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Rising atmospheric carbon dioxide (CO2), primarily from human fossil fuel combustion and

cement production, are resulting in increasing absorption of CO2 by the oceans, which has

led to a decline in ocean pH in a process known as ocean acidification (OA). There is a

growing body of evidence demonstrating the potential effect of OA on life-history traits of

marine organisms. Consequently, gas chromatography time-of-flight mass spectrometry

(GC-TOF-MS) based metabolic profiling approach was applied to examine the metabolic

responses of Magallana gigas to elevated pCO2 levels, under otherwise natural field

conditions. CO2. Oysters were exposed natural environmental pCO2 (~625.40 μatm) and

elevated pCO2 (~1432.94 μatm) levels for 30 days. Results indicated that 36 differential

metabolites with variable importance in the projection (VIP) value greater than 1 and

Student's t-test lower than 0.05 were identified. Differential metabolites were mapped in

the Kyoto Encyclopedia of Genes and Genomes (KEGG) database to search for the related

metabolic pathways. Pathway enrichment analysis indicates that alanine, aspartate and

glutamate metabolism and glycine, serine and threonine metabolism were the most

statistically enriched pathways. Further analysis suggested that elevated pCO2 disturb the

TCA cycle via succinate accumulation and Magallana gigas most likely adjust their energy

metabolic via alanine and GABA accumulation accordingly to cope with elevated pCO2.

These findings provide an understanding of the molecular mechanisms involved in

modulating metabolism under elevated pCO2 levels associated with predicted OA.
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Abstract: Rising atmospheric carbon dioxide (CO2), primarily from human fossil fuel 

combustion and cement production, are resulting in increasing absorption of CO2 by the oceans, 

which has led to a decline in ocean pH in a process known as ocean acidification (OA). There is a 

growing body of evidence demonstrating the potential effect of OA on life-history traits of 

marine organisms. Consequently, gas chromatography time-of-flight mass spectrometry 

(GC-TOF-MS) based metabolic profiling approach was applied to examine the metabolic 

responses of Magallana gigas to elevated pCO2 levels, under otherwise natural field conditions. 

CO2. Oysters were exposed natural environmental pCO2 (~625.40 μatm) and elevated pCO2 

(~1432.94 μatm) levels for 30 days. Results indicated that 36 differential metabolites with 

variable importance in the projection (VIP) value greater than 1 and Student's t-test lower than 

0.05 were identified. Differential metabolites were mapped in the Kyoto Encyclopedia of Genes 

and Genomes (KEGG) database to search for the related metabolic pathways. Pathway 

enrichment analysis indicates that alanine, aspartate and glutamate metabolism and glycine, 

serine and threonine metabolism were the most statistically enriched pathways. Further analysis 

suggested that elevated pCO2 disturb the TCA cycle via succinate accumulation and Magallana 

gigas most likely adjust their energy metabolic via alanine and GABA accumulation accordingly 

to cope with elevated pCO2. These findings provide an understanding of the molecular 

mechanisms involved in modulating metabolism under elevated pCO2 levels associated with 

predicted OA. 
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Introduction 1 

Global mean atmospheric CO2 levels have increased by more than 40% since the inception of 2 

the Industrial Revolution and are predicted to rise with an average annual increase of about 3 

0.5%( Siegenthaler et al., 2005). Since the industrial revolution approximately one third of 4 

anthropogenic CO2 emissions have been absorbed by the oceans, decreasing ocean surface pH by 5 

nearly 0.1 unit. This is predicted to decrease a further 0.4 units by the end of the 21st century and 6 

possibly by 0.7 pH units by 2250, in a process termed ocean acidification (OA) (Caldeira 7 

& Wickett, 2003; Orr et al., 2005).It has been suggested that progressive OA will negatively 8 

impact marine organisms, in particular calcifying organisms, by slowing calcification rates or 9 

even causing dissolution of carbonate shells when saturation states of calcite (Ωcalc) or aragonite 10 

(Ωarag) drop below unity (Langdon et al., 2000; Hoegh-Guldberg et al., 2007; Doney et al., 2009). 11 

Additionally, increased CO2 produces hypercapnic conditions, which have been shown to 12 

negatively affect the physiology, growth and reproductive success of marine calcifying organisms 13 

(Michaelidis et al., 2005; Berge et al., 2006; Spicer, Raffo & Widdicombe, 2007; Kurihara, 2009; 14 

Arnold et al., 2009; Cummings et al., 2011; Navarro et al., 2013). 15 

Among calcifying species, shellfish are globally important both ecologically and as ecosystem 16 

engineers, constructing complex reef habitats and governing energy/nutrient flows in coastal 17 

ecosystems (Dumbauld, Ruesink & Rumrill, 2009; Cranford et al., 2012). With an average annual 18 

increase of 6.2% over the last 25 years, global shellfish aquaculture production reached 16.1 19 

million tons in 2014, corresponding to a commercial value of US$ 19 billion (FAO, 2016). 20 

Oysters are one of the most important cultivated shellfish species in the world. Pacific oyster, 21 

