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Protein sites present different amino acids during their evolution, whose number reflects the selective

constraints operating on them. This evolutionary variability is strongly influenced by the structural

properties of the site in the native structure, and it is quantified either through sequence entropy or

through substitution rates. However, while the sequence entropy only depends on the equilibrium

frequencies of the amino acids, the substitution rate also depends on the exchangeability matrix that

describes mutations in the mathematical model of the substitution process.

[p]Here we apply a mathematical model of protein evolution with selection for protein stability, both

against unfolding and against misfolding, and find that sites with the same sequence entropy present

different substitution rates depending on whether the site is prevalently hydrophobic or hydrophylic. For

equal sequence entropy, polar sites evolve faster than hydrophobic sites. This is a consequence of the

differential exchangeability associated with hydrophobic or polar amino acids. Accordingly, the model

predicts that more polar proteins present, on the average, a faster substitution rate. However, these

results change if we compare proteins that evolve under different mutation biases, such as orthologous

proteins in different bacterial genomes. In this case, the substitution rates are faster in genomes that

evolve under mutational bias that favour hydrophobic amino acids by preferentially incorporating the

nucleotide Thymine that is more frequent in hydrophobic codons. In our model, the mutation bias

influences both the sequence entropies and the substitution rates of protein sites. The sequence entropy

is maximal for the mutational biases that reproduce the observed amino acid distributions and strongly

decreases when extreme mutational biases are approached. The hydrophobicity for which the entropy is

maximal is close to the mean hydrophobicity of the twenty amino acids and independent of the mutation

bias. In contrast, the substitution rate and the hydrophobicity for which the substitution rate is maximal

tend to increase when the mutation bias favours hydrophobic amino acids. Thus, changes of the

mutational bias lead to deep effects on the biophysical properties of the protein (hydrophobicity) and on

its evolutionary properties (sequence entropy and substitution rate) at the same time. The program

Prot_evol is freely available for download at the url

https://ub.cbm.uam.es/prot_fold_evol/prot_fold_evol_soft_main.php#Prot_Evol.[p]
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Abstract6

Protein sites present different amino acids during their evolution, whose number7

reflects the selective constraints operating on them. This evolutionary variability is8

strongly influenced by the structural properties of the site in the native structure,9

and it is quantified either through sequence entropy or through substitution rates.10

However, while the sequence entropy only depends on the equilibrium frequencies of11

the amino acids, the substitution rate also depends on the exchangeability matrix12

that describes mutations in the mathematical model of the substitution process.13

Here we apply a mathematical model of protein evolution with selection for14

protein stability, both against unfolding and against misfolding, and find that sites15

with the same sequence entropy present different substitution rates depending on16

whether the site is prevalently hydrophobic or hydrophylic. For equal sequence17

entropy, polar sites evolve faster than hydrophobic sites. This is a consequence of18

the differential exchangeability associated with hydrophobic or polar amino acids.19

Accordingly, the model predicts that more polar proteins present, on the average, a20

faster substitution rate. However, these results change if we compare proteins that21

evolve under different mutation biases, such as orthologous proteins in different22

bacterial genomes. In this case, the substitution rates are faster in genomes that23

evolve under mutational bias that favour hydrophobic amino acids by preferentially24

incorporating the nucleotide Thymine that is more frequent in hydrophobic codons.25
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In our model, the mutation bias influences both the sequence entropies and the1

substitution rates of protein sites. The sequence entropy is maximal for the mu-2

tational biases that reproduce the observed amino acid distributions and strongly3

decreases when extreme mutational biases are approached. The hydrophobicity4

for which the entropy is maximal is close to the mean hydrophobicity of the twenty5

amino acids and independent of the mutation bias. In contrast, the substitution rate6

and the hydrophobicity for which the substitution rate is maximal tend to increase7

when the mutation bias favours hydrophobic amino acids. Thus, changes of the8

mutational bias lead to deep effects on the biophysical properties of the protein (hy-9

drophobicity) and on its evolutionary properties (sequence entropy and substitution10

rate) at the same time. The program Prot evol is freely available for download at11

the url https://ub.cbm.uam.es/prot fold evol/prot fold evol soft main.php#Prot Evol.12

Introduction13

The evolutionary variability of an amino acid site in a protein family is an important14

indicator of the selective constraints that the site experiences. This variability, quantified15

either through the sequence entropy or through the substitution rate, is strongly influenced16

by the structural properties of the site in the native state of the protein (Echave, Spielman17

and Wilke, 2016). In particular, the substitution rate changes dramatically between18

exposed and buried sites, in such a way that buried sites tend to evolve more slowly than19

exposed sites, which is generally attributed to the fact that natural selection imposes20

stronger constraints on buried sites (Franzosa & Xia, 2009). It was later shown that21

the number of native inter-residue contacts formed by a protein site, which is negatively22

correlated with the solvent accessibility, is a stronger predictor of the substitution rate23

(Yeh et al. 2014).24

Two different models rationalize why sites that form many contacts are subject to25

stronger selective constraints. The first kind of model, which we call stability-constrained26

fitness model, models the fitness as the fraction of protein found in the native state, which27

is a sigmoidal function of the folding free energy ∆G, i.e. f = 1/(1+exp(2∆G/kT )) (see28

