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Despite its theoretical relationship, the effect of body size on the performance of species

distribution models (SDM) has only been assessed in a few studies of terrestrial taxa. We

aim to assess the effect of body size on the performance of SDM in river fish. We study

seven Chilean freshwater fish, using models trained with three different sets of predictor

variables: ecological (Eco), anthropogenic (Antr) and both (Eco+Antr). Our results indicate

that the performance of the Eco+Antr models improves with fish size. These results

highlight the importance of two novel predictive layers: the source of river flow and the

overproduction of biotopes by anthropogenic activities. We compare our work with

previous studies that modeled river fish, and observe a similar relationship in most cases.

We discuss the current challenges of the modeling of riverine species, and how our work

helps suggest possible solutions.
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ABSTRACT

Despite its theore}cal rela}onship, the efect of body size on the performance of species distribu}on 

models (SDM) has only been assessed in a few studies of terrestrial taxa. We aim to assess the efect of 

body size on the performance of SDM in river osh. We study seven Chilean freshwater osh, using models 

trained with three diferent sets of predictor variables: ecological (Eco), anthropogenic (Antr) and both 

(Eco+Antr). Our results indicate that the performance of the Eco+Antr models improves with osh size. 

These results highlight the importance of two novel predic}ve layers: the source of river now and the 

overproduc}on of biotopes by anthropogenic ac}vi}es. We compare our work with previous studies that 

modeled river osh, and observe a similar rela}onship in most cases. We discuss the current challenges of 

the modeling of riverine species, and how our work helps suggest possible solu}ons.

INTRODUCTION

Species distribu}on models (SDM) provide an important management tool to support conserva}on 

planning. SDMs generate species distribu}on maps that allow for more eocient and efec}ve oeld 

inventories, suggest sites of high poten}al occurrence of rare species for survey planning, and permit 

tes}ng biogeographical, ecological and evolu}onary hypotheses (Guisan & Thuiller, 2005). Given these 

advantages, diferent interna}onal organiza}ons (e.g., UNEP, Conserva}on Interna}onal, IUCN, WWF) 

have employed SDM to address key policy objec}ves at a global scale (Cayuela et al., 2009).

Diferent species traits have been shown to innuence model performance (Brotons et al., 2004; Segurado 

& Araújo, 2004; McPherson & Jetz, 2007; França & Cabral, 2016). One important trait is body size

(Radinger et al., 2017). Larger species detect less food but can tolerate lower resource concentra}ons 

within their food, while smaller species detect more food, but require higher resource concentra}ons 

within it (Ritchie, 1998; Ritchie & Olf, 1999). As a result, larger species have larger home ranges than 

smaller species (Calder & A, 2001; Woolnough, Downing & Newton, 2009).
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Body size may afect the performance or accuracy of SDM in diferent ways (McPherson & Jetz, 2007). 

First, species with larger home ranges may perceive the environment at coarser scales, improving the 

performance of distribu}on models based on coarse-grained predictors (Suarez-Seoane, Osborne & 

Alonso, 2002). Second, home-range extent may innuence the amount of data available, as well as the 

balance between presences and absences (McPherson, Jetz & Rogers, 2004). In addi}on, species with 

local adapta}ons in habitat preferences may generate models that overes}mate their ecological niches

(Stockwell & Peterson, 2002). To date, the efect of body size on distribu}on models has been tested in 

diferent taxa with unclear results (e.g. M. McPherson & Jetz, 2007; França & Cabral, 2016; Morán-

Ordóñez et al., 2017; Radinger et al., 2017). 

In the case of osh, Radinger et. al. (2017) indicate that smaller-body oshes are less sensi}ve to 

anthropogenic interven}on in the river network, due to their smaller home ranges. However, their study 

did not explicitly test varia}on in model performance in response to osh size. Recent research on osh 

species distribu}on models has shown that species with diferent body sizes are impacted diferently by 

the same sets of environmental features derived from anthropogenic ac}vi}es (Perry et al., 2005; 

Radinger et al., 2017). A relevant research ques}on is whether SDM performance or accuracy for 

diferent body-sized oshes vary in the same manner when considering diferent predictor variable sets, 

such as i) ecological predictors, ii) anthropogenic predictors, and iii) ecological and anthropogenic 

predictors.

The ichthyofauna in Chile comprises a total of 44 species, including two lampreys (Habit, Dyer & Vila, 

2006), and is characterized as being highly endemic, adapted to high slope rivers, and with small body 

sizes (Vila, Fuentes & Contreras, 1999; Vila et al., 2006; Habit, Dyer & Vila, 2006). Despite its high 

biogeographic value, the Chilean ichthyofauna is broadly endangered, with only two species (Cheirodon 

australe y Mugil cephalus) classioed as non-endangered. In Chile, anthropogenic variables represent the 

main group of threats to river oshes (Habit et al., 2002, 2006). Therefore, understanding the poten}al 
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impact of body size on SDM performance is highly relevant for conserva}on and management planning 

eforts.

