
A roadmap for gene functional characterisation in wheat 

 

Nikolai M Adamski1*, Philippa Borrill2*, Jemima Brinton1*, Sophie A Harrington1*, Clemence 

Marchal1*, Alison R Bentley3, William D Bovill4, Luigi Cattivelli5, James Cockram3, Bruno Contreras-

Moreira6, Brett Ford4, Sreya Ghosh1, Wendy Harwood1, Keywan Hassani-Pak7, Sadiye Hayta1, Lee T 

Hickey8, Kostya Kanyuka7, Julie King9, Marco Maccaferri10, Guy Naamati6, Curtis J Pozniak11, Ricardo H 

Ramirez-Gonzalez1, Carolina Sansaloni12, Ben Trevaskis4, Luzie U. Wingen1, Brande BH Wulff1 and 

Cristobal Uauy1 

 

1 John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom 

2 School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom 

3 John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge CB3 0LE, United Kingdom 

4 Commonwealth Scientific and Industrial Research Organisation Agriculture and Food (CSIRO), GPO Box 1700, 

Canberra, ACT 2601, Australia 
5 Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, 

Fiorenzuola d'Arda, Italy 
6 The European Bioinformatics Institute, Hinxton CB10 1SD, United Kingdom 
7 Rothamsted Research, Harpenden AL5 2JQ, United Kingdom 
8 Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Australia 
9 Division of Plant and Cop Sciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, 

United Kingdom 
10 Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy 
11 Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada 

12 International Maize and Wheat Improvement Center (CIMMYT), El Batán, Mexico, 56237 

  

 

* Authors contributed equally to this work 

Nikolai M. Adamski:  Nikolai.Adamski@jic.ac.uk 

Philippa Borrill:   p.borrill@bham.ac.uk 

Jemima Brinton:  Jemima.Brinton@jic.ac.uk  

Sophie Harrington:  Sophie.Harrington@jic.ac.uk 

Clemence Marchal:  Clemence.Marchal@jic.ac.uk 

Alison R Bentley:  Alison.Bentley@niab.com 

William Bovill:   Bill.Bovill@csiro.au 

Luigi Cattivelli:   luigi.cattivelli@crea.gov.it  

James Cockram:  James.Cockram@niab.com 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26877v2 | CC BY 4.0 Open Access | rec: 18 Dec 2019, publ: 18 Dec 2019

mailto:Nikolai.Adamski@jic.ac.uk
mailto:Philippa.Borrill@jic.ac.uk
mailto:Jemima.Brinton@jic.ac.uk
mailto:Sophie.Harrington@jic.ac.uk
mailto:Clemence.Marchal@jic.ac.uk
mailto:Alison.Bentley@niab.com
mailto:Bill.Bovill@csiro.au
mailto:luigi.cattivelli@crea.gov.it
mailto:James.Cockram@niab.com


Bruno Contreras-Moreira: bcontreras@ebi.ac.uk 

Brett Ford:   bxrett76@hotmail.com 

Sreya Ghosh:   Sreya.Ghosh@jic.ac.uk 

Wendy Harwood:  Wendy.Harwood@jic.ac.uk 

Keywan Hassani-Pak:  Keywan.Hassani-Pak@rothamsted.ac.uk 

Sadiye Hayta:   Sadiye.Hayta@jic.ac.uk 

Lee Hickey:   l.hickey@uq.edu.au 

Kostya Kanyuka:  Kostya.Kanyuka@rothamsted.ac.uk 

Julie King:   Julie.king@nottingham.ac.uk  

Marco Maccaferri:  marco.maccaferri@unibo.it 

Guy Naamati:   gnaamati@ebi.ac.uk 

Curtis Pozniak:   curtis.pozniak@usask.ca  

Ricardo Ramirez-Gonzalez Ricardo.Ramirez-Gonzalez@jic.ac.uk 

Carolina Sansaloni:  C.Sansaloni@cgiar.org  

Ben Trevaskis:   Ben.Trevaskis@csiro.au 

Luzie U. Wingen:  Luzie.Wingen@jic.ac.uk 

Brande Wulff:   brande.wulff@jic.ac.uk  

Cristobal Uauy:   Cristobal.Uauy@jic.ac.uk (corresponding author) 

 

  

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26877v2 | CC BY 4.0 Open Access | rec: 18 Dec 2019, publ: 18 Dec 2019

mailto:bcontreras@ebi.ac.uk
mailto:bxrett76@hotmail.com
mailto:Sreya.Ghosh@jic.ac.uk
mailto:Wendy.Harwood@jic.ac.uk
mailto:Keywan.Hassani-Pak@rothamsted.ac.uk
mailto:Sadiye.Hayta@jic.ac.uk
mailto:l.hickey@uq.edu.au
mailto:Kostya.Kanyuka@rothamsted.ac.uk
mailto:Julie.king@nottingham.ac.uk
mailto:marco.maccaferri@unibo.it
mailto:gnaamati@ebi.ac.uk
mailto:curtis.pozniak@usask.ca
mailto:Ricardo.Ramirez-Gonzalez@jic.ac.uk
mailto:C.Sansaloni@cgiar.org
mailto:Ben.Trevaskis@csiro.au
mailto:Luzie.Wingen@jic.ac.uk
mailto:brande.wulff@jic.ac.uk
mailto:Cristobal.Uauy@jic.ac.uk


Abstract 
To adapt to the challenges of climate change and the growing world population, it is vital to increase global crop 

production. Understanding the function of genes within staple crops will accelerate crop improvement by 

allowing targeted breeding approaches. Despite the importance of wheat, which provides 20 % of the calories 

consumed by humankind, a lack of genomic information and resources has hindered the functional 

characterisation of genes in this species. The recent release of a high-quality reference sequence for wheat 

underpins a suite of genetic and genomic resources that support basic research and breeding. These include 

accurate gene model annotations, gene expression atlases and gene networks that provide background 

information about putative gene function. In parallel, sequenced mutation populations, improved 

transformation protocols and structured natural populations provide rapid methods to study gene function 

directly. We highlight a case study exemplifying how to integrate these resources to study gene function in wheat 

and thereby accelerate improvement in this important crop. We hope that this review provides a helpful guide 

for plant scientists, especially those expanding into wheat research for the first time, to capitalise on the 

discoveries made in Arabidopsis and other plants. This will accelerate the improvement of wheat, a complex 

polyploid crop, of vital importance for food and nutrition security. 

 

Introduction 
Research in Arabidopsis and other model species has uncovered mechanisms regulating important biological 

processes in plants. However, as research in these model species does not always translate directly into crop 

species such as wheat, understanding gene function in crop species themselves is critical for crop improvement. 

With the advent of functional genomics resources in wheat, discoveries from model species can rapidly be tested 

and functional genetic studies can now be performed for agronomically-important traits directly in wheat itself 

(Borrill, 2019). 

The most common forms of domesticated wheat are tetraploid durum wheat (Triticum turgidum spp. durum L.) 

and hexaploid bread wheat (Triticum aestivum L.). Polyploid wheat is derived from hybridisation events between 

different ancestral progenitor species (reviewed in Matsuoka (2011)), and thus each gene typically exists as two 

(tetraploid durum wheat) or three (hexaploid bread wheat) copies. These closely related copies, known as 

homoeologous genes, are on average >95% similar across their coding regions (Figure 1) and usually have a highly 

conserved gene structure. Tetraploid and hexaploid wheat have large genomes, 12 and 16 Gb respectively, which 

consist mostly (>85%) of repetitive elements. The combination of these factors has, for a long time, hampered 

the development of genomics tools in wheat. Recent advances in sequencing technologies and bioinformatics 

tools has helped overcome these difficulties, and there are now a wide range of resources available for genomic 

analysis in wheat. The speed of wheat research has also been limited by its relatively long generation time, which 

ranges from four to six months depending on the requirement of cold periods (vernalisation) to induce flowering. 