Goldstein 2011; Serohijos & Shakhnovich 2014; Bastolla Dehouck & Echave 2017). The29

second kind of model is the structurally-constrained model of protein evolution, which30

estimates how mutations affect the structure of the native state and computes the fitness31

from this predicted structural change (Echave 2008). Note in the literature the stability-32

constrained model is sometimes called structurally-constrained, but we think that this33

wording is misleading. In fact, for technical reasons, stability-constrained models esti-34

mate the change in free energy upon mutation assuming that the native structure does35

not change, whereas structurally-constrained models model the mutation as a perturba-36

tion applied to the wild-type structure and predict the extent by which the structure is37

perturbed through the Elastic Network Model (ENM, Tirion 1996) and linear response38

theory, but assume that the stability does not change. Thus, stability-constrained models39

predict the effect of mutations through the predicted stability change but neglect the cor-40

2
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responding structure change, and structure-constrained models adopt the complementary1

perspective. Of course mutations modify both the stability and the precise structure of2

the native state, but current models of fitness cannot compute both effects.3

In a recent work, we have shown that stability-constrained models that take into ac-4

count negative design for destabilizing misfolded conformations (Berezovsky, Zeldovich5

& Shakhnovich 2007; Noivirt-Brik, Horovitz & Unger 2009; Minning, Porto & Bastolla6

2013) predict that both the substitution rate and the entropy are maximal not at exposed7

sites with few contacts, as observed, but at sites where the number of contacts is interme-8

diate, which can accomodate both hydrophobic and polar amino acids and are predicted9

to be extremaly tolerant to mutations (Jimenez, Arenas & Bastolla, 2018). On the other10

hand, when stability with respect to misfolding is neglected, stability-constrained models11

predict that the variability is maximal at exposed sites with few contacts (Scherrer, Meyer12

& Wilke 2012; Echave, Jackson & Wilke, 2015), but these kinds of models overestimate13

both the tolerance to mutations and the average hydrophobicity at almost all positions14

(Jimenez, Arenas & Bastolla 2018) and they much score worse than models that consider15

misfolding in likelihood calculations (Arenas & Bastolla 2015), so that models that con-16

sider misfolding have to be preferred. In contrast, structure-constrained models correctly17

predict that the variability is inversely related with the number of native contacts (Huang18

et al. 2014). These results support the view that the structural effect of mutations can-19

not be neglected, in particular at sites with intermediate numbers of contacts that are20

extremely tolerant to mutations under the point of view of the stability.21

Here we adopt the stability-constrained mean-field (MF, Arenas & Bastolla 2015; Bas-22

tolla et al. 2006) and wild-type (WT, Jimenez, Arenas & Bastolla 2018) models of protein23

evolution that we used in the above-mentioned study. These models assume that sites24

in the protein evolve independently in a site-specific manner, and determine their site-25

specific properties by imposing a global constraint on the thermodynamic stability of the26

known native state against both unfolding and misfolding. The MF model significantly27

improves the likelihood of inferred evolutionary events with respect to empirical models28

that do not take into account the structural properties of each site (Arenas & Bastolla29

2015), and it improves the reconstruction of the stability properties of ancestral sequences30

(Arenas et al. 2017). The WT models shows even better performances on several data31

sets (Arenas & Bastolla, in preparation). Both models exploit the formal analogy be-32

tween the Boltzmann distribution in statistical physics, in which the probability of each33

conformation depends on the energy changed of sign and on the inverse of the tempera-34

ture, and the stationary distribution of a protein family in which the probability of each35

sequence depends on its fitness and on the effective population size (Sella & Hirsh 2005,36

Mustonen & Lassig 2005). After the stationary distribution has been determined, the full37

substitution process is constructed applying the Halpern and Bruno formulas (Halpern &38

Bruno 1998), which impose that the fixation probabilities agree with Kimura’s formulas39

(Kimura 1962. Both formulas are reproduced below). In the MF model, the effect on40

stability of amino-acid a at site i is predicted self-consistently against the MF distribu-41

tion at all other sites, in the spirit of mean-field models in statistical mechanics. In turn,42
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the WT model predicts the effect on stability and fitness of mutations of the wild-type1

sequence towards amino acid a at site i. Thus, in theory the WT model is more suited2

for short evolutionary divergences and the MF model is more suited for long evolutionary3

divergences (Arenas & Bastolla, in preparation).4

Here we address the question whether the sequence entropy and the substitution rate5

are equivalent measures of the evolutionary variability of a position. We find that these6

two measures are not equivalent, since the sequence entropy is only influenced by the7

equilibrium distribution of amino acids while the substitution rate is also influenced by8

the mutation process that acts in evolution. As we shall see, both measures are deeply9

but differently influenced by hydrophobicity, both at the level of the individual protein10

sites and at the level of the average hydrophobicity induced by the mutational process.11

Materials and methods12

Stability constrained fitness model13

Stability constrained models of protein evolution assume that the fitness of a protein with14

sequence A is proportional to the fraction of protein that is in the native state, which can15

be computed from the folding free energy as (Goldstein 2011; Serohijos & Shakhnovich16

2014)17

f(A) = e2∆G(A)/kT/
(

1 + e2∆G(A)/kT
)

. (1)