In this study, we quan}fy anthropogenic variables (Antr) and ecological variables (Eco) at the scale of the 

river segment, and we generate SDMs for seven na}ve freshwater species. We focus on two well studied 

southern Chilean basins: Bueno and Valdivia. Our specioc objec}ves are: (1) to assess the efect of osh 

size on species distribu}on model performance and variable par}cipa}on by model, oted using three 

sets of environmental features: i) models trained with ecological predictors (Eco), ii) models trained 

models with anthropogenic predictors (Antr), and iii) models trained with ecological and anthropogenic 

predictors (Eco+Antr); (2) to examine the predicted biotopes generated by each model for diferent 

species studied; and (3) to compare our results with model performances in  previous studies.

METHODS

Study area and modeled species

The study area covers the Valdivia and the Bueno river basins, located in the central-southern zone of 

Chile, between the parallels 39.33° and 41.08° S (Figure 1). The Valdivia River basin has a pluvial 

hydrological regime, and it is characterized by having a chain of interconnected lakes at higher al}tudes. 

The upper sec}on of the Bueno River basin has a pluvial-nival regime, while the middle and lower part of 

the basin is governed by a pluvial regime (Errázuriz K. et al., 1998).

To characterize a set of hydrological variables for the study area, we used the na}onal oocial drainage 

network generated by the Military Geographic Ins}tute (Ins}tuto Geográoco Militar, Government of 

Chile). This drainage network was divided in segments to build the SDM. We considered river segment 

between 2 and 10 km of length, having homogeneous hydromorphological condi}ons with no signiocant 

connuences. This deoni}on was generated using cartographic informa}on, Google Earth (Google inc, 

2009), and Arc GIS version 9.2 (ESRI, 2010). 
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Our study included seven freshwater osh species (Table 1): Aplochiton taeniatus (Jenyns, 1842), 

Aplochiton zebra (Jenyns, 1842), Brachygalaxias bullocki (Regan, 1908), Cheirodon australe (Eigenmann, 

1928), Odontesthes mauleanum (Steindachner, 1896), Percilia gillissi (Girard, 1855), and Trichomycterus 

areolatus (Valenciennes, 1846). Sta}s}cal analysis of the efect of body size was carried out using 

theore}cal species maximum length, which is available for all these species. Most maximum length 

es}mates were obtained from oocial species descrip}ons provided in each species conserva}on 

assessment developed by the Chilean Ministry of the Environment (Table 1). The only excep}on was B. 

bullocki , which had not been assessed by the Ministry of Environment, and whose maximum length was 

obtained from Fishbase (Froese & Pauly, 2017) (Table S1).

This species was selected because represent a good size gradient (between 5.5 cm and 30 cm) (Table 1) 

to Chilean species case, and par}cularly all this species encompasses completely the la}tudinal range of 

both basins (Table 1), situa}on that allow comparing model performance without the distribu}on range 

by specie afect in the predicted distribu}on.

Modeling methods

Species occurrence data

Historical records of the presences of the study species were obtained from the Ministry of the 

Environment9s (Ministerio del Medio Ambiente, Government of Chile) database on freshwater organisms.

This database was generated by collec}ng published databases of scien}oc samples in the study area

(Ministerio de Energía - División de Desarrollo Sustentable, 2016). 

In addi}on, a oeld sampling campaign was conducted in the study area to complement exis}ng 

informa}on in the government database. The sampling was done between December 2015 and January 

2016, using electrooshing equipment (SAMUS, model 745G). We collected all osh along a 100-meter 

transect, with sampling }mes of 45 to 60 min, depending of the hydromorphological features of the site. 
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All collected osh were iden}oed in situ, using a oeld iden}oca}on manual (Habit et al. 2006). The 

electrooshing was approved by Na}onal Fisheries Service permit number 630.

Each presence record was associated with the closest river segment in the GIS, thus building a presence 

database for species distribu}on modeling. Overall, 118 river segments had at least one presence record 

(Fig. 1). The number of presences modeled for each species ranged between 9 and 39 (Table 1). We 

considered other records (118 - n) as true absences in each generated model.

Predictor variables

The predictor variables or features considered were: accumulated rainfall, catchment area, source-of-

now, al}tude, slope, channel width, riparian vegeta}on percent, land-use, cross-channel construc}on, 

and within-channel construc}on. All variables were grouped according to their origin (ecological variables

and anthropogenic variables) and their spa}al scale (inter-basin, basin or segment) (Table 2).

