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Abstract

The 16S rRNA gene amplicon sequencing is a widely used high-throughput method for the taxonomic

inference in microbial communities. Many data analysis pipelines have been developed to enhance the

accuracy  in  reflecting  the  real  taxonomy,  in  order to better guide  the  downstream  identification,

isolation  and  mechanistic  studies.  Though  rigorous  quality  filtration  steps  were  adopted  in  these

pipelines,  with well-designed  mock and  simulated data  sets, we found that  there were still a widely

divergent number of spurious features due to the “pseudo sequences” artificially generated during the

PCR and sequencing process.  These pseudo sequences were  in low abundances,  and were unreliable

determined through a weighted re-sampling test.  To minimize their influences on the characterization

of taxonomy,  we proposed an approach that contains two steps,  an abundance filtering (AF) step and

the subsequent AF-based OTU picking and remapping (AOR) step, which can efficiently decrease the

spurious  OTUs,  sequences  or  oligotyping features,  and  improve Matthew's  Correlation  Coefficient

(MCC) values in OTU clustering. The approach can be easily integrated with the popularly-used 16S

rRNA sequencing data analysis pipelines, to make the number of OTUs, alpha and beta diversities from

divergent pipelines more consistent with the real structure of microbial communities.

Introduction

It is well known that the 97% similarity of 16S rRNA genes, which corresponds to the 70% DNA-DNA

hybridization  of  whole  genomes,  is  the  primary  criterion  in  molecular  microbiology  to  define

prokaryotic  species (Stackebrandt  &  Goebel,  1994;  Rosselló-Mora  &  Amann,  2001).  Therefore

clustering 16S rRNA gene amplicon sequences into OTUs with 97% similarity threshold has been

extensively  applied  to  reflect  the  phylogenetic  delineation  of  microbial  organisms  at  roughly  the

species level  (Schloss & Handelsman, 2005; Goodrich et al., 2014). Although new OTU delineation
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algorithms with flexible similarity threshold have been introduced (Kopylova et al., 2016), and other

methods were also proved to have better sub-OTU resolution (Eren et al., 2013, 2015; Callahan et al.,

2016; Amir et al., 2017), the principle of 16S rRNA gene amplicon sequencing data analysis remains

the same that  the  characterization of features, such as OTUs, sequences or other units in microbial

community samples should  represent the real bacterial  diversity in the community,  and  lead to the

correct identification and isolation of functionally important bacteria for mechanistic studies. That is,

spurious features should be minimized to avoid tracking down non-existent organisms.

However,  when  fed  the  same  sequencing  data  set  at  the  same  97%  similarity  cutoff,  different

delineation methods often produce widely divergent spurious OTUs (Bonder et al., 2012; Chen et al.,

2013; Westcott & Schloss, 2015). For example, using the same dataset containing 43 known species,

the number of OTUs varied from 133 to 4,397 among 10 different methods, overestimating by up to 2

orders of magnitude (Chen et al., 2013). The disparity among these methods has long been considered

as a consequence of the distinct algorithms and parameters used (Westcott & Schloss, 2015; Schmidt,

Matias Rodrigues & von Mering, 2015). However, by directly performing OTU delineation on high-

quality  sequences  from  16S  rRNA gene  database,  the  number  of  OTUs  obtained  becomes  more

consistent and less overestimated (a median overestimation of three times compared to 33 times in

actual sequencing data) (Chen et al., 2013). These results imply that the erroneous sequence introduced

during actual PCR and sequencing process is the primarily influence  worsening 16S gene amplicon

sequencing analysis.

Substantial efforts have been made to improve the quality score-based filtration (Joshi & Fass, 2011;

Bokulich et al., 2012; Edgar, 2013; Schirmer et al., 2015; Puente-Sánchez, Aguirre & Parro, 2016).

Recent methods such as DADA2  (Callahan et  al.,  2016), Deblur  (Amir et al.,  2017) and UNOISE
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(Edgar, 2016) apply denoising algorithm to provide putative error-free sequences. Another fine scale

method, MED  (Eren et al.,  2015), performs oligotyping analysis  (Eren et al.,  2013) on informative

nucleotide positions to ignore other noises. In this study, we constructed a series of simplified mock

communities using clones of 16S rRNA genes sharing >3% dissimilarity in the V3-V4 region, in which

case the difference is large enough that all clones should be correctly identified. We first used these

data sets to evaluate several quality filtration pipelines to test if a combination of stringent methods

could minimize the effect of pseudo sequences on OTU-based methods,  including  average linkage

(AL) (Schloss & Westcott, 2011), UCLUST (Edgar, 2010), UPARSE (Edgar, 2013) and Swarm (Mahé

et  al.,  2015).  Afterwards,  the  non-OTU-based analysis  methods,  DADA2,  Deblur  and  MED were

applied to see whether and how they can overcome the influences from the pseudo sequences. Finally,

we developed an approach containing abundance filtering (AF) and subsequent AF-based OTU picking

and remapping (AOR) steps to minimize the spurious features from sequencing errors. The efficiency

of the approach is further validated with more complex simulated or real-world communities.