Again, recent advances in the use of controlled growth conditions have radically changed these timeframes 

(Watson et al., 2018). Wheat has now become a tractable system for translational, comparative and functional 

genomics. 
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Figure 1: Gene homology within polyploid wheat. Due to two separate hybridisation events, genes in polyploid 

wheat will be present in multiple copies called homoeologs, which usually have similar chromosome locations. 

In the example of hexaploid bread wheat illustrated here, Gene X has homoeologs on chromosomes 1A, 1B and 

1D. Duplicated genes, called paralogs (e.g. two copies of Gene Y on chromosome 7A), have evolved either within 

wheat or in one of its ancestral species. Most paralogs arise from intra-chromosomal duplications, although inter-

chromosomal duplications can also occur. 

 

Here we describe some of the recent developments in wheat genomics, focussing on published and publicly 

available resources and tools, and lay out a roadmap for their use (Figure 2). We present available wheat genome 

assemblies and annotations and discuss a series of approaches to functionally characterise genes. We also outline 

strategies for growing, crossing and genotyping wheat using the latest available tools and techniques. Finally, we 

present a case study that encapsulates the above steps and highlights potential pitfalls. We expect this review 

will be a helpful guide for plant scientists who already work on wheat or who are considering expanding their 

research into wheat. 
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Figure 2: The roadmap for gene characterisation in wheat. Overview of a proposed strategy to take a gene from 

any plant species, identify the correct wheat ortholog(s) using Ensembl Plants (https://plants.ensembl.org) and 

determine gene expression using expression browsers and gene networks. Suggestions for functional 

characterisation are provided including induced variation such as mutants, transgenics or Virus-Induced Gene 

Silencing (VIGs). In addition, publicly available populations incorporating natural variation are available. Finally 

steps for growing, genotyping and crossing plants are outlined. Links to detailed tutorials and further information 

are provided and can be found on www.wheat-training.com. 
1 www.wheat-training.com/wp-content/uploads/Genomic_resources/pdfs/EnsemblPlants-primer.pdf 
2 www.wheat-training.com/wp-content/uploads/Genomic_resources/pdfs/Finding-wheat-orthologs.pdf 
3 www.wheat-training.com/wp-content/uploads/Genomic_resources/pdfs/Genome_assemblies.pdf 
4 www.wheat-training.com/wp-content/uploads/Genomic_resources/pdfs/Gene-models.pdf 
5 www.wheat-training.com/wp-content/uploads/Genomic_resources/pdfs/Expression-browsers.pdf 
6 www.wheat-training.com/wp-content/uploads/Genomic_resources/pdfs/Gene-networks.pdf 
7 www.wheat-training.com/wp-content/uploads/Functional_studies/PDFs/Selecting-TILLING-mutants.pdf 
8 www.wheat-training.com/wp-content/uploads/Functional_studies/PDFs/Transgenics.pdf 
9 www.wheat-training.com/wp-content/uploads/Functional_studies/PDFs/Virus_Induced_Gene_Silencing.pdf 
10 www.wheat-training.com/wp-content/uploads/Functional_studies/PDFs/Populations.pdf 
11 www.wheat-training.com/wp-content/uploads/Genomic_resources/Variation-data.pdf 
12 www.wheat-training.com/wp-content/uploads/Wheat_growth/pdfs/Growing_Wheat_final.pdf 
13 www.wheat-training.com/wp-content/uploads/Wheat_growth/pdfs/Speed_breeding.pdf 
14 www.wheat-training.com/wp-content/uploads/Functional_studies/PDFs/Designing-genome-specific-

primers.pdf 
15 https://www.biosearchtech.com/support/education/kasp-genotyping-reagents/running-kasp-genotyping-

reactions 
16 http://www.wheat-training.com/wp-content/uploads/Wheat_growth/pdfs/How-to-cross-wheat-pdf.pdf 
17 www.wheat-training.com/wp-content/uploads/Functional_studies/PDFs/Designing-crossing-schemes.pdf 
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Wheat genome assemblies 
A high-quality genome reference sequence is an essential resource for functional genetics and genomics in any 

species. Several hexaploid wheat genome assemblies have been released over the past six years (Brenchley et 

al., 2012; IWGSC, 2014; Chapman et al., 2015; Clavijo et al., 2017; Zimin et al., 2017). The most comprehensive 

assembly, called RefSeqv1.0, is a chromosome-level genome assembly annotated with high and low confidence 

gene models (IWGSC, 2018). An improved RefSeqv2.0 assembly has been generated by incorporating optical 

mapping data and PacBio SMRT reads (from Zimin et al. (2017)), although it has yet to be annotated. Two 

tetraploid wheat genomes have also been sequenced, assembled, and annotated to the same standard as 

RefSeqv1.0 — the wild tetraploid progenitor of wheat, wild emmer (Avni et al., 2017), and a modern durum 

wheat variety (Maccaferri et al., 2019). Diploid ancestral progenitor species have also been assembled to varying 

levels of completeness (Luo et al., 2017; Zhao et al., 2017; Ling et al., 2018; Miki et al., 2019). We summarize the 

annotated assemblies for polyploid wheat in Table 1; in this review we will focus mainly on the RefSeqv1.0 

assembly. 

 
Table 1. Comparison of annotated genome assemblies in hexaploid and tetraploid wheat. RefSeqv1.0 is the 

most widely used assembly and annotation of hexaploid wheat (available on Ensembl Plants 

https://plants.ensembl.org/wheat). The information from previous assemblies and annotations (Chromosome 

Survey Sequence (CSS) and TGACv1) are also available in the Ensembl Plants archive (https://oct2017-

plants.ensembl.org) or as tracks in the Ensembl Plants genome browser interface. Ensembl Plants enables access 

to additional information such as SNP variation, gene trees, homoeolog assignments, and TILLING mutant 

information. Through this interface users can also combine knowledge from the bread, durum and wild emmer 

genomes. 

  
CSS TGACv1 RefSeqv1.0 Durum wheat Wild emmer wheat 

Publication IWGSC (2014) Clavijo et al. 

(2017) 

IWGSC (2018)  Maccaferri et al. 

(2019)  

Avni et al. (2017) 

Contigs/Chromosomes >1 million 735,943 21 chromosomes 

+ ChrU 

14 chromosomes 

+ ChrU 

14 chromosomes + 

ChrU 

Mean scaffold size 7.7 kb 88.7 kb Chromosomes Chromosomes Chromosomes 

Assembly Size 10.2 Gb 13.4 Gb 14.6 Gb 10.5 Gb 10.5 Gb 

Order Crude order Large Bins Physical order Physical order Physical order 

Coding genes† 133,090 HC 

88,998 LC 

104,091 HC 

103,660 LC 

107,891 HC 

161,537 LC 

66,559 HC 

303,404 LC 

67,182 HC 

271,179 LC 

Assembly-related 

resources 

Archive Ensembl 

Plants 

Archive Ensembl 

Plants 

Ensembl Plants 

GrainGenes, URGI  

Ensembl Plants 

GrainGenes 

 

Ensembl Plants 

GrainGenes 

TILLING mutants 
 

TILLING mutants   

expVIP, 

wheatExp 

expVIP expVIP,  

eFP 

  

Cultivar Chinese Spring Chinese Spring Chinese Spring Svevo Zavitan 

† Number of high confidence (HC) and low confidence (LC) genes which are defined based on multiple criteria outlined in the published 

papers. Care must be taken when interpreting their nomenclature (see Figure 3). 

Note: RefSeqv2.0 was released in August 2019 and is available here: https://wheat-urgi.versailles.inra.fr/Seq-Repository/Assemblies. 