Accumulated rainfall was obtained by rela}ng the isolines of annual rainfall published by the Water 

General Directorate (Dirección General de Aguas, Government of Chile), accumulated over the basin. 

Catchment area was calculated with a DEM image of 1km × 1km (Landsat 7 images from 2015, 

htps://landsat.usgs.gov/) using the Hydrology package in of ArcGIS. Source-of-now was obtained from 

the published REC-Chile classioca}on (Peredo-Parada et al., 2011). Al}tude and slope were es}mated 

using the al}tudes of the ends of each river segment, based on the DEM. Channel width, riparian 

vegeta}on coverage, land-use, cross-channel construc}on, and within-channel construc}on were 

es}mated by visual analysis of Google Earth imagery. Channel width was calculated as the mean of three 

points along the sec}on. Riparian vegeta}on coverage was considered up to 50m distant from the 

stream, with sec}ons and land use percent considered up to 200m. Within-channel construc}ons 

includes road parallel to the river, bank reinforcement, maintenance river channel, channeliza}on, among

others. Cross-channel cnstruc}ons include bridges, dams and intake structure.
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Model training and evaluation

We used three algorithms to es}mate SDM for all seven species: random forest (RF) (Breiman, 2001), 

neural network (NNET) (Stern, 1996), and general lineal model (GLM) (McCullagh, 1984). These methods 

were chosen based on their good performance with presence and absence or pseudoabsences for 

species-distribu}on data (Mastrorillo et al., 1997; Cutler et al., 2007; Elith & Leathwick, 2009). RF uses a 

learning strategy, based on the genera}on of many classioca}on trees, then aggrega}ng their results in 

the onal output (Breiman, 2001). NNET is derived from a simple model that mimics of the structure and 

func}on of the brain, and maximizes the predic}on during the model-training phase by comparing actual 

outputs with desired outputs (Manel, Dias & Ormerod, 1999). GLM is a sta}s}cal model that predict 

values determined by discrete and con}nuous predictor variables and by the link func}on (e.g. logis}c 

regression, Poisson regression) (Bolker et al., 2009). Using these diferent models allowed us to compare 

the performance of anthropogenic predictors in algorithms with diferent interpreta}on methods. 

Analysis was performed in R (v 2.3.3), using the Caret package (Kuhn, 2008). 

For all the algorithms and species, we orst trained the models using 70% of the dataset randomly 

selected, and evaluated SDM onal performance with the remaining 30%. Each model was trained using a 

5-fold cross-valida}on scheme, except for the O. mauleanum (9 presences), where we used 

bootstrapping, due its low presences. During the training, imbalanced classes were corrected selec}ng a 

random sample (with replacement) of the minority class to be the same size as the majority class. For 

each specie, we trained 10 models with presences/absences resample of 70% of the original dataset. The

onal model was designated as the consensus of these 10 models based on the area under the curve 

(AUC) of the receiver operator characteris}c (ROC). In order to assess model performance for each 

algorithm and species, we calculated the mean and conodence intervals of AUC (Fielding & Bell, 1997) 

and true skill sta}s}c (TSS) (Allouche, Tsoar & Kadmon, 2006) using the 30% of observa}ons separated at 

the beginning. TSS compares the number of correct forecasts, minus those atributable to random 

guessing, to that of a hypothe}cal set of perfect forecasts. In comparison, AUC is a single threshold-
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independent measure for model performance obtained from ROC curves. These curves are constructed 

using all possible thresholds to classify the scores into confusion matrices (Allouche, Tsoar & Kadmon, 

2006). 

For RF and NNET, the Caret R package was used to o}ng and tuning. Many predic}ve and machine 

learning models have structural or hyperparameters that cannot be directly es}mated from the data. For 

example, in the case of RF models, the classioca}on trees may be built using a given number of randomly

selected predictors, which are named <mtry= (Kuhn & Johnson, 2013a). A hyperparameter such as mtry is

usually oxed at a given value when training and calibra}ng an RF model, which is an itera}ve op}miza}on

process itself. Hyperparameter tuning of an RF model refers to the grid search procedure that allows the 

algorithm to ond the best value of mtry to obtain the best model performance (given a set of calibra}on 

and valida}on data points). In our implementa}on of RF models, the search for an op}mal mtry value 

spanned the space between 2 and 10 variables. Thus, the tuning process allowed us to explore a range of

values for the RF hyperparameter, further improving model performance. This generated a onal model 

with the best hyperparameter value for a  given search grid (Kuhn & Johnson, 2013b). For NNET models, 

two tuning hyperparameters were used. These were the weight decay for successive neural layers 

(<decay=) and the number of hidden units (<size=). The grid search procedure examined weight decay 

values ranging between 4 and 6, while the number of hidden units was allowed to vary between 0.05 and

0.9. Both hyperparameter range are calibrated by trial and error process, op}mizing the model 

performance. GLM algorithms were op}mized using a stepwise procedure for variable selec}on (Zhang, 

2016), implemented with the <stepAIC= func}on (R MASS package in R v 2.3.3) (R Core Team, 2017).