The computation is performed assuming that the native contact matrix Cnat does not18

change in evolution. Upon single mutation, the free energy change ∆Gmut = ∆Gwt+∆∆G19

is predicted adopting some models of protein stability (see below).20

Equilibrium distribution21

Another approximation that is often used in these models is that the mutation rate22

is extremely slow (Nµ j 1) so that at every time there is only one mutant gene that23

“competes” with the wild-type gene for fixation in the population with effective population24

size of N individuals. Under this scenario, the probability that the mutation gets fixed25

in the population can be computed with Kimura’s formula (Kimura 1962) as26

Pfix

(

Awt ³ Amut
)

=
e2(ϕ(A

mut)2ϕ(Awt)) 2 1

e2N(ϕ(Amut)2ϕ(Awt)) 2 1
(2)

where ϕ(A) = log(f(A)) is the logarithmic fitness associated with the amino acid sequence27

A, Eq.(1). As it is well known, the fixation probability tends to the neutral limit Pfix =28

1/N when ∆ϕ tends to zero, it tends exponentially to zero when ∆ϕ is negative and large,29

and it tends to 1 2 e2∆ϕ when ∆ϕ is positive. Nearly neutral mutations with selective30

effect |∆ϕ| j 1/N are likely to be fixed even when their effect is deleterious (Ohta 1976).31

Importantly, the above fixation probability defines a Monte Carlo process in sequence32

4
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space that fulfils detailed balance, so that its stationary distribution can be computed1

exactly (Sella & Hirsh 2005; Mustonen & Lassig 2005), except for the normalization2

constant, which would require a sum over 20L possible sequences A = A1 · · ·AL:3

P (A1 · · ·AL) ? exp ((N 2 1)ϕ(A1 · · ·AL)) (3)

Note the analogy between this formula and the Boltzmann distribution with energy equal4

to 2ϕ and temperature equal to 1/(N21). This explicit formula holds when the mutation5

process is unbiased, so that all sequences are equally probable under the mutation model.6

In the presence of mutation bias, the stationary distribution can be determined as the7

distribution with minimal Kullback-Leibler divergence from the mutational distribution,8

dKL =
∑

A Pmut(A) [log(Pmut(A))2 log(P (A))], with a constraint on the average fitness9

∑

A P (A)ϕ(A). This condition generalizes the Boltzmann principle, and it was adopted10

for developing the mean-field model of protein evolution (Arenas & Bastolla, 2015).11

Mean-field model of protein evolution12

The mean-field (MF) model assumes that the equilibrium amino acid distribution is the13

product of independent distributions at each protein site,14

P (A1, · · ·AL) =
L
∏

i=1

P i(Ai) . (4)

Of course this assumption is not realistic, since different sites determine protein stability15

through their interactions, but it is needed for performing likelihood computations in an16

efficient way. Our strategy consists in determining the effect of a mutation at site i self-17

consistently, with respect to the MF distribution at all other sites. For simplicity, we shall18

sometimes use the vectorial notation P i
a for indicating P i(a), where a denotes one of the19

twenty amino acid types.20

The mean-field distribution is determined by minimizing the Kullback-Leibler diver-21

gence (distance between distribution) with respect to a global mutational distribution22

Pmut
a , i.e.

∑

ia P
i
a log (P

i
a/P

mut
a ). We impose a constraint on the average fitness, which is23

transformed into a constraint on the folding free energy ∆G. This condition on stability is24

imposed through the Lagrange multiplier Λ that represents the strength of selection and25

is related with the effective population size. Furthermore, we impose the normalization26

constraints
∑

a P
i
a = 1 at all sites.27

Since the parameters that determine the folding free energy are fixed for all proteins28

(see below), the only free parameters of the model are Λ and Pmut
a . The frequencies29

are generally determined from the observed sequences in the protein of known structures30

and the other sequences of the protein family, while Λ is determined by maximizing the31

log-likelihood of the PDB sequence,
∑

i log
(

P i(APDB
i )

)

, which yields a well-defined single32

maximum. The pre-computation of the moments of the contacts makes the computation33

very fast, it runs in a few minutes even for proteins of several hundreds of amino acids.34

For further computational details see (Arenas & Bastolla 2015).35

5
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Wild-type model of protein evolution1

In the wild-type model (Jimenez, Arenas & Bastolla 2018), we also assume that sites2

evolve independently. We further assume that the site-specific distribution P i
a of amino3

acid a at position i is proportional to the background distribution Pmut
a multiplied by4

the exponential of the logarithmic fitness of the corresponding mutation in which the5

wild-type amino acid in the PDB AWT
i is substituted by the new amino acid a:6

PWT,i
a ? Pmut

a exp
(

Λϕ
(

mut(AWT
i ³ a

))

, (5)

The fitness of a sequence is computed as in Eq.(1). The parameter Λ is again determined7

by maximizing the likelihood of the wild-type sequence,
∑

i log
(

PWT,i(AWT
i )

)

.8

Sequence entropy9

The sequence entropy at position i measures the variability of this position as10

Si = 2
20
∑

a=1

P i
a log(P

i
a) , (6)

where P i
a is obtained either from the evolutionary model (mean-field or wild-type) or11

from a MSA or from pooled amino acids at equivalent structural positions with the same12

number of contacts.13

Halpern-Bruno exchangeability matrices14

To fully specify the site-specific substitution processes, besides the site-specific frequen-15

cies P i
a we need to compute consistent exchangeability matrices with the Halpern-Bruno16

formulas (Halpern & Bruno 1998).17

Given a site-specific amino acid distribution that reflects selective constraints, the18