Materials and Methods

Construction of mock communities

A total of 22 16S rRNA gene clones were chosen to construct 7 mock communities, each with varying

clone compositions (Table S1). Each community had 3 replicates in the same sequencing run (run1, a

total of 21 samples). Four communities were sequenced in 2 additional runs (run2 and run3, a total of

12 samples each).

Sequencing procedures
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Hypervariable region V3-V4 amplicons from the 16S rRNA gene were sequenced by Illumina MiSeq,

as  described  in  http://res.illumina.com/documents/products/appnotes/16s-metagenomic-library-prep-

guide.pdf, with the following modifications. Platinum Pfx DNA polymerase (C11708021, Invitrogen,

USA)  was  used  for  two  steps  during  the  amplification.  PCR  cycles  for  the  amplicon  PCR

(amplification of the 16S rRNA V3-V4 region) were reduced to 21 to diminish PCR bias. The primers

used were as follows: S-D-Bact-0341-b-S-17, 5’-CCTACGGGNGGCWGCAG-3’ and S-D-Bact-0785-

a-A-21,  5’-GACTACHVGGGTATCTAATCC-3’  (Klindworth  et  al.,  2013).  The  amplicons  were

sequenced using 2*300 bp paired-end sequencing.

Quality control methods

Quality  control  of  raw  sequences  was  performed  using  UPARSE  (Edgar,  2013) with  USEARCH

v8.0.1623,  mothur  (Schloss  et  al.,  2009) v1.35.0,  moira  (Puente-Sánchez,  Aguirre  & Parro,  2016)

v1.1.0  or a workflow (Schirmer et al., 2015) including quality trimming (Sickle (Joshi & Fass, 2011)

v1.33), error correction (BayesHammer  (Nikolenko, Korobeynikov & Alekseyev, 2013) with SPAdes

v3.5.0) and read overlapping (PANDAseq (Masella et al., 2012) v2.8) (aliased as S+BH+P). Overlaps

with ≥50 bp lengths were required for each sequence pair, resulting in ≥400 bp merged sequences, and

no ambiguous bases were allowed. USEARCH further filtered out sequences with ≥0.5 expected errors.

The PCR primers were then truncated from the QC sequences using the “search_pcr” command in

USEARCH.

Obtaining simulated datasets

To achieve  more complex data sets for testing, we used Grinder  (Angly et al., 2012) to simulate the

sequencing reads based on 87 randomly picked OTU references from Greengenes with <97% similarity
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to each other (Table S2). The distribution of Illumina sequencing errors was simulated with a fourth

degree polynomial model (Korbel et al., 2009) as follows:

3×10−3+3.3×10−10 i4 (1)

wherein i indicates the position alongside the sequences,  the coefficients were adjusted to  fit  the

profile of 300 bp sequencing platform.

Among the errors,  the ratio  of substitutions vs.  insertions/deletions was set  as 9:1.  The portion of

chimeras was designed as 10%, with the distribution of bimeras, trimeras quadrameras was 314:38:1

(Quince et al., 2011). A total of 99 samples were simulated, each had 15,000 paired-end reads with

2*300 bp length. The abundances of the 87 references were shuffled across samples based on power

law distribution.

Obtaining real datasets

PWS data: a published data set containing 110 human fecal samples collected from children diagnosed

with Prader–Willi syndrome or simple obesity during dietary intervention. The V3-V4 hypervariable

region was sequenced on an Illumina MiSeq machine using 2*300 bp paired-end sequencing (Zhang et

al., 2015). Sequences are available at http://www.ncbi.nlm.nih.gov/bioproject/PRJNA306596.

Ultra data:  a downloaded data set  including microbial  communities from host-associated and free-

living  environments,  sequencing  the  V4  region  with  150  bp  single-end  (Caporaso  et  al.,  2012).

Sequences are available at https://qiita.ucsd.edu/study/description/1684.
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Water data: a downloaded data set that were collected from drinking water systems in the Netherlands,

spanning the V4 region with a 2*200 bp read length (Roeselers et al., 2015). Sequences are available at

the European Nucleotide Archive under accession number PRJEB7435.

River data: a downloaded data set containing water samples along the midstream of the Danube River,

applying the V3-V4 region for 2*250 bp sequencing (Savio et al., 2015). The raw sequencing data were

submitted to the NCBI Sequence Read Archive under accession number SRP045083.

Preparation of qualified sequences for downstream analysis

Sequence merging, error correction and quality control (QC) were performed using moira v1.1.0. The

PCR primers were truncated from the QC sequences afterwards. The sequence lengths were restricted

to >100 bp for V4 amplicons and >400 bp for V3-V4 amplicons. The QC sequences were de-replicated

into unique sequences and aligned to the SILVA bacteria reference database (Quast et al., 2013) with

the “align.seqs” command in mothur. The alignment space was optimized by removing the sequences

that failed to align correctly. This optimization is to ensure that all the remaining sequences overlapped

at the same region of the SILVA reference alignment. The sequences were then divided by samples and

checked for chimeras using abundant sequences as references with the UCHIME (Edgar et al., 2011)

de novo algorithm. Non-chimeric sequences were classified according to the mothur-formatted version

of the RDP classifier  training set  v9  (Cole et  al.,  2014),  and non-bacterial  sequences were further