Occurrence probabili}es were categorized to presence/absence for all models. Thresholds were 

determined so as to maximize the sum of sensi}vity and speciocity (MaxSens+Spec; PresenceAbsence 

package in R v 2.3.3) (R Core Team, 2017). This criterion is independent of the theore}cal prevalence

(Manel, Dias & Ormerod, 1999; Allouche, Tsoar & Kadmon, 2006), causing the distribu}on of rare species 

to be overpredicted. In our par}cular case, the theore}cal prevalence in the study area for all the species 
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is close to 0.5, but presences of our species are low, requiring a relaxa}on of this criterion when deoning 

the threshold that allows for the deoni}on of each of the species distribu}on across the studied 

watersheds.

In order to examine the predicted distribu}on for each species across the study area, each river segment 

was categorized into eight classes, according of the presence/absence results of each model: 1) no model

selec}on as presence, presence determined by 2) only Eco, 3) only Antr, 4) Eco+Antr, 5) Eco and Antr, 6) 

Eco and Eco+Antr, 7) Antr and Eco+Antr, and 8) all models.

Relationship between osh size and models

In order to examine sta}s}cal efect of body size, log103transforma}ons of maximum length (max. length)

were calculated for each species. Max. length was related with TSS and AUC. Also, max. length and the 

predictors variables for all (Eco, Antr and Eco+Antr) models was related by correla}ng its par}cipa}on For

each models (Eco, Antr and Eco + Antr) the level of par}cipa}on of their predictor variables was 

correlated to the max. length. This rela}onship was corrected by the permuta}on procedure (Legendre &

Legendre, 1998).

Biotope comparisons

We compared Eco, Antr, and Eco+Antr biotopes generated for each species by using Venn diagrams. 

Overlap of the ellipses in the Venn diagrams let us determine whether these models predicted the same 

observed river sec}ons as shown by presence records. Non-overlapping of Antr, Eco, and Eco+Antr 

ellipses meant that at least one model predicted a diferent patern of river segment occupa}on. 

Geographic informa}on was processed in QGIS sovware v 2.18.10 (QGIS, 2015). Models were executed 

and evaluated in R v 3.3.2 (R Core Team, 2017).  
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Comparison with prior research

We conducted a bibliographic review of research that used SDMs for assessing riverine osh, considering 

three characteris}cs: 1) modeled groups of osh (n > 5); 2) used ecological and anthropogenic predictor 

variables; and 3) had a river-segment-scale model grain. To compare results, we obtain the maximum 

length of each modeled osh from Fishbase (Froese & Pauly, 2017).

Filipe, Cowx & Collares-Pereira (2002) indicated that percent of total correctly classioed; percent of 

presences correctly classioed; and percent of absences correctly classioed func}oned as measurements 

of ot. These were transformed to TSS for results comparisons.

In order to compare our results with previous studies, it was necessary to perform two sta}s}cal 

analyzes.The orst analysis was compared result with TSS, while the second was compared result with 

AUC. In both, we use an ANCOVA (Heiberger & Holland, 2013) with log103transformed maximum length 

for each species as covariable and the ot metric as the response variable. In the AUC test, the response 

variable used a Box-Cox transforma}on (Box & Cox, 1964) to obtain normal residuals. Finally, for 

comparing the number of records used per species, we used a Kruskall-Wallis test (Hollander & Wolfe, 

1999) to compare all the papers at the same }me. All analyses were done using R (R Core Team, 2017).

RESULTS

TSS relates positively with size oshes

Results show that only in four species (A. zebra, A. teniatus, P. Gillisi, and C. australe) have good model 

performances with AUC values greater than 0.75 (Table 1).

The TSS of the Eco+Antr models are related posi}vely and marginally signiocant with osh sizes (R = 0.73, p

value = 0.06, p perm = 0.07). For Antr and Eco models, the rela}onships with osh size were not 

signiocant, but there was a nega}ve rela}onship between osh size, TSS and AUC values in the Eco 

models, and a posi}ve rela}onship between osh size, TSS and AUC values in the Antr models.
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Only <al}tude= (Eco+Antr model: R = -0.72, p value = 0.06, p perm = 0.08; and Eco model: R = -0.71, p 

value = 0.07, p perm = 0.09) and <slope= (Eco model: R = -0.74, p value = 0.06, p perm = 0.09) showed a 

marginally signiocant and nega}ve rela}onship with osh size (Table S3).