Halpern-Bruno method allows computing the rate matrices of the associated site-specific19

substitution processes Qi
ab = Ei

abP
i
b that are consistent with the Kimura’s fixation proba-20

bility, Eq.(2), and with a background global (not site-specific) mutation process.21

Without loss of generality, we parametrize the rate matrix of the global mutation22

process as Qmut
ab = Emut

ab Pmut
b , where Pmut

a is the stationary matrix of the mutation process23

and Emut
ab is its exchangeability matrix. To simplify formulas, here we assume detailed24

balance, i.e. we assume that Emut
ab is a symmetric matrix (this condition can be easily25

relaxed). We write the rate matrices as Qi
ab = Qmut

ab Pfix(f
i
a, f

i
b), where f

i
a is the “fitness” of26

amino acid a at site i. We impose that Pfix is the fixation probability Eq.(2). Halpern and27

Bruno showed that the site-specific fitness can be inferred from the stationary distribution28

6
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from P i
a = Pmut

a (f i
a)

N
, yielding the following site-specific substitution process1

Qi
ab = Ei

abP
i
b (7)

Ei
ab = Emut

ab

(

ln(F sel,i
b )2 ln(F sel,i

a )

F sel,i
b 2 F sel,i

a

)

(8)

with F sel,i
a =

P i
a

Pmut
a

(9)

The selective factors F sel,i
a quantify how much the site-specific distribution P i

a deviates2

from the background distribution Pmut
a induced by mutation alone.3

It can be immediately seen that the exchangeability matrices Ei
ab are symmetric, which4

implies that detailed balance holds and P i
a is the stationary distribution.5

Evolutionary rates6

For neutral substitutions with F sel,i
a = F sel,i

b , in particular synonymous substitutions a = b,7

applying l’Hopital’s rule we find Ei
ab = Emut

ab /F sel,i
b and Qi

ab = Qmut
ab , i.e. the rate of8

synonymous substitutions equals the mutation rate, in agreement with Kimura’s theory.9

If the amino acid b is favoured by selection with respect to amino acid a, F sel,i
b > F sel,i

a ,10

then the substitution rate is enhanced with respect to the neutral rate, and it is decreased11

in the opposite case. Because of detailed balance, the flux in one direction and the other12

are equal, Ri
ab = P i

aP
i
bE

i
ab = Ri

ba, with13

Ri
ab =

(

Pmut
a Pmut

b Emut
ab

)

F sel,i
a F sel,i

b

ln(F sel,i
b )2 ln(F sel,i

a )

F sel,i
b 2 F sel,i

a

(10)

In the above equation, the flux is partitioned into a global component that is attributed14

to the mutation process (superscript mut) and a site-specific component that is attributed15

to selection (superscript sel), which allows analysing the contributions of mutation and16

selection separately. The flux is maximal for substitutions ab that have large and almost17

equal selective factors F sel,i
a j F sel,i

b and have large mutational flux Pmut
a Pmut

b Emut
ab . The18

site-specific substitution rates are computed as the weighted average of the substitution19

rate matrix Qab = Ei
abP

i
b ,20

Ri =
∑

a �=b

P i
aE

i
abP

i
b =

∑

a �=b

Ri
ab (11)

Since the flux between any pair of amino acids a and b decreases when their difference21

of fitness increases, Halpern and Bruno argued that the substitution rate Ri is higher at22

position with higher sequence entropy (Halpern & Bruno 1998). However, this expectation23

is not strictly fulfilled, and in fact we observe that the substitution rate is not a strictly24

increasing function of sequence entropy (see Fig.1).25

7
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Mutation process1

Finally, we have to define the global exchangeability matrix Emut
ab that characterizes the2

mutation process. For this, we consider four types of mutational models. To compare3

the resulting substitution rates, in all cases we fix the scale of the exchangeability matrix4

equating the substitution rate under mutation alone,
∑

a �=b P
mut
a Pmut

b Emut
ab = 1.5

1. In the first model, the global exchangeability matrix is equal to the empirical ex-6

changeability matrix (WAG, Whelan & Goldman 2001; or JTT, Jones Taylor and7

Thornton 1992), i.e. Emut
ab c Eemp

ab . We call this model the empirical (emp) ex-8

changeability matrix. Since empirical substitution processes include information9

both on mutation and selection, we expect that they strongly correlate with the10

selection process.11

2. In the second model, we remove the effect of selection from the empirical substitution12

model by imposing that for each pair of amino acids, the flux predicted by the global13

model and averaged over all positions is equal to the empirical flux P emp
a P emp

b Eemp
ab ,14

which is the observational data from which empirical models are deduced:15

(

Pmut
a Pmut

b Eflux
ab

) 1

L

∑

i

F sel,i
a F sel,i

b

ln(F sel,i
b )2 ln(F sel,i

a )