filtered out. The final qualified sequences were rarefied to an even number per sample to avoid the bias

of unbalanced sequencing effort (10,000 per sample for Mock, Simulated, PWS and Ultra data, 20,000

per sample for Water data, and 1,000 per sample for River data). The size or abundance of a qualified

unique sequence was defined as the number of duplicates after rarefaction.
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DADA2 (Callahan et al., 2016) and Deblur (Amir et al., 2017) implemented in QIIME2 (Caporaso et

al., 2010) require the quality score (Phred Q score) as part of the inputs. Therefore a different process

using QIIME2 framework and command line interface was performed. First of all,  PCR primers were

truncated with Cutadapt (Martin, 2011). Then in DADA2, forward and reverse reads were respectively

truncated to the first 270 and 200 bp high-quality region. For Deblur, paired-end reads were merged to

have a length between 400 and 500 bp with VSEARCH (Rognes et al., 2016), followed by the “quality-

filter” command (Bokulich et al., 2012) called in QIIME2 with default parameters. The final sequences

were truncated to obtain the first 400 bp region by Deblur itself.

OTU delineation

UPARSE:  qualified  unique  sequences  were  sorted  by  decreasing  abundance,  and  singletons  were

discarded. Non-chimeric OTU representative sequences were selected afterwards with a 97% similarity

threshold. The OTU table was finalized by mapping qualified sequences to the obtained OTUs with the

USEARCH (Edgar, 2010) global alignment algorithm.

Average linkage (AL): qualified sequences were pre-clustered with up to one difference per 100 bp

length. OTUs were then delineated by >97% similarity with an average neighbor algorithm by mothur.

UCLUST: qualified sequences were clustered into de novo OTUs by >97% similarity using UCLUST

within the QIIME pipeline.
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Swarm: qualified sequences were grouped together as an OTU with 1-base-difference connections.

Large OTUs with multiple abundant cores were broken down. Nearby low-abundance sequences were

connected  through  fastidious  option.  The  boundary  of  each  OTU  is  flexible  depending  on  the

distribution of sequences. There is no fixed similarity threshold.

UPARSE, UCLUST and Swarm  chose the most abundant  sequence in each OTU as representative

sequence, whereas AL chose the sequence with the smallest maximum distance to the other sequences

within the same OTU.

Abundance filtering (AF) of unique sequences

Weighted bootstrap  resampling  was  performed  1,000  times  with  replacement using  the  original

abundance of  the unique sequences  (Abundreal)  as  weights.  The confidence intervals  were adjusted

according to Meyer  et al.  (Meyer et al.,  2016). The estimated abundance of  each unique  sequence

(Abundadj) was calculated as follows:

Abundadj=2×Abund real−Abundboot (2)

where Abundboot indicates the mean of the bootstrapped abundances  obtained from the  corresponding

1,000 replicates. 

The 99% confidence interval for each unique sequence could then be obtained as follows:

CI 99%=[Abundadj−(Abundboot−Abund0.5); Abundadj+(Abund99.5−Abundboot )] (3)
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where the Abund0.5 and Abund99.5 values represent the 0.5th and 99.5th percentiles of the 1,000 replicates.

A unique sequence was considered as  unreliable  when its lower bound of CI99% dropped below zero,

then was filtered out.

The custom R script (resample_uniques_ci.r) used to perform this bootstrapping approach is available

in the supplementary information.

AF-based OTU picking and remapping (AOR)

We propose an AOR approach to modify the current OTU delineation pipelines, as follows (Fig. 1):

(i)  Filter  out  unreliable  sequences  determined  with AF.  This  step  can  be  performed  using  the

“sortbysize” command within USEARCH or the “split.abundance” command within mothur.

(ii) Input the remaining sequences into the initial OTU delineation step. 

(iii) For the OTU delineation methods that depend on similarity threshold, remap the filtered sequences

in (i) to the obtained OTUs if they match the same similarity threshold with global alignment methods.

This  step  can  be  performed using USEARCH global  alignment,  the  “align.seqs”  command within

mothur or the “pick_closed_reference_otus.py” pipeline within QIIME.

OTU clustering quality assessment
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Matthew's correlation coefficient (MCC) (Matthews, 1975) was calculated following the description of

Schloss  et al.  (Westcott & Schloss, 2015).  We counted the number of sequence pairs that had  ≥97%

similarity and were in the same OTUs as true positives (TPs), those that had <97% similarity and were

in different OTUs as true negatives (TNs), those that had ≥97% similarity and were in different OTUs

as false  negatives  (FNs)  and those that  had  <97% similarity  and were  in  the same OTU as  false

positives (FPs). The MCC was then calculated as follows:

MCC=
TP×TN−FP×FN

√(TP+FP )(TP+FN ) (TN+FP) (TN+FN )
(4)

MCC is not applicable to Swarm as the OTU boundary is not based on the 97% similarity threshold.