Briefly, optical mapping and PacBio sequencing data were integrated to further improve contiguity, although this assembly is not yet 

annotated. 
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Like most of the previous hexaploid assemblies, RefSeqv1.0 is derived from the wheat landrace ‘Chinese Spring’. 
A combination of multiple Illumina and mate pair libraries were sequenced and assembled into scaffolds. Using 

a method of chromosome conformation capture called Hi-C, these scaffolds were further connected into 

pseudomolecules representing the 21 nuclear chromosomes of wheat, plus one additional ‘pseudo-

chromosome’ containing all unassigned sequences (IWGSC, 2018). 

The gene models for the RefSeqv1.0 assembly were annotated using two prediction pipelines, which were then 

consolidated with the previous TGACv1 annotation into a single set of gene models (RefSeqv1.0 models). A 

subset of these (~2,000 gene models) were later re-annotated manually, resulting in the RefSeqv1.1 gene model 

set (Figure 3). Over half of high confidence protein coding genes are present as exactly three homoeologous 

copies (1:1:1 triads), while several other combinations exist (e.g. 2:1:1 whereby there are two paralogs on the A 

genome, and a single homoeolog each on the B and D genomes as Gene Y in Figure 1). 

The RefSeqv1.0 assembly and the RefSeqv1.1 gene models, as well as the durum and wild emmer assemblies and 

gene models, have been integrated into the publicly available Ensembl Plants genome browser 

(https://plants.ensembl.org) (Bolser et al., 2015; Howe et al., 2019). Existing variation data, both natural and 

induced, has been mapped to the RefSeqv1.0 hexaploid assembly and deposited in Ensembl Plants databases for 

visualisation via the genome browser. Integrating resources into a common reference facilitates their use and in 

the following sections we will discuss how to best access and utilise these resources. 
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Figure 3. Gene model ID nomenclature description from the five available gene annotations for domesticated 
polyploid wheat. Here, one gene is used as an example to highlight the differences in gene ID nomenclature. 

Fields represented in the nomenclature are shown at the top with matching colours for the corresponding 

features in the gene names. Yellow background shows the CSS gene names with dark grey arrows pointing 

towards the corresponding field in the TGAC gene annotation (TGACv1, green background). Blue backgrounds 

show the gene nomenclatures for RefSeqv1.0 and v1.1 annotations (as used in Ensembl Plants), while the lilac 

background shows the nomenclature for Svevo v1.0 (modern durum wheat). 

 
1 Two annotation versions are available for the RefSeqv1.0 genome assembly: RefSeqv1.0 (release annotation) 

and RefSeqv1.1 (improved annotation). These can be differentiated by the annotation version number i; “01” for 
RefSeqv1.0 and “02” for RefSeqv1.1. Otherwise, the annotations follow the same rules. 
2 In the RefSeq and Svevo annotations, the biotype is represented by an additional identifier, where G = gene. 
3 In the RefSeqv1.0 and v1.1 annotation, identifiers are progressive numbers in steps of 100s reflecting the 

relative position between gene models. For example, gene TraesCS5B02G236400 would be adjacent to gene 

TraesCS5B02G236500. In the gene annotation for the tetraploid durum wheat cv. Svevo, the species name is 

TRITD (TRITicum Durum) and gene identifiers increase in steps of 10s, rather than by steps of 100s as in the 

RefSeq hexaploid wheat annotation. 

Note that RefSeqv1.0 and v1.1 comprises High Confidence (HC) and Low Confidence (LC) gene models. Low 

Confidence gene models are flagged by the “LC” at the end (not shown). HC and LC genes which otherwise display 

the same unique identifier are not the same locus and are not in sequential order. Hence, TraesCS5B02G236400 

and TraesCS5B02G236400LC are both located on chromosome 5B, but are not the same gene nor are they 
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physically adjacent. Similarly, genes from homoeologous chromosomes with the same subsequent numeric 

identifier are not necessarily homoeologous genes. For example, TraesCS5A02G236400, TraesCS5B02G236400 

and TraesCS5D02G236400 are not homoeologous genes. 

 

 

Finding wheat orthologs 
Although DNA sequence homology does not equate to functional homology, it represents a good starting point 

for translational and/or comparative genomics. Correctly identifying orthologous genes in another plant species 

can be a difficult task however, especially between distantly related species like Arabidopsis and wheat. These 

two species are separated by ~200 million years of evolution and as a result both nucleotide and protein 

similarities are relatively low compared to more closely related species, for example, wheat and rice. 

Conveniently, all the data and tools necessary for identifying putative gene orthologs from different plant species 

are available through the Ensembl Plants website (https://plants.ensembl.org) (Bolser et al., 2015; Howe et al., 

2019). The Plant Compara pipeline has been integrated into Ensembl Plants to create “gene trees” that identify 
and clearly display the likely orthologs of any given gene for all of the species available on its website (Vilella et 

al., 2009; Herrero et al., 2016). This includes the RefSeqv1.1, Arabidopsis TAIR10 and rice (Oryza sativa) IGRSP1.0 

gene models, amongst others. This represents a quick and reliable way to identify putative wheat orthologs of a 

given gene (Figure 2). Tutorials for using Ensembl Plants interactively or programmatically can be found on their 

website or at www.wheat-training.com. 

When performing a search for putative wheat orthologs via the Ensembl Plants pipeline, we would expect to find 

three orthologs in hexaploid wheat for most gene queries. These orthologs would normally be located on 

homoeologous chromosome groups, e.g. chromosomes 1A, 1B and 1D (Figure 1). A well-documented exception 

to this rule is the long arm of chromosome 4A (4AL), which has undergone translocation events with chromosome 

arms 5AL and 7BS (Devos et al., 1995; Ma et al., 2013). Therefore, orthologs within these translocated regions 

will be physically located on different chromosome groups, e.g. three homoeologous genes could be on 

chromosome arms 4AL, 5BL and 5DL. Furthermore, gene structure of wheat orthologs is often conserved with 

respect to rice and other closely related monocot species; this comparison can usually be done within Ensembl 

Plants. If this is not possible, wheat RNA-seq data can be used to determine the gene structure. As an alternative 

to the Ensembl Plants Gene Trees, one can perform reciprocal protein BLAST searches to identify putative wheat 

orthologs. We exemplify the above-mentioned approaches along with potential pitfalls in more detail in the ‘Case 

Study’ section. 

Expression data 
Determining if, when, where, and to what level a gene is expressed often constitutes one of the first steps 

towards its functional characterisation. Gene expression information can also be used to prioritize candidate 

genes underlying a quantitative trait locus (QTL) or to predict those members of a large gene family most relevant 

to trait expression. Numerous wheat RNA-Seq datasets have been generated and published. Although the raw 

data are often publicly available (e.g. via the NCBI sequence read archive, https://www.ncbi.nlm.nih.gov/sra), 

they are not sufficiently curated for rapid access and their use in direct comparisons is complicated due to the 

diversity of tissues, treatments, and origins of the samples. Expression browsers aim to centralise these public 

datasets and analyse them together, ideally allowing retrieval of expression information for a list of genes under 
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different conditions. Four expression browsers are currently available for wheat: expVIP (http://www.wheat-

expression.com; (Borrill et al., 2016)), wheat eFP browser (http://bar.utoronto.ca/efp_wheat/cgi-

bin/efpWeb.cgi; (Ramirez-Gonzalez et al., 2018)), EBI Gene Expression Atlas 

(https://www.ebi.ac.uk/gxa/experiments?species=triticum+aestivum), and WheatExp 

(https://wheat.pw.usda.gov/WheatExp; (Pearce et al., 2015)). Here we will focus on the first two given that they 

include a larger and more diverse set of samples and use the RefSeqv1.0 and v1.1 gene models described in Table 

1. 