F sel,i
b 2 F sel,i

a

= P emp
a P emp

b Eemp
ab (12)

where we use more compact matricial notation. We call the corresponding exchange-16

bility matrix Eflux
ab the flux matrix (flux).This mutation model yields optimal results17

in phylogenetic inference (Arenas & Bastolla, 2015).18

3. Thirdly, we model the mutational process at the nucleotide level, using the genetic19

code and parameterizing the process through the nucleotide frequencies and the20

transition-transversion ratio κ. The four free parameters are fixed by imposing that21

the resulting background distribution Pmut
a yields amino acid frequencies as close as22

possible to those observed in the data, P obs
a (Arenas & Bastolla, 2015), as detailed23

below. We call the corresponding exchangeability matrix the optimized nucleotide24

(nuc opt) matrix.25

4. The last model is identical to the nuc opt model, except that the nucleotide fre-26

quencies are not optimized but they are input parameters. In this way, we can vary27

the average hydrophobicity of the complete model by varying the Thymine content,28

since hydrophobic amino acids are enriched in the T base at second codon position.29

We call this model the nuc var model.30

In the nuc models, for any set of nucleotide frequencies and transition-tranversion rate31

we combine the substitution process at the nucleotide level with a selection process that32

assigns fitness one to sense codons and fitness zero to stop codons. Detailed balance is33

fulfilled at the nucleotide level, but it is only approximated at the codon level because34

8
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of this selection against stop codons, therefore the transition to transversion rate can1

influence the stationary frequencies and we have to compute the stationary distribution2

of the 61 sense codons numerically.3

More precisely, we model the mutation rate between two codons differing at one po-4

sition, say the third one (n1n2n3 and n1n2n
2
3) as µκ(n3, n

2
3)f

nuc(n2
3)S(n1n2n

2
3), where µ is5

a global rate parameter, κ(n3, n
2
3) is one if n3, n

2
3 are related through a transversion and6

is the transition-tranversion rate otherwise, fnuc(n2
3) is the stationary frequency of the7

new nucleotide and S(n1n2n
2
3) is zero if n1n2n

2
3 is a stop codon, one otherwise. After the8

frequencies of the 61 sense codons evolve to their equilibrium state, the stationary fre-9

quencies of amino acids Pmut
a are computed summing over codons and the exchangeability10

matrix is computed from the equilibrium fluxes between pairs of codons that code for any11

pair of amino acids. In the nuc opt model, the score of each set of mutation parameters is12

computed as the likelihood of the observed number of amino acids,
∑

a n
obs(a) log (Pmut

a ),13

and the parameters that maximize the likelihood are chosen.14

Data and observed substitution rates15

We performed our computations on 213 proteins that were examined in a previous study16

(Echave, Jackson & Wilke 2015). The results were qualitatively identical from one protein17

to the other.18

The observed substitution rates of 213 proteins that we show for comparison were esti-19

mated in (Echave, Jackson &Wilke 2015) from the MSA of homologous sequences through20

the program Rate4Site (Pupko et al. 2002), which builds the phylogenetic tree using a21

neighbour-joining algorithm (Saitou & Nei 1987) and estimates rates with an empirical22

Bayesian approach adopting the JTT model of sequence evolution (Jones, Taylor & Thorn-23

ton 1992). The multiple sequence alignments were generously provided by Julián Echave24

and are publicly available at the url https://github.com/wilkelab/therm constraints rate variation/.25

Modelling stability against unfolded and misfolded states26

Finally, for completeness we descibe here how we estimate the folding free energy ∆G of27

the experimentally known native state of a protein.28

For this purpose, we adopt the contact matrix representation of the protein structure,29

consisting in the following: For each pair of residues at positions i and j along the polypep-30

tidic chain, Cij equals one if the residues are in contact and zero otherwise. We define31

two residues to be in contact if any pair of their heavy atoms are closer than 4.5Å. Since32

contacts with |i2 j| f 2 are formed in almost all structures, they do not contribute to the33

free energy difference between the native and the misfolded ensemble, and we set Cij = 034

if |i2 j| f 2. The free energy of a protein in the mesoscopic structure described by Cij is35

modelled as a sum of contact interactions, E(C,A) =
∑

i<j CijU(Ai, Aj), which depends36

on the type of amino acids in contact Ai and Aj and on 210 contact interaction parame-37

ters U(a, b), for which we adopt the parameters determined in (Bastolla, Vendruscolo &38

9
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Knapp, 2000).1

For simplicity, we neglect the conformational entropy of the folded native state and2

estimate its free energy as Gnat(C
nat, A) j

∑

i<j C
nat
ij U(Ai, Aj). Regarding the unfolded3

state, we neglect their contact interactions and estimate its free energy as GU j 2TLSU ,4

where T is the temperature in units in which kB = 1, L is chain length and SU is the5

conformational entropy per residue of an unfolded chain. We compute the free energy of6

the misfolded state from the partition function of the contact energy E(C,A) over a set of7

compact contact matrices C of L residues that are obtained from the PDB. In agreement8

with previous studies (Garel & Orland 1988; Shakhnovich & Gutin 1989; Bryngelson et9

al. 1995), the resulting free energy is approximately described by the Random Energy10

Model (REM) (Derrida 1981), with the addition of the third moment of the contact energy11

(Minning, Porto & Bastolla 2013):12

Gmisf c 2T log

(

∑

C

e2
∑

i<j CijU(Ai,Aj)/T+S(C)

)