Variable scale determining its participation

Regarding variable par}cipa}on, in the Eco+Antr and Eco models, the <accumulated rain= (regional scale) 

had the biggest average percent par}cipa}on (82% and 77%, respec}vely), followed by <source-of-now= 

(64% and 65%, respec}vely) and <catchment= (60% in both models). Source-of-now and catchment were 

considered at the basin scale. Anthropogenic variables (segment scale) did not show important 

par}cipa}on, except in the Eco+Antr models of O. mauleanum, B. bullocki, and P. gillisi. In these cases, 

land-use was the most important variable. In the other species, Eco and Eco+Antr models held the same 

important predictor variables (Figure 3). In Antr models, mean variable par}cipa}on was: 77% to <cross-

channel construc}on=, 75% to <land-use= and 62% to <within-channel construc}on;= all variables at the 

segment scale.

In all models, except in B. bullocki, the Antr models represented over the 40% of the all biotopes 

predicted by all the models. In these cases, Eco and Eco+Antr models coincided in the most segments 

predicted in common by both models. All species models predicted presences over more than 50% of 

total river-distance (Figure 4).

Similar results to prior research

Our main results were compared with three previous pieces of research: Filipe, Cowx & Collares-Pereira 

(2002) (Sample unit = river lineal segment, Fit metric = TSS); Markovic, Freyhof & Wolter (2012) (Sample 

unit = pixel; Fit metric = AUC); and Radinger et al. (2017) (Sample unit = pixel; Fit metric = AUC). 

In the TSS test, only the osh size covariate shows a signiocant rela}on, interac}ng posi}vely (Appendix 

S1). In the AUC test, there is a signiocant diference in AUC values between both studies. In Radinger et 

al. (2017), the rela}onship between AUC and osh size is nega}ve, opposite to what was shown by 
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Markovic, Freyhof & Wolter (2012) (Appendix S2). When we compared species presence numbers 

between papers, the Kruskal-Wallis test reported signiocant diferences (chi-squared = 54.52, df = 3, p-

value < 0.001). Markovic, Freyhof & Wolter (2012) worked with a greater number of presences (Markovic,

Freyhof & Wolter (2012), ÷ = 932.32 presences per species; the others papers, ÷ = 43.05 presences per 

species) (Appendix S3).

DISCUSSION

Fish size and model ot

The rela}onship between osh sizes and model performance can be summarized as follows. First, 

Eco+Antr models showed the best performance in larger osh species, while Antr models show a 

marginally signiocant trend. Secondly, SDM oted for smaller osh species did not achieve good ots, 

regardless of hyperparameter grid search procedure used to op}mize the machine learning algorithms or

the stepwise procedure used for GLM. A third emerging patern is that performance to smaller osh 

species in Eco models improves slightly, without achieving good ot. As men}oned earlier, these body-size 

efects on SDM performance have been demonstrated in a few previous studies, despite the expected 

theore}cal rela}onship (McPherson & Jetz, 2007). For example, Morán-Ordóñez et al. (2017) found no 

rela}onship between body size and model performance for trees and birds. França & Cabral (2016) 

successfully related model performance to species feeding mode and estuarine func}onal groups, with 

litle involvement of body size in the rela}onship. In studies aimed at river osh, both Radinger et al. 

(2017) and Filipe, Cowx & Collares-Pereira (2002) found that osh size increased model performance, 

which coincides with our main results. However, Markovic, Freyhof & Wolter (2012) did not ond this 

patern. The main diference between those studies is the number of presences used in each model. The 

observed correla}on between osh size and the model ots might be explained by this diference. 

Iden}fying patern distribu}ons for small oshes is more diocult due to small homes range and other 

considera}ons (McPherson & Jetz, 2007), but we could get beter model results for small oshes when we 
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increased the number of presences for model calibra}on and valida}on, as suggested by Stockwell & 

Peterson (2002) and done by Markovic, Freyhof & Wolter (2012) .

Our results are even more relevant in regions where the en}re osh community is par}cularly small, like in

Chile (Vila et al., 2006). Moreover, in Chile there are no SDM reports for osh implemented with more 

than 100 presences as in Markovic, Freyhof & Wolter (2012). In that case, one op}on is to obtain 

predictor variables at a lower spa}al resolu}on. In general, Radlinger et al. (2017) achieved good 

performances with a pixel resolu}on of 250m, using secondary variables as predictors in a 1,094 km long 

basin. So, methodology of Radlinger et al. (2017) could apply in Chile. Since Chilean rivers are 150 km 

long aprox, selec}on of predictor variables of Radlinger et al. (2017) should be adjust to small basins, as 

our case.