Currently, expVIP includes expression data from 36 studies (1,016 RNA-Seq samples) across a diverse range of 

wheat tissues, developmental stages, cultivars, and environmental conditions including various abiotic and biotic 

stress treatments. It can display expression data for up to 250 genes at once, which can be particularly useful 

when working with a gene family, genes within a QTL interval, or genes involved in the same regulatory process. 

The expression values for each gene homoeolog, based on the same homoeolog assignments as in Ensembl 

Plants, can also be displayed. The ‘homoeolog expression patterns’ of triads (genes that are present as exactly 

three homoeologous copies) can also be displayed through ternary plots and compared across tissues (Ramirez-

Gonzalez et al., 2018). 

To allow comparisons across studies, the 1,016 RNA-Seq samples in expVIP were classified according to four high-

level categories based on variety, tissue, developmental stage and stress. These high-level categories are 

themselves divided into more detailed subcategories. These categories can be used to customize visualization 

displays and allows users to select data relevant to their experimental comparisons. Data can be displayed both 

as transcripts per million (TPM) or as raw counts and can be directly downloaded to carry out differential gene 

expression analyses. Although the default gene model reference is RefSeqv1.1, users can also choose the CSS, 

TGACv1 and RefSeqv1.0 transcriptome references for legacy reasons. Video and text tutorials describing expVIP 

are available on https://github.com/Uauy-Lab/expvip-web/wiki/List-of-tutorial-videos and www.wheat-

training.com. 

An additional resource is the electronic Fluorescent Pictograph (eFP) wheat browser which provides a simple 

visual assessment of expression data using pictures of wheat coloured according to a gene’s relative expression 
level (http://bar.utoronto.ca/efp_wheat/cgi-bin/efpWeb.cgi). This browser includes 209 RNA-Seq samples (also 

in expVIP) representing 22 tissue types from grain, root, leaf, and spike samples across multiple time points from 

a single hexaploid spring wheat cultivar (‘Azhurnaya’). 

Gene networks 
The available RNA-Seq data provides the opportunity to identify networks of co-expressed genes. Ramirez-

Gonzalez et al. (2018) constructed tissue and stress-specific co-expression networks in wheat to determine 

whether genes from the same triad showed variable spatiotemporal expression. In addition, a GENIE3 network 

was developed to predict transcription factor targets across the multiple RNA-Seq samples (Huynh-Thu et al., 

2010; Ramirez-Gonzalez et al., 2018). Together, these networks provide a powerful set of tools for hypothesis 

generation using wheat-specific datasets. We have recently validated the GENIE3 network using independent 

RNA-Seq data from tetraploid wheat (Harrington et al., 2019). Both co-expression and GENIE3 networks are 

incorporated into KnetMiner (http://knetminer.rothamsted.ac.uk/Triticum_aestivum/). 

KnetMiner is a web-application for searching and visualising genome-scale knowledge networks (Hassani-Pak et 

al., 2016). It aims to provide research leads for scientists who are investigating the molecular basis of complex 

traits. KnetMiner accepts keywords in combination with a gene list and/or genomic regions as input. KnetMiner 
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searches the underlying knowledge network to identify links between user-provided genes and keywords. A 

network-based visualisation, named Network View, allows users to examine complex relationships between 

gene networks and traits. The networks contain nodes that represent different entities such as genes, single 

nucleotide polymorphisms (SNPs), publications, and traits (e.g. heat or drought tolerance) that are linked via 

different relation types (e.g. co-expression, GENIE3-targets, protein-protein interaction, published-in). Together, 

KnetMiner and the integrated gene networks provide a powerful resource for gene discovery and hypothesis 

generation in wheat (see Case Study below). 

Functional studies 
After identifying a gene of interest in wheat there are now several options and resources available for functional 

characterisation and validation (Figure 2). These include resources based both on natural and induced variation 

and can involve both transgenic and non-transgenic approaches. It is important to remember that due to the 

polyploid nature of wheat, there is often functional redundancy between homoeologs (Borrill et al., 2015). This 

means that it may be necessary to manipulate all homoeologs and paralogs simultaneously to measure a strong 

phenotypic effect (see the ‘Strategies for Use’ section below for more information). 

Induced variation 

TILLING 

Polyploid species, such as wheat, are well suited to mutational approaches as the functional redundancy in their 

genomes allows for the tolerance of a higher mutational load compared with diploid species (Tsai et al., 2013; 

Uauy et al., 2017). Bespoke mutant populations can be developed and screened for desired mutations in a gene 

of interest, however this screening process is arduous and time-consuming. To overcome this barrier, an in-silico 

wheat TILLING resource has been developed (Krasileva et al., 2017). This resource consists of two ethyl 

methanesulphonate (EMS) mutagenized populations: 1,535 lines of the tetraploid durum wheat variety ‘Kronos’ 
and 1,200 lines of the hexaploid bread wheat variety ‘Cadenza’. Exome capture and Illumina sequencing of these 

2,735 mutant lines was then carried out. The raw data was originally aligned to the CSS reference, mutations 

were identified, and their effects predicted based on the CSS gene models (Krasileva et al., 2017). Alleles 

predicted in silico to be deleterious (e.g. premature stop codons, splice site mutations, non-synonymous amino 

acid substitutions with SIFT score < 0.05), were identified for ~90% of the captured wheat genes (Krasileva et al., 

2017), thus making this a powerful resource for rapidly identifying mutations in a gene of interest (Figure 2). The 

raw data has now been aligned to the RefSeqv1.0 genome, allowing mutation identification and effect prediction 

based on the RefSeqv1.1 gene models. These updated data are publicly available on Ensembl Plants (see Case 

Study for details). For legacy purposes, the mutations called against the CSS reference remain available via 

www.wheat-tilling.com. However, caution should be exercised as the mutation effects here are predicted based 

on the CSS gene models, which are known to be less reliable than the RefSeq gene models (Brinton et al., 2018). 

There are several important considerations when selecting a mutant line for characterisation. First, it is essential 

to check the predicted effect of mutations in the context of a complete and experimentally validated gene model. 

Second, in most cases, crossing is necessary to combine mutations in homoeologous genes in order to generate 

a complete null individual. Third, mutant lines will contain a high level of background mutations: a typical mutant 

line has between 50 (tetraploid) and 110 (hexaploid) mutations predicted to result in a truncated protein. 

Depending on the phenotype of interest (i.e. qualitative vs. quantitative) several rounds of backcrossing may be 

required before the phenotype can be assessed (see ‘Strategies for Use’). Lastly, if the gene of interest is missing 

or is already a null allele in Kronos or Cadenza, which can be determined using the full genome sequences of the 

two cultivars, mutant populations of other genotypes are available (e.g. Dong et al. (2009); Chen et al. (2012); 
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Bovina et al. (2014); Sestili et al. (2015); Colasuonno et al. (2016)), although these would need to be screened 

using conventional PCR-based approaches. Additional practical information about selecting mutant lines and 

downstream analyses can be found at www.wheat-training.com/tilling-mutant-resources and in Uauy et al. 

(2017). 

Transgenic approaches 

Stable transformation of wheat is possible and can be performed using a variety of methods including both 

particle bombardment (Vasil et al., 1992; Sparks and Jones, 2009) and Agrobacterium-mediated transformation 

(Cheng et al., 1997; Sparks et al., 2014). Generating stable transgenic lines in wheat most commonly involves 

transforming immature wheat embryos and subsequent callus regeneration (Harwood, 2012). Reports in the 

literature of Agrobacterium-mediated wheat transformation generally describe low transformation efficiencies 

with average efficiencies of around 5%. An efficient, but patented transformation system is available through 

licence from Japan Tobacco (www.jti.co.jp). Transformation by overexpression of transcription factors such as 

maize Baby Boom and Wuschel2 has also yielded improved transformation efficiencies in monocots (Lowe et al., 

2016), although there are no formal reports yet in wheat. Recently, an open-access wheat transformation system 

with transformation efficiencies of up to 25% was published (Hayta et al., 2019), albeit for a single cultivar. 