Software

This work used QIIME (v1.9.1, v2-2018.2)  (Caporaso et al., 2010), mothur (v1.35.0)  (Schloss et al.,

2009), USEARCH (v8.0.1623)  (Edgar, 2010), DADA2  (Callahan et al., 2016), Deblur  (Amir et al.,

2017), MED (in Oligotyping Pipeline v2.1)  (Eren et al., 2015), Swarm (v2.2.2)  (Mahé et al., 2015),

Grinder (v0.5.4) (Angly et al., 2012), moira (v1.1.0) (Puente-Sánchez, Aguirre & Parro, 2016), Sickle

(v1.33)  (Joshi  &  Fass,  2011),  BayesHammer  (Nikolenko,  Korobeynikov  & Alekseyev,  2013),  (in

SPAdes v3.5.0), PANDAseq (v2.8) (Masella et al., 2012) and R (v3.2.0) (R Core Development Team &

R Core Team, 2015). The Mantel test (Mantel, 1967) was performed using the vegan (v2.3-4) (Oksanen

et al., 2016) package in R. Parallel computing was performed with GNU Parallel (Tange, 2011).

Results

“Pseudo  sequences”  with  significant  sequencing  errors  remain  in  the  dataset  after  quality

filtration
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On  average,  15,080  (12,780-17,460)  (median,  minimum-maximum),  16,770  (13,060-18,520)  and

32,510 (26,240-35,050) sequences per sample were achieved from three independent MiSeq runs on

Mock  data.  Four  quality  control  pipelines  were  individually  applied,  including  UPARSE  (with

USEARCH v8.0.1623), mothur v1.35.0, moira (Puente-Sánchez, Aguirre & Parro, 2016) v1.1.0, and a

combination  of  Sickle  (Joshi  &  Fass,  2011) v1.33, BayesHammer  (Nikolenko,  Korobeynikov  &

Alekseyev, 2013) (in SPAdes v3.5.0) and PANDAseq (Masella et al., 2012) v2.8 (aliased as S+BH+P,

introduced by Schirmer  et al.  (Schirmer et al., 2015)). After further truncation of PCR primers, the

retained quality controlled (QC) sequences were aligned to mock references using global alignment

with the “align.seqs” command in mothur.  We did not choose the “seq.error” command in mothur

because it tended to align sequences to multiple templates to achieve lower error rates, although only a

small  part  were  actual  chimeras.  As reported  by the  Illumina  Sequencing Analysis  Viewer  on the

sequencing platform, the raw sequences of the three runs yielded 2.5%, 2.1% and 3.9% errors during

the sequencing procedure.  These error rates were reduced to less than 0.5% after  applying quality

controls (Table S3). Chimeras, contaminants and other errors were not filtered out yet at this step. 

For the same mock community, the absolute quantities of the QC sequences varied largely among the

different  sequencing runs and filtration methods (Table S4),  although the error distributions of the

qualified sequences were similar among the four methods. S+BH+P was the least robust and obtained

the fewest QC sequences. Moira maintained the highest number of sequences with a moderate error

rate, due to its denoising algorithm; therefore, it was chosen as the uniform quality control method in

this  study.  We did not  follow the  default  pipelines  of  QIIME,  UPARSE or  mothur  to  process  the

sequences  because  different  quality  filtration  pipelines  had inconsistent  “qualified sequences.”  The

purpose of this study was to focus on the data analysis step, and thus, we hypothesized that it would be

better to begin with the same baseline data.
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The QC sequences obtained by moira were further examined for chimeras, non-bacterial sequences and

sequences that started or ended at the wrong position. Sequences that failed to align to mock references

but  showed  high  similarity  (>97%)  to  species  in  the  SILVA bacteria  database  were  defined  as

contaminants and discarded. Retained sequences were rarefied to the same number per sample and de-

replicated into qualified unique sequences. As a result, the error rates were further reduced to less than

0.2% (Table S3), and all errors with known sources were eliminated. These qualified unique sequences

were used as the input data for downstream analyses.

We  then  performed  global  alignment  with  the  “align.seqs”  command  in  mothur  to  compare  the

qualified sequences with the mock references. The three sequencing runs contained 75.7%, 60.9% and

51.4% of qualified sequences that were 100% identical to the mock references. In addition, 99.9%,

99.5% and 99.4% of the corresponding qualified sequences shared 97% or higher identity with the

closest mock reference. However, up to 0.6% of qualified sequences had more than 3% errors, and

some showed less  than 90% identity  to  the  closest  mock reference.  This  small  amount  of  pseudo

sequences contributed to 229, 615 and 744 unique sequences in each sequencing run. 

These  pseudo  sequences  had  a  relatively  lower  abundance  (Fig.  2a).  In  general,  a  lower  relative

abundance was associated with a higher number of different unique sequences, forming an L-shaped

distribution curve (Fig. 2b). More than 90% of the unique sequences had a relative abundance <0.01%. 

Extra number of spurious OTUs is primarily derived from the pseudo sequences
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The V3-V4 regions of the 22 reference clones used to construct the mock communities shared <97%

similarity (see Table S1 for detailed sequence contents). These communities were designed to ensure

that UCLUST (with QIIME v1.9.1), average linkage (AL, with mothur v1.35.0) and UPARSE (with

USEARCH v8.0.1623) and Swarm v2.2.2 would not cluster any two of the mock references together.

Therefore,  within this  mock data set,  one outcome OTU should be expected for one species.  This

design makes the guaranty that,  in this  case, the inconsistent algorithms and parameters would not

perturb the downstream results. 