(13)

j �E� 2

〈

(E 2 �E�)2
〉

2T
+

〈

(E 2 �E�)3
〉

6T 2
2 LSCT

where LSC is the logarithm of the number of compact contact matrices, �.� represents the13

average over the set of alternative compact contact matrices of L residues. This estimate14

only holds above the freezing temperature, while the free energy is kept constant below the15

freezing temperature (Derrida 1981). We assume for simplicity that the conformational16

entropy, S(Cij), is approximately the same for all compact structures including the native17

one, and it can be neglected for computing free energy differences. The mean values of18

the energy can be computed from the mean values of the contacts, which are computed19

at the beginning and tabulated to accelerate the computation: �E� =
∑

i<j �Cij�Uij,20

�(E 2 �E�)� =
∑

i<j,k<l (�CijCkl� 2 �Cij� �Ckl�)UijUkl with Uij = U(Ai, Aj). We also21

adopt the approximation that �Cij� only depends on |i 2 j| (Minning, Porto & Bastolla22

2013).23

Putting together these free energy estimates, we obtain the free energy difference24

between the native and the non-native states as25

∆G(Cnat, A) = Gnat 2 kT log
(

e2Gmisf/kT + e2GU/kT
)

, (14)

where the free energy of the non-native state is computed as a Boltzmann average, which26

is essentially equal to Gmisf when the sequence is hydrophobic (Gmisf 2 GU/kT j 2kT )27

and is essentially equal to GU when the sequence is hydrophylic (Gmisf 2GU/kT k kT ).28

For neglecting stability against misfolding, we compute ∆G = Gnat(C
nat, A) + LSU .29

10
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Figure 1: Effect of the exchangeability model on substitution rates. The plots represent
substitution rate versus sequence entropy (top) and versus number of native contacts
(bottom) for MSA (left), WT model (center) and MF model (right). The models are
simulated with the emp, flux and nuc opt models of the global exchangeability matrix.
In all cases the emp model produces the highest substitution rates, consistent with the
fact that this model also represents selection.

Results1

Dependence of the substitution rate on the global exchangeability2

model3

In this work, we found that the substitution rates depend not only on the selective forces4

that act specifically at each protein site, but also on the global exchangeability matrix5

that represents the mutation process.6

We considered three models of global exchangeability matrices (see Materials and7

Methods): (1) Empirical (emp) exchangeability matrices, such as the familiar WAG (Whe-8

lan & Goldman 2001) or JTT (Jones, Taylor & Thornton 1992) matrices; (2) Flux ex-9

changeability matrices (flux), which are obtained from empirical exchangeability matrices10

11
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removing the selective factors represented in the stability-constrained mean-field model,1

so that the average flux predicted by the model between any pair of amino acids coincides2

with the observed empirical flux, see Eq.(12); (3) Exchangeability matrices between amino3

acids obtained from a mutational process at the nucleotide level with parameters opti-4

mized by maximizing the likelihood of the observed amino acid composition (nuc opt); (4)5

Exchangeability matrices obtained from a mutational process at the nucleotide level with6

varying parameters, that allows studying the effect of varying hydrophobicity (nuc var).7

We found that empirical exchangeability matrices (emp) produce the larger substitu-8

tion rates (Fig.1). These matrices take into account both the mutation process and the9

selection process, since they have been obtained from substitutions that have been fixed10

through natural selection. From Eq.(10) we can see that the substitution rate is enhanced11

if the global exchangeability matrix is correlated with the fixation probability. This may12

explain why empirical exchangeability matrices yield high substitution rates.13

The flux exchangeability matrices remove from the empirical exchangeability matrix14

the effect of natural selection that is represented in the mean-field model. Consistently, we15

find that the substitution rates determined through the flux model are smaller than those16

determined with the emp model. We also found in previous work that the flux model17

yields larger likelihood in phylogenetic inference (Arenas & Bastolla, 2015). Because of18

this, the flux model is our default exchangeability model.19

Fig. 1 shows that the nuc opt model with mutations at the nucleotide level and opti-20

mized parameters produces lower substitution rates than the flux model when associated21

with the MF model of selective constraints, which suggests that the flux model may22

still represent some selection. However, when the WT model of selection is applied, the23

nuc opt model again produces lower substitution rates than the flux model for exposed24

sites with few contacts and high entropy, but the flux model produces lower substitution25

rates for buried sites with many contacts and low entropy. Note that the WT model26

represents stronger selective constraints than the MF model, since it generally predicts27

lower sequence entropies and substitution rates. Thus, these results suggest that the flux28

model associated with the WT model is effective in removing selective constraints for sites29

with many contacts, but less effective for sites with few contacts.30

Substitution rates are different for hydrophobic and hydrophylic31

sites with the same entropy32

Next, we investigated more in detail the relationship between site-specific sequence en-33

tropies and substitution rates. These quantities are in general well correlated as predicted34

by Halpern and Bruno, as one can see in Fig.1 top plots that show that sites with larger35

entropy tend to have on the average larger substitution rates. Nevertheless, in Fig.2 one36

can see that the detailed plot of the substitution rate versus the sequence entropy of all37

sites presents two branches that correspond to different numbers of native contacts. For38

equal sequence entropy, polar sites with few contacts evolve faster than hydrophobic sites39

with many contacts. This happens for both models of the mutation process that do not40
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Figure 2: Each point represents sequence entropy and substitution rate for a site of the
ribonuclease with PDB code 1pyl, which is representative of all of our data set. We show
data for this protein since its small size makes the figure easier to interpret. One can spot
two branches, corresponding to sites that evolve faster and slower for the same sequence
entropy. The two branches correspond to polar sites with few contacts (white circles) and
hydrophobic sites with many contact (black circles), respectively.