Using transgenic approaches, gene expression can be altered in a variety of ways such as overexpressing or 

ectopically expressing the gene of interest using either constitutive, tissue-specific or inducible promoters 

(Hensel et al., 2011). Similarly, RNA-interference (RNAi) has been used successfully in wheat to reduce gene 

expression with the added benefit that constructs can be designed to target all homoeologous genes 

simultaneously, thereby overcoming the potential drawback of functional redundancy among homoeologs (Fu 

et al., 2007). In addition to altering expression patterns, modified proteins can also be introduced (e.g. including 

tags) for downstream experiments such as ChIP-seq (Deng et al., 2015) or localisation studies (Harwood et al., 

2005). However, these are still not commonly employed in wheat research. As transformation methods have 

only been optimised for a limited number of wheat varieties (e.g. Richardson et al. (2014)), it is important to 

understand whether the gene is expressed/functional in the chosen variety when defining transgenic strategies 

(see ‘Strategies for Use’). 

Recent developments in genome editing technologies provide new opportunities for manipulating genes in 

wheat. TALEN and CRISPR/Cas9-mediated genome editing has been successfully demonstrated in wheat both in 

transient expression systems (Shan et al., 2014) and stably transformed plants (Wang et al., 2014b; Luo et al., 

2019), using a range of methods (reviewed in Uauy et al. (2017)). Currently, most studies have introduced specific 

point mutations or small deletions leading to subsequent protein disruption, although the technology holds the 

potential for complex applications such as allele swapping or gene insertion, as reviewed by Puchta (2017). 

Similar to RNAi, constructs for Cas9-mediated gene editing can be designed to target all homoeologs 

simultaneously (Zhang et al., 2016; Howells et al., 2018). Due to the current efficiency of genome editing 

however, the likelihood of obtaining mutations in all homoeologs in a single T0 plant remains low (0.9%; (Zhang 

et al., 2016) and subsequent crosses to combine multiple edited targets are likely to be required. 

A major limitation of using transgenic approaches to manipulate agronomically relevant traits is the associated 

legal and regulatory constraints. To overcome these, the nuclease transgene can be segregated away from the 

edited gene(s) in subsequent generations. However, in Europe, and in contrast to many other countries in the 

world, the resulting plants would be regulated as transgenics due to the 2018 ruling on genome editing by the 

European Court of Justice (ECJ). Some studies have documented CRISPR/Cas9-editing in wheat without transgene 

integration, for example, by delivering the CRISPR/Cas9 components as ribonucleoproteins (RNPs). As no foreign 
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DNA is used in CRISPR/Cas9 RNP-mediated genome editing, the wheat mutants obtained are completely 

transgene free (Liang et al., 2017), although still not exempt from the ECJ regulation. 

Virus Induced Gene Silencing 

Virus-Induced Gene Silencing (VIGS) involves transient knock-down of expression of target genes followed by 

assessment of the resulting phenotype (Lee et al., 2012). The most widely used vectors for VIGS in wheat are 

those derived from barley stripe mosaic virus (BSMV), a plant virus with a tripartite RNA genome that readily 

spreads throughout tissues following mechanical rub-inoculation onto the leaves. All three BSMV genomic RNAs, 

RNA, RNA and RNA, are required to cause infection. RNA has been modified to allow insertion of short (up 

to 350 bp) plant mRNA derived sequences. Infection of plants with the resulting recombinant virus induces a 

natural post-transcriptional gene silencing defence mechanism that targets the viral RNA, but also the 

endogenous plant mRNA having high level (>70%) nucleotide identity with the plant sequence inserted into 

RNA, for degradation. A detailed protocol for VIGS is available at www.wheat-training.com (Figure 2). 

VIGS in wheat has been used primarily to investigate disease resistance in a range of varieties, and has been 

restricted to a few tissue types such as leaf (Lee et al., 2015), young seedlings (Zhang et al., 2017a) and spikes 

(Ma et al., 2012). However, in principle, BSMV-mediated VIGS can be applied to any wheat genotype and to 

almost any gene of interest. This functional genomics tool is particularly useful when analysing multiple 

candidate genes, for example in map-based cloning projects (i.e. when physical intervals contain several 

candidate genes) or from RNA-Seq differentially expressed datasets. VIGS is also useful in wheat genotypes that 

are difficult to transform and in those for which mutant/TILLING populations are unavailable. VIGS can be used 

for simultaneous silencing of all homoeologs or, in principle, entire small gene families without the need for 

further genetic crosses. 

Natural Variation 

Although using induced variation presents a clear route to understand the function of specific genes in wheat, 

the wealth of natural variation in wheat lines, and populations based on this variation, present an alternative 

route to discover genes and correlate them with function. For example, populations differing for alleles of the 

gene of interest could be used to rapidly infer the role of the gene. In order to capture the diversity within wheat 

and create populations to test gene function, natural variation has been extensively documented. Most studies 

have focused on SNPs between varieties that can be quickly assayed through SNP arrays designed from gene 

coding sequences and untranslated regions (UTRs) (Wang et al., 2014a; Winfield et al., 2016; Allen et al., 2017), 

described in Borrill et al. (2015) and www.wheat-training.com. Thousands of varieties and landraces have been 

processed using these arrays and datasets are available through websites such as TCAP 

(https://triticeaetoolbox.org/wheat) (Blake et al., 2016) and CerealsDB 

(http://www.cerealsdb.uk.net/cerealgenomics/CerealsDB) (Wilkinson et al., 2016). Given that all SNPs from the 

latter have been incorporated into Ensembl Plants, this means that large in silico allelic series are readily available 

for many genes of interest. 

Beyond SNP variation, two recent studies (He et al., 2019; Pont et al., 2019) applied exome capture to diverse 

wheat lines to characterise the natural variation throughout the coding region of wheat. These studies identified 

millions of SNPs within coding sequences in over 1,000 wheat lines, including hexaploid cultivars and landraces, 

and tetraploid and diploid relatives. The data (available at http://wheatgenomics.plantpath.ksu.edu/1000EC 

and https://urgi.versailles.inra.fr) will allow rapid characterisation of the extent of variation within genes of 

interest. These changes in coding sequences may have direct phenotypic consequences, however the impact of 

most of these variants remains unknown. 
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Therefore, despite this wealth of data, the challenge remains to define the functional significance of this 

variation. Traditionally, mapping populations or association panels would need to be developed or assembled, 

and then genotyped, to assess how particular SNPs or haplotypes affect the trait of interest. In wheat, many of 

these resources are now publicly available (Figure 2), thus facilitating the functional characterisation of genes of 

interest. We describe some of these resources below and include links to access genotypes, sequences and seeds 

in Table 2. Further details are available at www.wheat-training.com. 

Wild wheat relatives and progenitor species: 

Relatively low genetic variation in elite bread wheat varieties, especially on the D genome, typically reflects (i) 

adaptation and selection from landraces over a long time period, combined with (ii) the genetic bottleneck 

effects associated with the rare natural hybridisation events between the diploid and tetraploid ancestral wheat 

species that lead to the evolution of hexaploid wheat. Wheat is related to several other grass species, many of 

which are wild and uncultivated. These wild relatives provide a vast and largely untapped reservoir of genetic 

variation for many agronomically important traits. A wealth of cytogenetic stocks for these wild relatives have 

been created over the last 100 years by researchers globally (reviewed by Mujeeb-Kazi et al. (2013)). The recent 

genotyping and sequencing of some of these resources makes them especially suitable for gene functional 

characterisation (Table 2). 