To develop models that perform well in small basins, besides incorpora}ng predictor variables at 

diferent spa}al scales, as we did, in further research we recommend incorpora}ng diferent 

hydromorphological features to our variable set at the reach scale, such as sediment type or 

morphological classioca}on and anthropogenic variables related to industrial development, like pollu}on 

or water extrac}on, that would play signiocant roles in riverine ecology according to the literature

(Torgersen et al., 1999; Lange et al., 2014; Ramezani et al., 2016). For example, T. areolatus shows 

preferences for river bedrock, so we would expect that the incorpora}on of the <sediment type= variable 

would improve the model performance.

We found two important results, but non-signiocant tendencies: Smaller oshes have beter ot in Eco 

models, and larger oshes have beter ot in Antr models. This patern can be explained by osh home 

ranges. Larger oshes are expected to be substan}ally restricted by movement barriers, given an ability to 

disperse farther than small oshes (Radinger & Wolter, 2015; Radinger et al., 2017), and so they respond 

beter to Antr variables. Conversely, the lower dispersal ability of smaller oshes implies a slower response

to anthropogenic drivers (Radinger & Wolter, 2015; Radinger et al., 2017), so it is beter modeled with 
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Eco variables, since these variables project a poten}al distribu}on without anthropogenic interven}ons. 

These results are coherent with current literature and shows the diferen}al rela}onship between 

anthropogenic pressure and osh size (Radinger et al., 2017).  

Al}tude (in Eco+Antr and Eco models) and slope (in Eco+Antr models) were the predictor variables 

associated to body size: for large oshes, al}tude and slope weren9t important for model ot. This 

rela}onship between al}tude and body size was also reported by Markovic, Freyhof & Wolter (2012) (r = 

-0.48, p value = 0.03). We associate this result to river turbulence, since large oshes beter resist 

turbulence (Lupandin, 2005), which is oven greater at higher al}tudes and higher slopes (Elliot, 2010). 

This resistance would indicate that al}tude and slope are not relevant environmental olters in habitat 

selec}on among larger oshes, decreasing its par}cipa}on in these SDMs.

Participation by predictor variable

On the Eco+Antr and Eco models, regardless osh size, the relevance by predictor variable for all models 

responded to the hierarchical framework of stream habitat proposed in literature (Frissell et al., 1986; 

Snelder & Biggs, 2002; Creque, Rutherford & Zorn, 2005; Steen et al., 2008; Peredo-Parada et al., 2011), 

and while predictor variables (or landscape olters) at bigger scales have more par}cipa}on in the models,

as the geographical scale of the variables decreases, so does its par}cipa}on in the model, and their 

importance is resolved species by species.

While accumulated rain structures the landscape from east to west (from mountain to ocean), and from 

north to south (greater precipita}on to the South), source-of-now represents territorial par}culari}es, 

like glaciers, lakes, and valleys. In this way, both variables summarize much of the spa}al variability of 

both basins, having more par}cipa}on in the majority of Eco+Antr and Eco models. 

We want to highlight the use in our study of source-of-now as a predictor variable, which is not found in 

any research of river species modelling (Filipe, Cowx & Collares-Pereira, 2002; Chu, Mandrak & Minns, 

2005; Steen et al., 2008; Markovic, Freyhof & Wolter, 2012; Jähnig et al., 2012; Domisch et al., 2013; 
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Elliot et al., 2015; Pleterbauer, Graf & Schmutz, 2016; Radinger et al., 2017; Taylor, Pape_ & Long, 2017),

especially in torren}al basins like those found in Chile, which have short runs, with rela}vely large lakes, 

glaciers, or salt pans that signiocantly afect hydrological and hydraulic condi}ons. Source-of-now 

variable is implement in river of New Zealand (Snelder & Biggs, 2002) and Chile (Peredo-Parada et al., 

2011) what would facilitate its use in SDMs. 

In Antr models, that within-channel construc}on genera}ng a direct impact in the reach, Land-Use and 

cross-channel construc}on were the anthropogenic variables with the most par}cipa}on in the Antr and 

Eco+Antr models. We relate this result to impact scale of within-channel construc}on. This variable 

frequently represents a proxy of interven}on at reach scale, and since the model grain was the segment 

scale, the model resolu}on probably was unable to completely capture the impacts to reach scale. 