take into account natural selection, both flux and nuc opt, and both for the MF and WT1

model of natural selection.2

Since sequence entropy is a measure of the selective constraints, this difference between3

sites with equal sequence entropy should be attributed to the mutation process embodied4

in the exchangeability matrix, not to natural selection. Since sites with few contacts5

evolve faster and they have lower hydrophobicity, this relationship points at an inverse6

relationship between mutational fluxes and hydrophobicity.7

More hydrophobic proteins substitute more slowly, but mutation8

bias towards hydrophobicity increases the substitution rates9

After investigating the relationship between hydrophobicity and substitution rates for10

individual sites, we perform the same analysis between different proteins. For this pur-11

pose, we group the 213 proteins in our data set according to their predicted average12

hydrophobicity under the same mutational process and compare the substitution rates of13

groups characterized by different hydophobicity. In Fig.3, each point represents a group14

13
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Figure 3: In this plot each point represent a group of proteins with similar mean hydropho-
bicity in the evolutionary model, and each curve is obtained by varying the background
distribution and the exchangeability matrix, which represent the mutation process. One
can see that, for the same mutation process, more hydrophobic proteins tend to evolve
more slowly, except when the mutation process induces very high hydrophobicity, in which
case the substitution rate becomes an increasing function of hydrophobicity. On the other
hand, mutation processes with extreme properties (very high or very low hydrophobicity)
tend to increase the substitution rate.

of proteins with similar mean hydrophobicity. Each curve is obtained for a mutation1

bias with different G+C content (nuc var model), which produces a different background2

distribution Pmut and exchangeability matrix Emut. Since Thymine at second codon po-3

sition almost always codes for hydrophobic amino acids, there is a negative correlation4

between G+C content of the mutation model and the average hydrophobicity of the pro-5

tein sequence. Varying the mutation bias we construct different sets of model proteins6

that present varying hydrophobicity and are characterized by different background amino7

acid frequencies and exchangeability matrices. In this way, we can investigate how the8

mutation bias influcence the biophysical properties (hydrophobicity) and the evolutionary9

properties (substitution rate, sequence entropy) of an evolving protein.10

One can see that, for the same mutation process (connected points in the plot), more11

hydrophobic proteins tend to evolve more slowly, consistent with what we observed in12

Fig.1. Nevertheless, when the mutation process induces very high hydrophobicity, the13

substitution rate becomes an increasing function of hydrophobicity. This is easily ra-14

tionalized by the fact that, when the background distribution Pmut
a is biased towards15

hydrophobic amino acids, the mutational flux Pmut
a Pmut

b Emut
ab is higher between pairs of16

hydrophobic residues.17

On the other hand, mutational processes with extreme bias (very high or very low18

G+C content and hydrophobicity) tend to increase the substitution rate.19

14
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Figure 4: Each point represents a set of protein sites with similar hydrophobicity in
the evolutionary model. The sequence entropy has a universal shape as a function of
hydrophobicity, with a maximum when the hydrophobicity is approximately 0.14, which
is the mean hydrophobicity of the equiprobable distribution of amino acids. Changes in
the background distribution mostly shift the sequence entropy curves without changing
the position of the maximum, but they affect the values of entropy. The largest entropies
are obtained for the mutation model optimized for each protein sequence (thick black
line) and for the mutation bias with GC content equal to 0.40, which yield only slightly
hydrophobic sequences.

Influence of the mutation bias on sequence entropies1

We next study how the shape of the entropy-hydrophobicity curve depends on the muta-2

tion bias. In Fig.4 each point represents a set of protein sites with similar hydrophobicity3

in the stability-constrained evolutionary model. The sequence entropy has an almost uni-4

versal shape as a function of hydrophobicity, with a maximum when the hydrophobicity is5

approximately 0.14. This is the mean hydrophobicity of the equiprobable distribution of6

amino acids. Changes in the background distribution mostly shift the sequence entropy7

curves in the vertical direction, but they do not change the position of the maximum.8

In contrast, the values of sequence entropy change systematically with the mutation9

bias. The largest entropies are obtained for the mutation model nuc opt optimized sep-10

arately from each PDB sequence (thick black line) and for the mutation bias with G+C11

content equal to 0.40, which has a small bias towards slightly hydrophobic sequences.12

Extreme mutation bias yield very reduced sequence entropies, which means that the se-13

lective contraints impose stronger constraints in order to preserve the average hydropho-14

bicity needed for stable proteins. This result is consistent with the finding that, for equal15

population size, the average fitness achieved in evolution has a maximum as a function of16

the mutation bias, and it is low for extreme mutation bias either toward hydrophobic or17

towards hydrophylic sequences (Mendez et al 2010; Bastolla, Dehouck & Echave, 2017).18

15
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Figure 5: Each point represents a set of protein sites with similar hydrophobicity in the
evolutionary model. The substitution rate shows a maximum whose position depends
on the mutation process. The hydropobicity at which the maximum rate is achieved
increases with the mean hydrophobicity of the mutation process (lower GC content). The
substitution rates tend to increase for mutation processes that yield higher hydrophobicity
(lower GC content), but for the MF model they also increase for extremely polar mutation
bias (GC content 0.8).