Synthetic hexaploid wheat: 

Another approach to capture variation in wheat progenitors is via ‘re-synthesis’, the process used to create 

synthetic hexaploid wheat (SHW). SHWs are typically created by crossing tetraploid durum wheat with the diploid 

D-genome progenitor Aegilops tauschii. Approximately 400 SHWs were developed at CIMMYT in Mexico during 

the 1990s (Mujeeb-Kazi et al., 1996) and these have been extensively utilised in CIMMYT and international wheat 

breeding programmes (e.g. Gororo et al. (2002); Ogbonnaya et al. (2007)). More recently, NIAB (UK) have 

developed a new SHW resource encompassing 50 SHWs along with pre-breeding derivatives. This germplasm, 

alongside marker data, is publicly available (Table 2). 

Wheat diversity panels:  

Numerous collections of wheat landraces, varieties and breeders’ lines are available from research centres 

around the world. These panels represent valuable sources of potential genetic variation for targeted 

exploitation within wheat research and pre-breeding pipelines, especially when associated with existing 

genotypic and phenotypic datasets (Table 2). Further details are available at www.wheat-training.com. 

Multiparent Advanced Generation Inter-Cross (MAGIC) populations: 

MAGIC populations have been developed for many crop species (Huang et al., 2015; Cockram and Mackay, 2018). 

The multiple generations of inter-crossing required to create MAGIC populations results in highly recombined 

chromosomes which enables the use of approaches such as genome wide association scans (GWAS) and whole-

genome average interval mapping (WGAIM; (Verbyla et al., 2007)) to define small genetic intervals for traits of 

interest (reviewed by Verbyla et al. (2014)). Likewise, the use of multiple parents in MAGIC allows more allelic 

variation to be examined compared to typical bi-parental populations (Cockram and Mackay, 2018). In wheat, 

six MAGIC populations are currently publicly available constructed from 4, 8 or 16 founders. Parent information 

and further details can be found in Table 2. 
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Combining induced and natural variation for a holistic picture of gene function 

To date natural variation has largely been used for forward genetics, to map genetic regions underlying a 

phenotypic trait of interest. However, there is now an opportunity to extend the use of natural variation in wheat 

into reverse genetics, to complement transgenic, gene editing and induced variation approaches. Using natural 

populations that differ in a target gene would allow characterisation of the effect sizes of natural alleles and 

could be compared to the effects of induced variation such as TILLING mutants. There are also synergies between 

forward and genetic approaches in wheat, for example the development of TILLING mutants in a gene of interest 

may then coincide with a region identified by a QTL mapping approach and so help to validate the QTL. 

Researchers now have at their disposal a powerful toolkit to combine induced and natural variation to study 

gene function in wheat. 
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Moving towards a wheat pangenome 

Increases in DNA sequencing outputs have allowed the assembly of multiple wheat cultivars to a similar standard 

as the reference Chinese Spring genome. These include eight spring and eight winter hexaploid and three 

tetraploid varieties/accessions (Table 3). Annotation of some of these varieties is ongoing through the 10+ Wheat 

Genomes Project (http://www.10wheatgenomes.com) and will provide information on the core (genes shared 

by all assembled varieties) and dispensable genes (genes shared among a few varieties). In addition, presence 

absence variation, copy number variation, structural rearrangements (inversions/translocations), and variation 

across non-coding regions are being quantified. Importantly, several of these genotypes are part of the resources 

outlined above, e.g. sequenced TILLING population (Kronos and Cadenza). These assemblies will be integrated 

into Ensembl Plants and are available for download under Toronto Agreement (https://wheat.ipk-

gatersleben.de/). 

 

Table 3: Tetraploid and hexaploid wheat genome assemblies that are currently available, in addition to the 
Chinese Spring reference hexaploid genome. 

Variety Habit Origin Availability * 

Hexaploid wheat 

 CDC Landmark spring Canada 10+ Genome Project 

 CDC Stanley spring Canada 10+ Genome Project 

 Paragon spring UK 10+ Genome Project 

 Cadenza spring UK 10+ Genome Project 

 Lancer spring Australia 10+ Genome Project 

 Mace spring Australia 10+ Genome Project 

 Synthetic W7984 spring Mexico Chapman et al. (2015) 

 Weebil spring Mexico 10+ Genome Project 

 ArinaLrFor  winter Switzerland 10+ Genome Project 

 Julius winter Germany 10+ Genome Project 

 Jagger winter US 10+ Genome Project 

 Robigus winter UK 10+ Genome Project 

 Claire winter UK 10+ Genome Project 

 Norin61 winter Japan 10+ Genome Project 

 SY Mattis winter France 10+ Genome Project 

 Spelt (PI190962) winter Europe 10+ Genome Project 

Tetraploid wheat 

 Zavitan† - Israel Avni et al. (2017) 

 Svevo spring Italy Maccaferri et al. (2019) 

 Kronos spring US 10+ Genome Project 

† ‘Zavitan’ is a tetraploid wild emmer (T. dicoccoides) accession. 

* Varieties included within the 10+ Wheat Genomes Project can be accessed through the Earlham Grassroot Genomics portal 

(https://wheatis.tgac.ac.uk/grassroots-portal/blast) and the 10+ Wheat Genomes project portal (http://webblast.ipk-

gatersleben.de/wheat_ten_genomes) (subset of varieties in each). The ‘Svevo’ genome can be accessed through 

https://www.interomics.eu/durum-wheat-genome and Ensembl Plants. ‘Synthetic W7984’ and ‘Zavitan’ can be accessed through the 

Grassroot Genomics, and Ensembl Plants, respectively. 
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Strategies for use 

Variety selection and growth conditions 

Whilst resources are now available for the functional validation of target genes in wheat, practical knowledge is 

also required to maximise the value of these resources. Firstly, wheat varieties are adapted to different growing 

conditions (e.g. daylength and vernalisation requirements) making it important to consider the conditions under 

which functional validation will be conducted. If phenotyping will be undertaken in greenhouse or controlled 

environment conditions then most varieties will be suitable, although varieties without vernalisation 

requirements are faster to grow (details on wheat growth conditions at www.wheat-training.com). If field trials 

are required for phenotypic characterisation (e.g. yield-related traits), local adaptation is often necessary for 

correct interpretation of results given genotype x environment interactions. For example, the sequenced TILLING 

populations (Kronos and Cadenza) do not require vernalisation, facilitating greenhouse experiments, and 

originate from different regions of the world, allowing field trials under different environments (Kronos is a 

Californian variety adapted to warm dry weather whereas Cadenza is a UK variety adapted to cooler conditions). 

For CRISPR/Cas9 and other non-transient transgenic approaches several varieties may be used, although 

relatively few wheat varieties have been shown to display high enough transformation efficiencies to be 

practical. This means that traditionally most transgenic studies in wheat have been limited to a few varieties, 

such as ‘Fielder’, Cadenza, ‘Bobwhite’, ‘Kenong 199’ and Kronos (Li et al., 2012; Richardson et al., 2014; Liang et 

al., 2017; Hayta et al., 2019). This is now changing thanks to work by groups at NIAB (UK), CAAS (China) and CSIRO 

(Australia) who have successfully transformed 39 (Wallington, 2015), 15 (Wang et al., 2017) and six (Richardson 

et al., 2014) varieties, respectively. However, the Agrobacterium-mediated transformation efficiencies in all 

these studies still differ between varieties. Correct varietal selection for transformation is critical for functional 

studies, given that some varieties might not be suitable to study a particular phenotype (e.g. if the variety is 

resistant to a disease and hence cannot be used to test a candidate resistance gene). Similarly, it is important to 

assess whether the gene of interest is present/functional in the chosen variety, for example through PCR 

amplification and sequencing of the gene. For several varieties this can now be done quickly by direct 

examination of their genome sequence (Table 3). 

