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ABSTRACT

Web traffic is highly jittery and unpredictable. Load balancer plays a significant role in mitigating the
uncertainty in web environments. With the growing adoption of cloud computing infrastructure, software
load balancer becomes more common in recent years. Current load balancer services distribute the
network requests based on the number of network connections to the backend servers. However, the
load balancing algorithm fails to work when other resources such as CPU or memory in a backend server
saturates. We experimented and discussed the resilience evaluation and enhancement of container-
based software load balancer services in cloud computing environments. We proposed a pluggable
framework that can dynamically adjust the weight assigned to each backend server based on real-time
monitoring metrics.

I. INTRODUCTION
With the exponential growth of internet services over the last decades, the web request rate for popular
websites could increase in a massive scale within seconds. The internet services that fail to handle the
high volume of web traffic within short period of time would suffer significant network congestion and
delay thus deliver extremely poor user experience on the client side. For large-scale internet services, the
solution to this problem in the new cloud world is horizontal scaling. One critical component of horizontal
scaling is load balancer that could distribute incoming application traffic among a set of backend servers.
Load balancer is becoming even more important in the service-oriented architecture that has become the
main backend web service architecture in recent years [1].

There are two major categories of load balancers: hardware-based and software-based. Compared
to hardware-based load balancers that require dedicated machines, software-based load balancers are
more programmable, scalable, and resilient. The most popular software-based load balancer includes
HAProxy [2] and NGINX [3]. We chose container-based [4] NGINX as the load balancer in our
experiments.

They are several load balancer algorithms that would decide how to distribute the traffic. Round-robin
algorithm distributes the traffic sequentially among the servers. Least-connection algorithm always sends
the next request to the sever with least number of concurrent network connections. Both round-robin and
least-connection algorithms have a weighted version that takes into account the capacity of the backend
servers. However, weight assignment can only be determined in a static manner based on initial server
capacities. NGINX plus allows the user to configure dynamic weight based on certain metrics. Still,
the metrics that the user can choose are very limited. In the paper, we propose a flexible, pluggable,
cloud-agnostic, and metric-agnostic dynamic algorithm for any cloud load balancer services. We model
the resources in a server as a multidimensional vector, based on which we convert the relative resource
availability of all backend servers to the weights assigned to them dynamically.

The rest of paper is arranged as follows. In Section II, we introduce the background of resilience and
load balancing services. In Section III, we propose the model approach and algorithm to improve existing
load balancer and introduce our experiment to evaluate load balancer performance. In Section IV, we
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present and discuss our experiment results. Finally, we summarize our work and discuss future steps in
Section V.

II. BACKGROUND AND RELATED WORK
An architectural framework for network resilience and survivability has been presented in [5]. Network
resilience has been extensively studied [6, 7, 8, 9, 10, 11, 12, 13, 14]. Various load balancing schemes
have been compared in [15, 16]. Even though dynamic load balancing algorithm is difficult to implement,
it provides better performance in heterogeneous cloud computing environment [15]. In this work,
we will measure network resilience of dynamic load balancing services using container-based load
balancers [17, 18]. Dynamic load balancing mechanism has been presented and extensively studied [1].
What distinguishes our work from previous work is that we provide a practical framework that can be
easily integrated with any existing cloud load balancing infrastructure. In this work, we conducted our
experiment using NGINX docker container running in AWS (Amazon Web Services) instance.

III. MODELING APPROACH
Figure 1 below presents the overall architecture of our dynamic and pluggable multidimensional load
balancing service framework.

Figure 1. System architecture

We have an agent-based monitoring service that can collect various types of metric data of the backend
servers. Since the user has the full control of their applications, they can decide what metrics they want
to send to our monitoring service. Our monitoring service stores all the metric data in a time-series
database. Our load balancing service acts as a plugin for NGINX load balancer and dynamically modified
the weights assigned to each backend server based on the real-time metrics reading from the monitoring
service. We measure the RTT (round trip time) of web requests via NGINX load balancer. For each
backend server, we compare the RTT of the experiments with and without our dynamic multidimensional
load balancer algorithm.

IV. EXPERIMENT RESULTS
We run container applications in a Ubuntu instance in AWS. Our load balancer policy can adjust the
weight for each backend server dynamically based on service level metrics. The default NGINX load
balancer with equally assigned weight to each back server cannot take into account the currently used
resources such as CPU and memory. The metric used here is cpu load, which can be obtained via
/proc/loadavg in a Linux machine. This metric provides more accurate estimation of the CPU resource
availability than cpu used, as cpu used cannot capture the number of queued jobs in the operation
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Figure 2. RTT from each backend server without applying our policy

Figure 3. RTT from each backend server with our policy

system. In this experiment, we compare the average RTT for each request. In each backend server, we run
a task that sorts a fixed number of random integers to simulate the CPU consumed to handle each coming
web request. We put extra CPU load in server 1. The default NGINX policy still distributes requests to
backend servers equally. Our load balancer policy will dynamically change the weight of distributing
requests to the backend servers.