In the current context of river species modeling, there is no broad agreement on predictor variables for 

modeling, unlike terrestrial species modeling, where Bioclim is the most used spa}ally database for 

predictor variables (Booth et al., 2014). In case of river species models, considera}on of hierarchical, 

longitudinal, lateral and ver}cal river links to select predictors (Domisch et al., 2015) is necessary, and the

most of riverine predictor variables are correlated theore}cal and sta}s}cally (Leopold, 1969; Elliot, 

2010). This makes the number of poten}al predictors of a riverine freshwater SDM very high, and allow 

that many of these variables can be change by proxies, diversifying hugely the predictor selected 

between papers. For example, many authors have used common proxies for river temperature, discharge 

and turbulence, like al}tude, now accumula}on, slope, catchment, among others (Filipe, Cowx & 

Collares-Pereira, 2002; Markovic, Freyhof & Wolter, 2012; Elliot et al., 2015; Pleterbauer, Graf & 

Schmutz, 2016; Radinger et al., 2017; Taylor, Pape_ & Long, 2017), but there is no general agreement in 

the literature as to which proxy to use. This ecological context hindering to systema}c use of any variable 

as predictor, and the lack of an agreement between researchers diocult to compare results between 

them. This problem should be resolve in a future, increasing consensus in terms of predictor variables 

selec}on.
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Spatial patterns of distribution

We interpret the biotope overpredic}on of Antr models for six from seven species models as a 

consequence of sta}s}c structure of the Antr variable predictors. Land-use is categorical variable, and the

others are discrete variable with low variability (maximum number of within-channel construc}on: 8, 

maximum number of cross-channel construc}on: 10), and the segment percent without interven}ons 

(exclusively natural land use, and without any interven}on that cross the river or within the river) is 51%. 

Thus, when the models relate the presence of any species with litle disturbed segment, the number of 

river segment matching this condi}on is very high, increasing the biotope in comparison to the Eco+Antr 

and Eco models. Regretably, we do not ond other research where modeled only with anthropogenic 

variables, so we cannot compare our results with current literature.

The great coincidence between the biotopes generated by the Eco+Antr and Eco models was unexpected,

since Eco biotopes were expected to be bigger than Eco+Antr biotopes, as reported in Taylor, Pape_ & 

Long (2017), since the Eco models es}mate poten}al niche, while Eco+Antr models es}mate realized 

niche, with the former always larger than the later (Jackson & Overpeck, 2009). While, the Bueno and 

Valdivia River basins have signiocant levels of anthropogenic pressures, these are apparently insuocient 

for to change the projected biotopes in under the Eco+Antr models. This result provides an op}mis}c 

view of the environmental condi}ons for the presence of threatened oshes in the Valdivia and Bueno 

River basins.

CONCLUSIONS

SDM performance for small osh was found to be less accurate due to modelling grain of variable 

predictors, but would this efect can be alleviated by increasing the number of presences. When 

ecological and anthropogenic variables were considered together, ecological variables at the higher 

spa}al scale were more relevant than predictor variables at the lower spa}al scale, adjus}ng them to the 

hierarchical stream framework of Frissell et. al. (1986). Source-of-now was found as a novel predictor 
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variable at the basin scale, with an important par}cipa}on in the models of diferent sized oshes. High 

coincidence between the biotopes generated by Eco+Antr and Eco models, suggest that Bueno and 

Valdivia River basins have low anthropogenic interven}ons. We found evidence of how physiological 

characteris}cs determine SDM performance. This research serves as a base for future studies of river osh 

modelling in a par}cular ecological context, with rela}vely small oshes in moderately intervened, 

rela}vely short, torren}al river basins.
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FIGURE LEGENDS

Figura 1. Study area.

Figure 2. Rela}onship between model ot and size oshes (Log10 of maximum length). Fit index is area 

under the curve (AUC) of the receiver opera}ng characteris}c (ROC) and the true skill sta}s}c (TSS). Eco 

(model with only ecological predictors), Antr (only anthropogenic predictors), Eco+Antr (both sets of 

predictors). Solid line represents the signiocant rela}onships.

Figure 3. Par}cipa}on of predictor variables in each model by species. From lev to right, the orst ove 

anthropogenic variables that only par}cipate in Antr models and Eco+Antr models, the second ten 

ecological variables that only par}cipate in Eco models, and Eco+Antr models. Categories with suox 

<use= belong to the land-use predictor, and categories with suox F.S. belong to source-of-now predictor. 

Figure 4. Maps of poten}al distribu}on by species and model. Each map represents the distribu}on of 

one species. Each color represents which model or sets of models determined a species present in each 

river sec}on. 

Figure 5. Venn diagrams represen}ng the river sec}ons deoned as having species presence by the 

diferent models that coincided in the same river segments for each species. For example, if the Antr, Eco,

and Eco+Antr circles completely overlap, the three models selected exactly the same river segments as 

having species presence. The percentages of river kilometers determined as having species presence by 

each the model is noted for each species. 