Combining mutations for complete knock-outs in polyploid wheat 

As we noted earlier, the polyploid nature of wheat means that it normally has multiple homoeologous copies of 

every gene. These copies typically have highly similar coding DNA sequence and may have redundant functions 

(Borrill et al., 2015). Therefore, to characterise the function of a gene in wheat it is often necessary to knock out 

all three homoeologs. This may be achieved by simultaneously targeting all three copies using either RNAi e.g. 

(Uauy et al., 2006) or CRISPR/Cas9 e.g. (Zhang et al., 2017b). A large number of transformants need to be 

screened to identify a null in all three genomes from a CRISPR construct (Zhang et al., 2017b; Howells et al., 

2018). If the targets are more divergent it may not even be possible to use a single guide RNA to target all three 

homoeologs, in which case several guides may be used through multiplexing. Alternatively, separate knock-outs 

for each homoeolog can be generated by CRISPR/Cas9 or identified in TILLING populations. The mutations in 

each homoeolog can be combined by crossing (for details see www.wheat-training.com), with two crosses 

necessary to combine knock-out mutations in each of the three homoeologs in hexaploid wheat (Figure 4). 

Tetraploid wheat, with only two homoeologs, can be used to accelerate functional characterisation as it requires 

just one cross to create complete knock-out mutants (Figure 4). After self-pollination of this F1, phenotyping of 

the trait of interest can be initiated in the F2 generation by comparing homozygous double knock-out mutants to 

the sibling wild type plants. It is important to note that TILLING lines contain many background mutations and 
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backcrossing may be required to overcome the confounding effects of background mutations on target 

phenotype. More details on these strategies are published in (Uauy et al., 2017). 

 

 
Figure 4. Crossing scheme to combine TILLING or CRISPR/Cas9 single mutants in wheat. In tetraploid wheat, 

mutations in the A and B genome homoeologs can be combined through a single cross. The F1 plants are self-

pollinated to produce a segregating F2 population which contains homozygous double and single mutants, as 

well as wild type plants (screening using molecular markers required; only four genotypes shown). These F2 

progeny can be characterised for the phenotype of interest. The use of ‘speed breeding’ (Watson et al., 2018), 

reduces the time taken to reach this phenotyping stage from 12 (yellow) to 7.5 months (green). In hexaploid 

wheat, a second round of crossing is required to combine the mutant alleles from all three homoeologs. The F2 

progeny segregating for the three mutant alleles can be genotyped using molecular markers to select the 

required combination of mutant alleles (only five genotypes shown; all factorial combinations are possible). 

Speed breeding reduces the time taken to generate triple homozygous mutants for phenotyping to 10 months 

(green), compared to 16 months in conventional conditions (yellow). Self-pollination is represented by an X inside 

a circle. Combinations of wild type alleles from the A (AA), B (BB) and D (DD) genomes, as well as the mutant 

alleles from each genome (aa, bb and dd, respectively) are indicated. 

 

 

Accelerating crossing, generation time, and phenotyping 

The need to combine multiple mutations/alleles and carry out backcrossing to remove background mutations 

takes a considerable amount of time, with at least four months required per generation in a spring wheat genetic 

background. Recently, the ‘speed breeding’ technique has been implemented in wheat, which uses extended 

day lengths of 22 hours and improved light quality to accelerate the generation time in wheat (Ghosh et al., 2018; 

Watson et al., 2018). Reduction of generation times to 8-10 weeks is achieved through an accelerated growth 

rate and harvesting of immature seeds 2-3 weeks post anthesis. The immature seeds are dried and then imbibed 

in the cold, resulting in nearly 100% germination. Incorporating speed breeding within crossing programmes can 

reduce the time required to produce and phenotype double mutants in tetraploid wheat to less than 7.5 months 

and triple mutants in hexaploid wheat to less than 10 months (Figure 4). In addition to reducing generation times, 

it has been shown that several traits of interest such as disease resistance, height and flowering time can be 

properly characterised under speed breeding conditions (Watson et al., 2018). 
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Homoeolog-specific PCR markers 

To carry out the crossing schemes described above, it is essential to be able to select for the mutations of interest. 

In polyploid wheat it is necessary to track mutations in each homoeolog separately, which can be achieved using 

homoeolog-specific genetic markers. Primers can be designed to include a homoeolog-specific SNP at the 3’ end 
of the primer. The primer will amplify the targeted homoeolog more efficiently than the non-targeted 

homoeolog(s) resulting in genome-specific amplification. Rapid design of homoeolog-specific primers can be 

achieved using the PolyMarker pipeline (Ramirez-Gonzalez et al., 2015) and webserver 

(http://www.polymarker.info/). Routinely, genotyping of SNPs is carried out using Kompetitive Allele Specific 

PCR (KASP) markers which are relatively high throughput, inexpensive and can be used in individual lab settings 

equipped with PCR machines and widely available fluorescence plate readers (Allen et al., 2011). The SNP to be 

genotyped (e.g. between mutant and wild type) will be located at the 3’ end of the two alternative allele-specific 

primers used in the KASP reaction (one for the mutant and one for the wild type allele), whilst the homoeolog-

specific SNP is located at the 3’ end of the common primer. Amplification should thus be both homoeolog-specific 

and allele-specific. Further guidance on the design of genome-specific primers and KASP markers is available at 

www.wheat-training.com. 

Case study 
To put the previous resources into context, we present a case study for obtaining wheat mutants and expression 

data using a gene of interest from Arabidopsis thaliana. The heat shock factor-like transcription factor TBF1, also 

known as HsfB1, is a critical regulator of the plant growth-to-defence transition (Pajerowska-Mukhtar et al., 

2012), and the response to heat stress (Guo et al., 2016). We therefore hypothesize that its wheat orthologs may 

have a similar role in regulating defence and/or abiotic stress responses (Ikeda et al., 2011; Arora et al., 2019). 

The first step to test this hypothesis is to identify wheat TBF1 orthologs, which can be done using the Ensembl 

Plants Gene Tree (Bolser et al., 2015), which displays predicted orthologs for all species included in Ensembl 

Plants. TBF1 is one of five HSFB orthologs, named HSFB1, 2A, 2B, 4, and 5, respectively. Examination of the 

Ensembl Plants Gene Tree shows a single wheat triad that falls within the HSFB1 clade, located on the group 5 

chromosomes (Figure 5A). 

To support the predicted Arabidopsis-wheat orthologs obtained from Ensembl Plants, we recommend carrying 

out comparisons between wheat and rice to establish orthology between these cereal species. Both the wheat 

homoeologs and the rice gene model Os09g0456800 have the same gene structure, consisting of two exons with 

a conserved intron/exon boundary position. To further support the relationship of the rice gene to the wheat 

homoeologs, the predicted rice protein can be used as a query for BLASTp analysis of the wheat proteome in 

Ensembl Plants; the expected wheat orthologs are the top three hits for the A, B, and D genomes (Figure 5B). 
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Figure 5: Case study exemplifying use of available gene functional characterisation in wheat. (A) The Ensembl 

Plants Gene Tree illustrates the identification of the wheat triad (green bar) most closely related to AtHSFB1 

(shown in purple). (B) Using Os09g0456800 (the rice ortholog of AtHSFB1) as a BLASTp query against wheat 

predicted proteins independently identifies the same wheat triad. (C) Examination of RNA expression data from 

www.wheat-expression.com shows that the wheat triad is most highly expressed in the spike, with differential 

expression in abiotic and disease stress conditions. The samples are identified by tissue of origin (spike, green; 

grain, purple; leaves/shoots, orange; roots, yellow) and stress (none, light blue; abiotic, green; disease, dark blue) 

as they are on the website. (D) After identification of suitable wheat TILLING mutants, A and B genome 

homoeologs are combined via this example crossing scheme, demonstrating the four crosses required between 

the two selected mutations in each homoeolog. Note that the functional validation proposed in (D) is carried out 

using the tetraploid mutant population. 