Influence of the mutation bias on substitution rates1

We now study the relationship between site-specific hydrophobicity and site-specific sub-2

stitution rate. As in the previous figure, also in Fig.5 each point represents a set of3

protein sites with similar hydrophobicity in the stability-constrained evolutionary model,4

and we plot the substitution rate versus the hydrophobicity. Different from the shape5

of the sequence entropy, the shape of the substitution rate curve clearly depends on the6

mutation bias. The hydropobicity at which the maximum substitution rate is achieved7

decreases with the G+C content or, equivalently, it increases with the mean hydropho-8

bicity of the mutation process, as expected. In other words, when the mutation process9

favours more hydrophobic amino acids, the maximum of the substitution rate is achieved10

at sites that are more hydrophobic. This result confirms that the mutation process has a11

strong influence on the substitution rates.12

Consistent with Fig.3, the substitution rate at the maximum tends to increase for13

mutation processes that favour higher hydrophobicity (lower G+C bias), but for the MF14

model they also increase for extremely polar mutation bias (G+C content 0.8). As seen15

in Fig.1, the flux model of the exchangeability matrix (thick black line) predicts higher16

substitution rates than the nuc opt model (red) when applied together with the MF model,17

but when it is applied together with the WT model it predicts lower substitution rates at18

hydrophobic sites with many contacts.19

16
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Discussion and conclusions1

Here we studied how the predicted evolutionary variabilities of different protein sites of2

a protein are influenced by the underlying mutation process, according to a model of3

stability-constrained protein evolution with selection on the stability of the native state4

against both unfolding and misfolding.5

We found that the sequence entropy and the substitution rate are not equivalent6

measures of the evolutionary variability of the protein sites. These measures tend to be7

correlated as expected (Halpern & Bruno 1998), because the substitution rate tends to8

increase for sites with higher sequence entropy (Fig.1). However, sites with the same9

sequence entropy are characterized by different substitution rates, which are systemati-10

cally higher for polar sites than for hydrophobic sites (Fig.2). This difference is not due11

to different selective constraints, which are quantified by sequence entropy, but it is due12

to the different exchangeability of polar and hydrophobic amino acids, which influences13

the substitution rates but not the sequence entropy. The result robust with respect to14

changes of the selection model (WT or MF) and the mutation model (the flux between15

amino acids observed in empirical models or a codon model with optimized nucleotide16

frequencies). As a result, more polar proteins are predicted to evolve faster than proteins17

with large mean hydrophobicity (Fig.3).18

These results hold when the exchangeability matrix, which represents the mutational19

process, is kept constant. When different mutation bias are simulated and compared,20

the substitution rates tend to be larger for mutation bias favoring hydrophobic residues21

(low G+C), and also for mutation bias favoring very polar amino acids (high G+C), but22

the latter happens only when the MF model of selection is applied (Fig.3). Thus, the23

comparison of proteins with different hydrophobicity under the optimal mutation model24

nuc opt and the comparison between different mutation models (for instance, achieved in25

different organisms) yield contrasting results as far as the substitution rate is concerned:26

substitution rates tend to be higher for more polar proteins evolving under the same27

mutation process, but they tend to be higher in organisms with mutation bias towards28

A+T that favour hydrophobic residues. While the former result is attributable to the29

higher exchangeability of polar residues, thus to the mutational process, as we argued30

above, the latter result is likely caused both both by the mutational process and by31

selection.32

In fact, changing the mutation bias severely affects the selective constraints imposed33

on the protein sites (Fig.4). The shape of the curve of the sequence entropy versus34

the hydrophobicity does not depend on the mutation bias, showing a maximum when35

the hydrophobicity is equal to the mean unweighted hydrophobicity of the 20 amino36

acids, which corresponds to an equiprobable distribution of amino acids. In contrast,37

the values of entropies strongly decrease when the mutation bias becomes extreme in38

both the hydrophobic or polar direction, and they are large when the mutation bias is39

G+C=0.40, corresponding to slightly hydrophobic residues. The sequence entropy of40

polar sites decreases more with the mutation bias than the entropy of hydrophobic sites.41

17
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Thus, polar sites are affected by stronger selective constraints when the mutation bias is1

extreme.2

The substitution rate is systematically influenced by the mutation bias (Fig.5), in3

such a way that when the mutation bias favours more hydophobic proteins (low G+C)4

the maximum of the substitution rate is achieved at sites that are more hydrophobic,5

confirming that the mutation bias has a direct influence on the substitution rates, and6

the substitution rate at the maximum tends to increase for mutation processes that favour7

higher hydrophobicity, confirming the prediction that low G+C mutation bias that favour8

hydrophobic sequences enhance the substitution rates.9

Finally, we note that, under extreme mutation bias, the site-specific hydrophobicity10

at which the sequence entropy is maximal does not coincide with the hydrophobicity at11

which the substitution rate is maximum, producing larger discrepancies between the two12

measures of evolutionary variability.13
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