However, none of the OTU delineation methods could provide expected results  on actual sequencing

data  (Table  1).  We  defined  three  kinds  of  OTU  as  “perfect”  (representative  sequence  was  100%

identical  to  mock  references),  “good”  (97%≤identity<100%)  or  “spurious”  (identity<97%).  All

methods got 22 “perfect” OTUs, showing one-to-one correspondence with 22 “real” species. However,

UPARSE, UCLUST, AL and Swarm also obtained 1 (0-1), 308 (154-326), 308 (155-328) and 456 (204-

486) spurious OTUs, respectively.  The overestimation of OTU numbers  were mainly  from spurious

OTUs that representing non-existent species.

We then traced the unique  sequences  back to  their  assigned OTU types (Fig.  3).  The dots  in  the

diagram are used to represent the unique sequences, and the ellipses and links indicate how the unique

sequences were clustered into the OTUs. The majority of unique sequences were clustered with their

corresponding species (green and blue clusters), while a few low-abundance unique sequences whose

similarity <97% to the references formed “error clouds.” As shown, a OTU delineation algorithm needs

to create extra spurious OTUs (red clusters) to fully cover  these pseudo sequences if they are distant

enough to form an independent “error” cluster (Fig. 3e). Even worse, they could be clustered with other

perfect and good sequences to form non-perfect OTUs (Fig. 3f) or, conversely, good sequences could
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be trapped to  become spurious  OTUs (Fig.  3g).  UPARSE discarded  singletons  (unique  sequences

without replicates) and stringently checked for potential chimeras once more during OTU delineation,

thereby distinctly reducing the number of retained low-identity pseudo unique sequences. However,

discarding only singletons was not sufficient, as the non-singleton pseudo unique sequences remained

and became sources of spurious OTUs. 

Abundance filtering (AF) approach minimizes the spurious OTUs

The results from the mock data demonstrate that the unique sequences with relatively low abundances

are  the  major  sources  of  pseudo  sequences  and  spurious  OTUs.  Assuming  that  the  errors  occur

randomly, the sequences with more errors are less likely to have replicates with exactly the same errors

by chance, i.e., sequences with more errors are expected to have relatively low abundances. We propose

AF and the subsequent AF-based OTU picking and remapping (AOR) approach to modify the current

analysis pipelines.

The determination of unreliable sequences is critical in AF. Among the three replicated sequencing runs

of  mock  communities,  which  contained  22,844,  26,814 and  33,109  unique  sequences,  only  5,126

unique sequences were consistently detected.  Considering the robustness and reproducibility of the

sequencing data, a threshold should be able to separate the unreliable sequences that fail to consistently

appear in technical replicates. We applied a bootstrapping strategy to estimate the uncertainty level of

the  unique  sequences  in  microbial  communities.  The  99%  confidence  interval  of  bootstrapped

abundances and the corresponding coefficient of variation (CV, calculated as the bootstrapped standard

error of each sequence divided by its observed abundance) were then estimated (Fig. 4).
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The 99% confidence interval of sequences touched zero when their abundances were ≤6 (Fig. 4a-c).

This means that although these sequences appeared in the original sequencing data, they were detected

by chance and may not occur when the same communities are sequenced again. When the threshold for

the unique sequences in the three sequencing runs was set at 7, their corresponding relative abundances

were 0.003%, 0.005% and 0.005% (Table S5). For sequences with abundances below the threshold, the

corresponding CV values were >50% (Fig. 4d-f), indicating that among the replicated sequencing runs,

the  abundances  of  these  sequences  vary  substantially. The  unreliability  of  these  low  abundant

sequences implied they were below the detection limit of the current sequencing technology.

AOR can be summarized  as  a  mixed  de novo/reference-based approach.  Unreliable  sequences  are

filtered  out  by  AF.  Then  de  novo clustering  is  performed  on  the  remaining  sequences.  Finally  a

reference-based clustering method remaps all sequences onto the OTUs obtained during the  de novo

step. After AF step, all 97%-similarity-threshold-based methods combined with the AOR step provided

22 OTUs with one-to-one correspondence to the real species in mock communities (Fig. S1a-c, Table

1);  less  than  1% of  total  sequences  were  eventually  discarded (Fig.  S1d-f),  and MCC values  had

already achieved 0.99 (Fig.  S1f-i).  Swarm does not apply a fixed similarity threshold during OTU

delineation,  thus  the  remapping  procedure  and  the  calculation  of  MCC values  are  not  available.

Nevertheless, filtering out low-abundance sequences dramatically improved the accuracy of Swarm’s

OTU results,  with only one spurious OTU left  in  one of  the three sequencing runs.  These results

suggest that the abundance threshold determined by the above statistical strategy was qualified to detect

most of the pseudo sequences and maintain the desired OTUs belonging to the expected real species.

Indeed, the AOR approach improved the quality of OTU delineation.

