynamics, because different species are likely to have different population-dynamic488

characteristics. Hence, it may not always be possible to manage for both low among-site489
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variability in dynamics and high beta diversity. It is not yet clear which of these objectives is490

more important in general. Furthermore, there are many other plausible conservation objectives,491

such as maximizing the expected number of healthy sites or ensuring that at least one healthy site492

is present at all times, and different objectives can lead to very different optimal strategies (Game493

et al., 2008).494

Our analyses were based on the long-term consequences of current environmental conditions, and495

may therefore not be relevant if environmental conditions change. For example, if changes in496

climate or local human activity altered the vector a so as to transpose the centre of the stationary497

distribution into the set with coral cover f 0.1, then maximizing among-site variability would498

become the best strategy. Since declining coral cover trends have been observed at the regional499

level (e.g. Côté et al., 2005; De’ath et al., 2012), such a shift in the best strategy may occur. It is500

therefore better to view a stationary distribution under current conditions as a “speedometer” that501

tells us about the long-term outcome if these conditions were maintained, rather than as a502

prediction (Caswell, 2001, p. 30). Furthermore, our model did not include connectivity between503

sites. Although the absence of evidence for strong spatial autocorrelation in the probability of low504

coral cover (Supporting Information, Section A9 and Figure A38) suggests that connectivity is505

relatively unimportant for our analysis, it is possible that either current patterns of connectivity or506

future changes in these patterns may affect both the interpretation of stationary distributions and507

the optimal management strategy.508

In conclusion, our analysis extends the broadly-applicable vector autoregressive approach to509

community dynamics (reviewed by Hampton et al., 2013) by quantifying random among-site510

variability in dynamics. This gives a new perspective on the long-term behaviour of the set of511

communities in a region, as a set of stationary distributions with random but persistent512

differences. The extent of these differences relative to temporal variability determines how513

predictable the behaviour of individual sites will be. Since these differences may be associated514

with differences in conservation value, probabilistic risk assessment based on this approach can515

be used to suggest conservation strategies at both site and regional scales. At site scales, our516
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approach can be used to identify potential coral refugia, while at regional scales, it can identify517

the parameters with most influence on conservation objectives.518
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Figure legends644

Figure 1. Time series of cover of hard corals, macroalgae and other at two of the 30 sites645

surveyed: Kanamai1 (fished, a-c) and Mombasa1 (unfished, d-f). Circles are observations from646

individual transects. Grey lines join back-transformed posterior mean true states from Equation 1,647

and the shaded region is a 95% highest posterior density interval. The back-transformed648

stationary mean composition for the site is the black dot after the time series and the bar is a 95%649

highest posterior density interval.650

Figure 2. Posterior distributions of the back-transformed overall intercept a (green), effect a1 of651

component 1 (proportional to log(algae/coral)) on year-to-year change (orange), and effect a2 of652

component 2 (proportional to log(other/geometric mean(algae,coral)) on year-to-year change653

(blue).654

Figure 3. Stationary among- and within-site variation in benthic composition. Grey points:655

back-transformed stationary means for each site (open circles fished patch, filled circles unfished656

patch, open triangles fished fringing, filled triangles unfished fringing, posterior means of of657

stationary means). Grey dashed curves: back-transformed unit ellipsoids of concentration658

representing uncertainty in stationary means (calculated using sample covariance matrices from659

Monte Carlo iterations). Green solid curves: back-transformed unit ellipsoids of concentration660

representing within-site stationary variation (calculated using posterior mean within-site661

covariance matrix).662

Figure 4. Back-transformed unit ellipsoids of concentration for stationary within-site covariance663

Σ
7 (green), stationary among-site covariance Z7 (orange), and measurement error/small-scale664

spatial variation νH/(ν 22) (blue). In each case, 200 ellipsoids drawn from the posterior665

distribution are plotted, centred on the origin.666

Figure 5. Long-term probability of coral cover less than or equal to 0.1 at each site against mean667

observed coral cover across all years. Circles are patch reefs and triangles are fringing reefs.668

Open symbols are fished reefs and shaded symbols are unfished. Vertical lines are 95% highest669

posterior density intervals.670
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Figure 6. Elements of the gradient vector of partial derivatives of the long-term probability of671

coral cover less than or equal to 0.1 with respect to elements of the B matrix (effects of672

transformed composition in a given year on transformed composition in the following year), the a673

vector (overall intercept, representing among-site mean proportional changes in transformed674

composition at the origin), the covariance matrix of random temporal variation Σ, and the675

covariance matrix of among-site variability Z. For each parameter, the dot is the posterior mean676

and the bar is a 95% highest posterior density credible interval. For the covariance matrices, the677

elements σ12 and ζ12 are not shown, because they are constrained to be equal to σ21 and ζ21678

respectively. The horizontal dashed line is at zero, the no-effect value.679
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