Figure 2 and Figure 3 display the time-series cpu load of 3 backend servers with and without our
load balancer policy. With the adjustment of backend server weights, the variances of cpu load among 3
servers are much smaller than without adjustment.

From the performance point of view, we look at the average RTT from all backend servers. With
cpu load based load balancer policy, the average RTT is 0.0072 seconds as shown in Table 1; in contract,
without any policy, the average RTT is 0.0658 seconds, which is almost an order of magnitude slower.
The maximum RTT for both scenarios comes from server 1. The maximum RTT without our policy is
more than 0.6 seconds as shown in Table 2, while with our policy the maximum RTT is only 0.0184
seconds. Our dynamic load balancing algorithm improves the RTT up to 9 times compared to default
NGINX load balancer.

Average Min Max
all 0.0072 0.0065 0.0184

server 1 0.0100 0.0069 0.0184
server 2 0.0070 0.0068 0.0085
server 3 0.0069 0.0065 0.0086

Table 1. RTT with dynamic load balancing policy
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Average Min Max
all 0.0658 0.0066 0.6019

server 1 0.1848 0.0068 0.6019
server 2 0.0070 0.0067 0.0087
server 3 0.0069 0.0066 0.0087

Table 2. RTT without dynamic load balancing policy

V. DISCUSSIONS
The computing power of the same AWS instance varies tremendously, which makes it difficult to conduct
this experiment fairly. The factors that could affect the services of AWS instance observed so far include:
a. the time of the day; b. the duration that the instance has been running for; c. the CPU usage of the
application. The unpredictability of AWS instance makes it extremely difficult to control the variables
in this experiment. In addition, docker stats provides very bizarre data after running CPU-intensive
jobs for certain period of time. What can be observed repeatedly is that in a docker container running
in a single-core AWS instance, docker stats reports up to 500% CPU usage which is obviously wrong.
cpu load could be a bad predictor, because for the same amount of cpu load, there could be a significant
difference between loads contributed by a couple of CPU-intensive jobs and a large number of small jobs.
Other factors that could also affect this is the priority of the processes and the scheduling algorithm of
operation system. For transactional scenario, the best metric in the feedback loop to capture resource
usage in a server probably is RTT. The tables above show that cpu load based policy provides a significant
gain of performance for this particular scenario. However, as mentioned above, the experiment was done
in a strictly-controlled environment. The performance gain might not be at the same level in general cases.
A better way to calculate new weights for load balancer backend servers could be a machine learning
based approach using historical data of application resource usage.

VI. CONCLUSIONS AND FUTURE WORK
In the work, we proposed a multidimensional pluggable dynamic cloud load balancing framework. The
algorithm can be easily integrated with various cloud computing platforms such as Docker, OpenStack,
Kubernetes, etc. In the future, we can plug service-level metrics into our algorithms. Machine learning
based predictive weight adjustment could also significantly improve the system performance and user
experience.

REFERENCES
[1] Valeria Cardellini, Michele Colajanni, and Philip S Yu. Dynamic load balancing on web-server

systems. IEEE Internet computing, 3(3):28–39, 1999.
[2] HAProxy. http://www.haproxy.org/.
[3] NGINX. https://www.nginx.com/.
[4] Kyoung-Taek Seo, Hyun-Seo Hwang, Il-Young Moon, Oh-Young Kwon, and Byeong-Jun Kim.

Performance comparison analysis of linux container and virtual machine for building cloud. Advanced
Science and Technology Letters, 66(105-111):2, 2014.

[5] James P. G. Sterbenz, David Hutchison, Egemen K. Çetinkaya, Abdul Jabbar, Justin P. Rohrer,
Marcus Schöller, and Paul Smith. Resilience and survivability in communication networks: Strategies,
principles, and survey of disciplines. Computer Networks, 54(8):1245–1265, 2010.

[6] Dongsheng Zhang. Resilience Evaluation and Enhancement in Mobile Ad Hoc Networks. PhD thesis,
University of Kansas, 2015.

[7] Dongsheng Zhang and James P.G. Sterbenz. Modelling critical node attacks in MANETs. In Self-
Organizing Systems, volume 8221 of Lecture Notes in Computer Science, pages 127–138. Springer
Berlin Heidelberg, 2014.

iv

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26875v1 | CC BY 4.0 Open Access | rec: 20 Apr 2018, publ: 20 Apr 2018



[8] Dongsheng Zhang and James P. G. Sterbenz. Analysis of Critical Node Attacks in Mobile Ad Hoc
Networks. In Proceedings of the 6th IEEE/IFIP International Workshop on Reliable Networks Design
and Modeling (RNDM), pages 171–178, Barcelona, Spain, November 2014.

[9] Dongsheng Zhang, Santosh Ajith Gogi, Dan S. Broyles, Egemen K. Çetinkaya, and James P.G.
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