AF also improves the accuracy of Non-OTU-based methods
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DADA2 and Deblur perform denoising procedure to obtain high-quality unique sequences, while MED

focuses on a subset  of informative nucleotide positions along the sequences  to  ignore the random

noises. These methods were reported to provide better resolution of microbial communities than OTU-

based methods (Eren et al., 2015; Callahan et al., 2016; Amir et al., 2017). In this study, we tested these

methods with our Mock data sets to see if they can be affected by the pseudo sequences as well (Table

2). The differences between reference sequences would also be large enough to be correctly identified

by the three non-OTU-based methods. 

DADA2  obtained  41  (41-42)  perfect  unique  sequences  that  were  100%  identical  to  the  Mock

references. The number was higher than 22 actual species because after paired-end merging, DADA2

still  maintained single-end sequences  that  failed to  be merged but  were identical  to  references.  In

addition, 1 (1-3) spurious sequence was observed. After setting an abundance threshold at 7 in AF step,

all spurious sequences in run1 were discarded, yet run2 and run3 still obtained one spurious sequences

whose abundance was 12.

By  default  in  each  sample,  Deblur  discards  the  unique  sequences  whose abundance  less  than  2.

Afterwards, it further discards the unique sequences whose total abundance is less than 10 across all

samples. With this  default behavior,  exactly 22 perfect sequences were identified.  Once these low-

abundance sequences were maintained, additionally 2 (2-7) good sequences as well as 1 (1-3) spurious

sequences were observed. When 7 was set to replace the default abundance threshold, none of these

good or spurious sequences existed anymore.
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MED obtained 306 (150-313) spurious oligotyping features with default settings. By filtering out the

sequences whose abundance was less than 7, the output good and spurious features were reduced to 1

(0-1).

AF and AOR is effective in more complex Simulated data sets

We further applied a series of Simulated data to increase the complexity while still being aware of the

actual  composition.  A total  of  99  samples  containing  the  same  87  reference  species  with  variant

compositions were simulated, each produced 10,000 qualified sequences. Abundance threshold was set

to 7 based on bootstrapping strategy.

Similar to the results in mock data, the OTU-based methods UCLUST, AL and Swarm obtained at least

one  magnitude  more  spurious  OTUs  (1577,  1566  and  2079)  than  actual  87  references.  By

implementing AOR or AF approach, the number of spurious OTUs could be reduced to 206, 202 and

218 (Table 3). UPARSE were not significantly affected by AOR approach in this data.

AF also decreased the number of spurious  sequences  for DADA2 and Deblur.  The most  dramatic

improvement was observed in MED results. A total of 7312 oligotyping features were identified with

all  sequences.  Since this  number  exceeded  the  hard  limit  of  the  maximum  number  of  open  file

descriptors (1024) on our computer server, we could not obtain detailed results by MED. However, by

simply filtering out low-abundance sequences, only 185 spurious features were retained (Table 4).
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The AOR approach produces consistent alpha and beta diversity in real data sets

We used four published real data sets to further evaluate our AOR approach on the three 97%-similarity

based OTU delineation methods,  UCLUST, AL and UPARSE. The four real  datasets,  PWS, Ultra,

River  and  Water,  contain  248,654,  25,544,  45,834  and  147,778  qualified  unique  sequences,

respectively. Although it is not possible to obtain the sequencing error information for the real datasets,

similar CV values and confidence interval distributions of the unique sequences were observed in all

four datasets  (Fig.  S2).  Incorporating the AOR approach with different  pipelines and changing the

relative abundance thresholds allowed us to obtain a series of OTU delineation results for each dataset

(Fig. S3). All  results  showed dramatic decreases at  the beginning and maintained slow descending

tendencies as more sequences were set aside from the de novo OTU delineation step. Different methods

implementing  distinct  algorithms  showed  divergent  behaviors;  however,  they  all  obtained  similar

numbers of OTUs after identifying the unreliable sequences, whose abundances were no more than 6

(0.0006% in relative abundance), 7 (0.003%), 6 (0.0004%) and 6 (0.007%) for PWS, Ultra, River and

Water, respectively (Fig. S3, Table. S5). At these levels, at least 95% of the qualified sequences could

be remapped to pre-defined OTUs, except for the River dataset, which remapped 85% of the sequences.

The MCC values were also higher than the original values (Fig. S4).

In the  alpha diversity  comparison,  the number of  OTUs and Chao1  (Chao et  al.,  2000),  Shannon

(Shannon, 1948) and Simpson (Simpson, 1949) indices of each sample were calculated (Fig. S5). The

first  two indices  directly  reflect  the  richness  of  the  sample,  and the  latter  two reflect  the  overall

diversity.  Because  of  the  great  disparities  in  total  OTU  numbers,  significant  differences  occurred

between the original results and the AOR results with respect to the estimation of OTU numbers and

Chao1  indices.  However,  Shannon  and  Simpson  indices  were  not  significantly  reduced  by  AOR,

indicating that the overall diversities of communities are not underestimated using the AOR approach.
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Moreover, in the original results, different OTU delineation methods provided significantly divergent

alpha  diversities  (multiple  Wilcoxon  test,  FDR-adjusted  p<0.01).  After  integration  with  AOR,  the

divergences among the methods were no longer significant because the OTU delineation was no longer

affected  by  sequencing  errors,  and  the  different  methods  were  all  able  to  reflect  the  same  real

community composition.