TABLE LEGENDS

Table 1. Modeled species, modeled presences, and TSS and AUC values for each model with diferent set 

predictors.
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Table 2. Predictor variables used in SDMs, indica}ng variable type (ecological or anthropogenic), spa}al 

categories, sta}s}cal descrip}on, and mean par}cipa}on by models with diferent set predictor 

variables.
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Figure 1

Study area
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Figure 2

Relationship between model fit and size fishes (Log10 of maximum length). Fit index is

area under the curve (AUC) of the receiver operating characteristic (ROC) and the true

skill statistic (TSS). Eco (model with only ecological predictors
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Figure 3

Participation of predictor variables in each model by species. From left to right, the first

five anthropogenic variables that only participate in Antr models and Eco+Antr models,

the second ten ecological variables that only participate in [i
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Figure 4

Maps of potential distribution by species and model. Each map represents the

distribution of one species. Each color represents which model or sets of models

determined a species present in each river section.
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Figure 5

Venn diagrams representing the river sections defined as having species presence by

the different models that coincided in the same river segments for each species.

For example, if the Antr, Eco, and Eco+Antr circles completely overlap, the three models

selected exactly the same river segments as having species presence. The percentages of

river kilometers determined as having species presence by each the model is noted for each

species
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Table 1(on next page)

Modeled species, modeled presences, and TSS and AUC values for each model with

different set predictors.
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1 Table 1. Modeled species, modeled presences, and TSS and AUC values for each model with different set predictors.

Species Distribution in Chile Max. 

Length 

(cm)

Presences Algorithms 

selected

Antr

AUC

Antr

TSS

Eco+Antr

AUC

Eco+Antr

TSS

Eco

AUC

Eco

TSS

Aplochiton 

taeniatus 1
38° - 55° Lat. S

30 17 RF 0.73 0.48 0.82 0.65 0.79 0.61

Aplochiton 

zebra 2
 35.88° - 55° Lat. S

28 15 RF 0.85 0.69 0.89 0.77 0.65 0.38

Brachygalaxias 

bullocki 3
 35.88° - 43.81° Lat. S

5.5 27 GLM 0.70 0.44 0.46 0.13 0.65 0.39

Cheirodon 

australe 4
 39.32° - 43.81° Lat. S

7 21 RF 0.51 0.14 0.75 0.54 0.76 0.56

Odontesthes 

mauleanum 5
 32.25° - 43.81° Lat. S

30 9 NNET 0.57 0.38 0.62 0.49 0.53 0.21

Percilia gillissi 6  32.25° - 43.81° Lat. S 9 33 NNET 0.79 0.56 0.52 0.16 0.78 0.54

Trichomycterus 

areolatus 7
 29.13° - 43.81° Lat. S

15 36 RF 0.49 0.11 0.66 0.37 0.71 0.42

2 Reference to fish size:

3 1 Ministerio del Medio Ambiente (2011a)

4 2 Ministerio del Medio Ambiente (2011b)

5 3 Ministerio del Medio Ambiente (2008d)

6 4 Ministerio del Medio Ambiente (2008a)

7 5 Ministerio del Medio Ambiente (2008b)

8 6 Froese & Pauly (2017)

9 7 Ministerio del Medio Ambiente (2008c)

10
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Table 2(on next page)

Predictor variables used in SDMs, indicating variable type (ecological or anthropogenic),

spatial categories, statistical description, and mean participation by models with

different set predictor variables
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1 Table 2. Predictor variables used in SDMs, indicating variable type (ecological or anthropogenic), spatial categories, statistical description, and 

2 mean participation by models with different set predictor variables.

Variable participationPredictive Variable Type Spatial 

Scale

Unit Description

Antr Eco+Antr Eco

Accumulated rainfall Ecological inter-basin mm Min: 954

Median: 2302

Max: 5099159 81.5 77.8

Catchment Ecological intra-basin km2 Min: 0.11

Median: 38.022

Max: 15033 60.1 60.0

Source-of-flow Ecological intra-basin Categories: lake, 

glacier, 

mountian, 

foothills, valley, 

plains

lake: 163

Plains: 891

Foothills: 538

Valley:  619

75.7 35.9

Altitude Ecological intra-basin m.a.s.l. Min: 2

Median: 264

Max: 1751 56.8 52.9

Slope Ecological Inter-

segment

m/m Min: 0

Median: 0.018

Max: 3 43.0 43.7

Channel width Ecological Inter-

segment

m Min: 1

Median: 8

Max: 1500 45.6 38.0

Percent riparian 

vegetation

Ecological Inter-

segment

% Min: 0

Median: 182

Max: 200 33.2 24.3

Segment land-use Anthropic Inter-

segment

Categories Antr: 371

Antr_Nat: 189

Nat: 1252 75.7 35.9

Cross-channel 

constructions

Anthropic Inter-

segment

Number of 

Works

Min: 0

Median: 0 62.2 13.7
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Max: 8

Within-channel 

constructions

Anthropic Inter-

segment

Number of 

Works

Min: 0

Median: 0

Max: 10 77.7 20.9

3
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