 

Having identified the wheat orthologs of Arabidopsis TBF1, we can examine and compare expression profiles 

using the expVIP browser (www.wheat-expression.com) (Borrill et al., 2016; Ramirez-Gonzalez et al., 2018) 

(Figure 5C). All three wheat homoeologs have similar expression profiles, with expression changes in the spike 

under disease and abiotic stress. This is consistent with the eFP browser data which shows high expression in the 

spikelet and awns of the non-stressed plants, as well as in more mature leaf tissues (Winter et al., 2007; Ramirez-

Gonzalez et al., 2018). The expression data suggests that the wheat TBF1 homoeologs are most strongly 

expressed in the spike and may have differential expression in response to biotic and abiotic stress. 
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Further investigation of these homoeologs can be performed using the KnetMiner knowledge network. For 

wheat TBF1 orthologs, this includes homology, co-expression data, and associated TILLING mutants, combined 

with other wheat-specific information such as GENIE3 networks, wheat related publications, gene-phenotype 

relations extracted from the literature, GWAS data and Arabidopsis protein-protein interactions. Here the wheat 

genes, referred to as HSFB1, are orthologous to the Arabidopsis gene TBF1 as demonstrated earlier, and the 

three wheat homoeologs fall into a module associated with responses to abiotic stresses (Figure 6). In addition, 

the HSFB1 B and D homoeologs are predicted in the GENIE3 network to target the LRK10 and PPD genes, which 

have known links to drought tolerance and sensitivity (Figure 6). The Knetminer database also recapitulates the 

relationship between the wheat HSFB1 homoeologs and their rice and Arabidopsis orthologs which regulate heat 

stress responses (Figure 6). Considered as a whole, these data support the hypothesis that the HSFB1 wheat 

genes are involved in the response to abiotic stress, perhaps specifically in drought response. 

After evaluating in silico expression levels, we can then characterise the phenotype of wheat TBF1 mutants using 

the exome-sequenced wheat TILLING mutant populations (Figure 2). We suggest to initially use the Kronos 

population, as it is based on a tetraploid line and thus contains only two copies of the gene (A and B homoeologs). 

This means that only two mutants need to be crossed to generate a full knockout. The hexaploid Cadenza TILLING 

population could also be used, but this would require an additional generation to combine mutant alleles across 

all three homoeologs. 

All TILLING mutations can be accessed directly from Ensembl Plants in the “Genetic Variation” section. Although 
the TILLING mutants were originally called against the CSS assembly (Krasileva et al., 2017), those available on 

Ensembl Plants have been re-called against the more recent RefSeqv1.0 genome. Available mutations in the gene 

of interest can be visualised as a table or positioned along the gene using the “Variant Image” or “Variant Table” 
option. We can thus rapidly identify mutations that are predicted to lead to a premature termination codon 

(PTC). However, if no appropriate PTC mutations are available, splice-site mutations predicted to lead to 

downstream frameshifts, or missense mutations in highly conserved amino acid residues with low SIFT (Sorting 

Intolerant from Tolerant; (Ng and Henikoff, 2003)) scores are good alternatives. SIFT scores predict the effect of 

a mutation on protein function and are based on the physical properties of the alternative amino acid as well as 

sequence homology. 
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Figure 6: The KnetMiner network illustrates the putative role of the wheat TBF1 orthologs in responding to 

abiotic stress. The wheat orthologs of the Arabidopsis gene TBF1, here depicted as three copies of the gene 

HSFB1 (light blue triangles) fall in expression module three (brown arrow; WGCNA module 3). The genes in this 

module are enriched for GO terms such as “Response to Stress” and “Response to Abiotic Stimulus” (dark green 

pentagons). The HFSB1 homoeologs are predicted to regulate other genes (blue triangles) in the GENIE3 network 

(purple connecting arrows) which are associated with the drought tolerance trait ontology terms (light green 

pentagon). PTC mutations are available for all three HFSB1 homoeologs (dark green stars connecting with STOP 

GAINED SNP effect). 

For both the A and the B genome TBF1 homoeologs in Kronos, no PTC mutations are available. However, we 

identified missense mutations in highly conserved residues with SIFT scores of 0 suggesting that these mutations 

are likely to have a deleterious effect on protein function (Figure 5D). In addition to SIFT, we also recommend 

using the PSSM viewer (https://www.ncbi.nlm.nih.gov/Class/Structure/pssm/pssm_viewer.cgi) to help predict 

the effect of specific missense mutations on conserved protein domains. 

TILLING lines from both population can be ordered via the GRU (https://www.seedstor.ac.uk/shopping-cart-

tilling.php) in the UK or from the Dubcovsky lab (https://dubcovskylab.ucdavis.edu/wheat-tilling) in the USA. To 

maximise the chance of having selected functionally important mutants, we recommend choosing two 

independent mutant lines for each homoeolog and carrying out crosses between each mutant in the A and B 

genomes (four crosses shown in Figure 5D). Detailed guides on growing wheat plants, genotyping TILLING 

mutants, and crossing mutants can be found on www.wheat-training.com. 
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Seedlings are genotyped to confirm that the correct mutation is present and to select for homozygous individuals 

for crossing. To do this, we design genome-specific primers to use in a KASP assay as outlined above and on 

www.wheat-training.com. For most TILLING mutations genome-specific primers have been predesigned and are 

available in Ensembl Plants. If there are no suitable predesigned primers, online tools such as PolyMarker can be 

used (Ramirez-Gonzalez et al., 2015), or if needed, can be designed manually. After carrying out the initial cross, 

we grow the F1 individuals under speed breeding conditions, and self-pollinate to obtain the F2 seed. We then 

grow F2 individuals and select via genetic markers individuals homozygous for one or both mutant alleles, as well 

as homozygous wild type control individuals (Figure 4). We can then carry out our first phenotypic evaluation on 

the F2 plants using the homozygous wild type lines as controls without the need for backcrossing to Kronos. We 

can do this because the background mutations in the chosen lines will be segregating within both the mutant 

and the wild type lines, leading to an equivalent background mutation load between the sibling genotypes (Uauy 

et al., 2017). Backcrossing to Kronos can be started either with the single mutants while carrying out the initial 

cross and/or with the F2 double mutant at a later stage. Backcrossing to remove background mutations is 

especially important when studying quantitative traits, such as yield components (Simmonds et al., 2016), and 

when plants are intended for field phenotyping. 

Concluding remarks 
In recent years there has been a dramatic expansion in the number and accessibility of functional genomics 

resources in wheat. A step-change has been achieved from a highly fragmented assembly with incomplete gene 

models to a full pseudomolecule reference sequence with detailed annotation. This facilitates discovery and 

functional characterisation of genes using a series of well-established methodologies. Most resources described 

in this review are integrated with the bread wheat reference genome sequence including the expVIP expression 

browser, TILLING mutants, natural variation, co-expression networks and Ensembl Plants analyses and display 

tools. As a result, it is now easier than ever to use these resources as they are unified by a common reference 

genome and gene models. Furthermore, a pangenome of wheat is now available providing high quality genome 

sequences for multiple varieties of wheat. These genomes will facilitate functional studies in a range of different 

genetic backgrounds and enhance the value of the populations containing natural variation captured from 

diverse wheat varieties. Whilst wheat functional genomic resources have been in a state of flux for the past five 

years, the groundwork to accelerate gene discovery and characterisation in polyploid wheat has now been laid. 

This foundation provides exciting opportunities to accelerate wheat improvement and to help secure food 

production for the future. 
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