Four types of beta diversity distance matrices, namely, the Euclidean (EU), Bray-Curtis (BC) (Bray &

Curtis, 1957), weighted normalized UniFrac (WU) and unweighted UniFrac (UU)  (Lozupone et al.,

2011) distances, were measured, and the results obtained by different methods were compared by the

Mantel test  (Mantel, 1967). AOR showed an improvement in beta diversity consistency among the

different  OTU delineation  methods  (Fig.  S6),  validating  that  our  AOR approach  not  only  simply

decreases  the  number  of  OTUs but  also provides  much more  consistent  profiling  of  compositions

approaching  the  real  communities,  which  would  no  longer  be  affected  by  the  choice  of  OTU

delineation method.

Discussion

We developed AF and AOR approach to minimize the spurious features produced by either OTU-based

or  non-OTU-based  algorithms from low-quality  “pseudo  sequences”  introduced  by  errors  that  are

resistant to current quality filtration processes. These pseudo sequences, which had >3% divergence

from  the  reference  sequences,  remained  after  current  mainstream  pipelines  implementing  error

correction, denoising and stringent filtration of chimeric sequences, contaminants and non-bacterial

contents.  Although  the  overall  abundance  of  these  pseudo  sequences  was  low  (<1% of  the  total

qualified  sequences  passing  quality  filtration),  introducing  them  into  analysis  increased  the  total
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number of features to 10 times higher than expected and enlarged the divergence of the alpha and beta

diversity analyses among the different methods. By filtering out these pseudo sequences, our AF and

AOR  approach  further  diminished  unexpected  spurious  features  both  in  mock  and  simulated

communities. When incorporated in OTU-based methods, AOR approach also provided higher MCC

values  of  clustering  quality  and resulted  in  more  consistent  alpha  and  beta  diversities  among  the

different methods with real data sets (see supplementary).

Lower-abundance  and  lower-quality  sequences  were  observed  to  surround  higher-abundance,

biologically  real  sequences,  forming “error  clouds”  (Bokulich  et  al.,  2012;  Edgar,  2013).  Various

researchers  have  developed  different  approaches  to  remove  these  pseudo  sequences.  Chen  et  al.

discarded all sequences whose abundance was <100 in 454 sequencing data despite their accuracies

(Chen et al.,  2013), which resulted in the loss of many low-abundance but high-quality sequences.

Bokulich  et  al. removed  lower-abundance  OTUs  with  a  relative  abundance  <0.005%  before

downstream analyses (Bokulich et al., 2012); however, this strategy led to the risk of abandoning good

sequences trapped in these OTUs. Edgar set aside singletons during OTU delineation by UPARSE to

prevent them from becoming the centroids of OTUs and then remapped them to the defined OTUs

(Edgar, 2013). This strategy improves the accuracy of OTU delineation, but the results in our study

indicate  that  singletons  are  not  the  only  source  of  pseudo  sequences.  The  unreliability  of  low-

abundance sequences has been noticed by new non-OTU-based methods as well. By default, Deblur

requires the putative error-free sequences to have an abundance no less than 2 in each sample and no

less than 10 across all samples (Amir et al., 2017). MED recommended a filtration based on the count

of  the  most  abundant  sequence  in  each oligotyping feature.  The threshold  was set  to  the  average

sequence number per sample divided by 1,000 in the first oligotyping paper  (Eren et al., 2013), then

was changed to the total number of sequences divided by 10,000 in the MED paper (Eren et al., 2015).
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However,  such methods just take into account the sensitivity-vs.-error trade-offs but lack of the basic

detection limit concept of metrology. They may provide ideal number of OTUs in some cases, but they

are difficult  to  reproduce or generalize when sequencing data  is  generated from varied choices of

primers, sequencing lengths and depths (Tremblay et al., 2015). 

Although microbiologists have raised the concerns about low-abundance sequences and the so called

“rare biosphere” for a long time (Huse et al., 2010; Kunin et al., 2010),  the concept “detection limit”

has not been introduced into this area ever before. In this study, the low abundance threshold was set

based on the concept that real sequences should consistently appear in repeated observations (Zhou et

al., 2011). We performed a weighted bootstrap resampling strategy based on the observed abundance

distribution  to  estimate  the  occurrence  and  abundance  of  each  unique  sequence  in  replicated

sequencing runs. This approach makes use of the lower detection limit of the sequencing protocol by

indicating that the rare sequences below the threshold are statistically unreliable because they cannot be

consistently detected across observations. thus limiting robustness and reproducibility.  Based on the

basic detection limit concept of trace and metrologic analysis (Analytical Methods Committee, 1987),

the sequences below detection limit are actually not detectable. It is out of confidence to make any

conclusions based on their stochastic occurrences and abundances. If very rare species are of interest, a

deeper sequencing depth is required to ensure that they are covered with confidence.

Our AOR approach takes advantages of both de novo and reference-based OTU delineation methods.

By performing  de novo clustering on the reliable sequences only, the resulting OTUs are ensured to

represent the real species in the query communities. This approach outperforms the pre-clustered OTU

references based on large databases such as Greengenes (DeSantis et al., 2006) or SILVA (Quast et al.,

2013), as some novel species may not yet have been collected by them. The subsequent remapping step
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ensures that the remaining low-abundance sequences can be maximally rescued back once they adhere

to  similarity  criteria  of  the  obtained  OTUs  rather  than  being  arbitrarily  abandoned  due  to  their

relatively low abundance.

A simple universal threshold for removing unreliable sequences,  as the ones  provided by previous

publications, is admirable in application.   In our study, the relative abundance  threshold  varied from

0.0006% to 0.005% depending on the total number of sequences, which implies that relative abundance

level is not an ideal criterion. However, for most data sets in this study, the absolute count of unreliable

sequences were no more than 6, which  suggests that an absolute count  threshold might be set as ≥7.

Meanwhile, we still recommend to use our bootstrap re-sampling script to find out the exact criterion

with statistical confidence in sequences denoising.

Our approach can reduce the risk of observing distorted microbial community structures with spurious

features  representing  non-existent  species.  It can  be  easily  integrated  with  the  current  mainstream

pipelines and may be of potential use in various microbiome-wide association studies.
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Figures

Figure 1  Abundance filtering (AF) based OTU picking and remapping (AOR) approach.  The

unique sequences were separated to reliable and unreliable ones based on their abundances in AF step.

At  AOR step,  reliable  sequences  were  used  in  OTU  delineation,  then  unreliable  sequences  were

remapped back to the obtained OTUs if they match the similarity threshold.
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Figure  2  Distribution  of  qualified  unique  sequences  in  mock  communities. (a)  Similarity  of
qualified unique sequences to the closest mock references. All qualified unique sequences with >3%
errors had lower relative abundances. (b) Distribution of qualified unique sequences according to their
relative abundance. The majority of unique sequences had a low relative abundance.
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Figure 3 Effect of low-abundance pseudo sequences on OTU delineation. Dots represent the unique
sequences belonging to the 22 species. The ellipses and lines indicate how the unique sequences were
clustered into OTUs. The dot shape indicates the accuracy of each unique sequence. The color indicates
the type of OTU that each unique sequence was assigned to. (a) UCLUST, (b) AL, (c) UPARSE, (d)
Swarm.  The existing  pseudo sequences  resulted  in  a  large  number  of  spurious  OTUs around real
species.  Diverse algorithms and parameters treated these pseudo sequences differently so that they
could (e) form spurious OTUs by themselves, (f) be clustered with perfect and good sequences to make
consequent OTUs not identical to real species or (g) attract good sequences to form spurious OTUs.
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Figure  4  Statistical  characterization  of  unique  sequences  in  the  mock  data.  (a-c)  The  99%
confidence intervals of bootstrapped abundances. The distribution of bootstrapped abundances included
zero when the abundance was low. (d-f) The coefficient of variation values decreased quickly along
with the abundance of the sequence. Dashed vertical lines show the abundance thresholds for OTU
delineation.
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Table  1.  The AOR  approach  can  overcome  the  overestimation  of  OTU  number  in  mock
communities constructed by 22 16S rRNA gene clones.

Method Species
Original result With AOR or AF

Perfect Good Spurious Perfect Good Spurious

UPARSE

22

22, 22, 22 0, 0, 0 1, 0, 1 22, 22, 22 0, 0, 0 0, 0, 0

UCLUST_denovo 22, 22, 22 31, 21, 44 154, 308, 326 22, 22, 22 0, 0, 0 0, 0, 0

mothur_AL 22, 22, 22 9, 10, 10 155, 308, 328 22, 22, 22 0, 0, 0 0, 0, 0

Swarm 22, 22, 22 487, 709, 816 204, 456, 486 22, 22, 22 4, 5, 1 0, 1, 0

Results from the three sequencing runs are separated by comma. 
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Table 2. The AF approach is also efficient on non-OTU-based methods in mock communities.

Method Species
run1 run2 run3

Perfect Good Spurious Perfect Good Spurious Perfect Good Spurious

DADA2

22

42 3 3 41 0 1 41 0 1

DADA2

(abundance >=7)
42 3 0 40 0 1 40 0 1

Deblur

(abundance >=10)
22 0 0 22 0 0 22 0 0

Deblur

(abundance >= 7)
22 0 0 22 0 0 22 0 0

Deblur

(all reads)
22 7 3 22 2 1 22 2 1

MED

(abundance >=7)
22 87 0 22 14 1 22 32 1

MED

(all reads)
22 1112 150 22 883 306 22 1061 313
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Table 3. OTU-based analysis in Simulated data.

References
Original result With AOR or AF

Perfect Good Spurious Perfect Good Spurious

UPARSE

87

76 2 3 81 2 6

UCLUST_denovo 83 6 1577 83 1 206

mothur_AL 82 240 1566 60 85 202

Swarm 81 2481 2079 80 472 218
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Table 4. Non-OTU-based analysis in Simulated data.

Method References Perfect Good Spurious

DADA2

87

107 196 155

DADA2 (abundance >=7) 103 183 137

Deblur (abundance >=10) 100 133 166

Deblur (abundance >= 7) 105 191 235

Deblur (all reads) 154 648 725

MED (abundance >=7) 83 554 185

MED (all reads) Exceeds the hard limit (7312 in total)
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