Magallana gigas (formally Crassostrea gigas), contributed an estimated 625.93 thousand tons to 22 

global aquaculture production in 2014 (FAO, 2016). Previous studies have reported the negative 23 

impact of CO2-driven acidification on the developmental stage and growth of M. gigas. For 24 
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example, studies on M. gigas showed a strong decrease of developmental success into viable 25 

D-shaped larvae and growth rates with increased pCO2 (Kurihara, Kato & Ishimatsu, 2007). 26 

Barros et al. (2013) recorded that low values of pH decrease survival and growth rates of M. 27 

gigas veliger larvae, whilst increasing the frequency of prodissoconch abnormalities and 28 

protruding mantle. Gazeau et al. (2007) showed that the calcification rates of the Pacific oyster 29 

(M. gigas) decline linearly with increasing pCO2 and oyster calcification may decrease by 10% 30 

by the end of the century. Recently, several studies have demonstrated that pCO2 levels 31 

corresponding to predicted OA scenarios are likely to interfere with the metabolism of oysters 32 

affecting energy turnover and partitioning to production (Lannig et al., 2010; Parker et al., 2012). 33 

Reduced production as a result of global elevation in pCO2 in this species would, not only have 34 

also major consequences for coastal biodiversity, ecosystem functioning and services, but could 35 

cause significant economic loss. Recent results show that the global economic costs of mollusk 36 

loss from OA are around 6 billion USD annually under the assumption of a constant demand and 37 

could in fact be well over 100 billion USD if the demand for mollusks increases (Narita, Rehdanz 38 

& Tol, 2012). However, the underlying mechanisms explaining oyster metabolic responses to 39 

ocean acidification remain largely unexplored.  40 

With the development of system biology, metabolomics has recently developed and proved to 41 

be a useful tool to provide a system-wide view of understanding the complexity of metabolic 42 

networks (Nicholson, Lindon & Holmes, 1999; Gavaghan, Wilson & Nicholson, 2002; Nicholson 43 

et al., 2002; Lin, Viant & Tjeerdema, 2006; Patti, Yanes & Siuzdak, 2012; Johnson, Ivanisevic & 44 

Siuzdak, 2016). In recent years, an increasing number of studies have applied this approach to 45 

reveal the metabolic responses of organisms to environmental and anthropogenic stressors (Viant, 46 

Rosenblum & Tjeerdema, 2003; Viant 2007; Bundy, Davey & Viant, 2009; Kido Soule et al., 47 

2015). In addition, there has been an increased application of environmental metabolomics in 48 
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studies concerning marine invertebrates (Jones et al., 2008; Tuffnail et al., 2009; Wu & Wang, 49 

2011; Zhang et al., 2011; Kwon et al., 2012; Wu et al., 2013; Watanabe et al., 2015). However, 50 

the application of metabolomics methods to the M. gigas is, however, still in its infancy. Up to 51 

now, only limited studies investigated the impact of OA stress on energy metabolism and osmotic 52 

regulation of M. gigas using NMR-based spectroscopy (Lannig et al., 2010; Wei et al., 2015a; 53 

Wei et al., 2015b). There are various analytical platforms including liquid (LC) or gas (GC) 54 

chromatography coupled with mass spectrometry (MS), nuclear magnetic resonance spectroscopy 55 

(NMR), fourier transform infrared (FT-IR), direct infusion MS and capillary electrophoresis-MS 56 

have been developed over the past decades. Among the various approaches, GC-MS has emerged 57 

as a preferred approach based on its high sensitivity, peak resolution, reproducibility and large 58 

commercial electron ionization spectral libraries. In the present study, a GC-TOF-MS-based 59 

metabolomics approach combined with a multivariate analysis was performed to explore the 60 

physiological response in gills of M. gigas after the medium-term exposure to OA (30 d) stress. 61 

The findings provide new and more in-depth information for better understanding the molecular 62 

mechanisms involved in modulating M. gigas metabolism under elevated pCO2. 63 

Materials & Methods 64 

Animal collection and acclimatization 65 

In May 2016, experimental oysters (75.74±9.08 mm shell length, 36.51±9.38 g wet weight) 66 

were collected from a large-scale commercial oyster aquaculture area (37° 3'55.20"N, 67 

122°32'48.08"E) in Sanggou bay, Yellow Sea, China, and transported under natural temperature 68 

conditions within 1 h of sampling to mesocosms constructed at a small semi-enclosed dock (7900 69 

m2 mean depth of 1.5 m.) where M. gigas are naturally found to a mesocosm constructed in a 70 

small semi-enclosed port (37° 2'14.71"N, 122°33'2.09"E). Two groups of 60 healthy animals 71 

were selected and individually numbered. All the animals were transferred to the mesocosm 72 
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system, where they were acclimated at ambient temperature, salinity, dissolved oxygen and pH at 73 

19.0 oC, 32.0, 7.0-8.0 mg O2∙L-1 and 8.0 for 2 days prior to the start of the experiment. 74 

Experimental setup and procedure 75 

Incubations were carried out over 30 days using in situ mesocosms. Six mesocosms were 76 

deployed 3 controls (pCO2 ~625.40 μatm) and 3 elevated pCO2 treatment (~1432.94 μatm). Each 77 

mesocosm consists of a plastic double-layer culture basket (40×30×30 cm, length×width×height) 78 

and outer net frame (1.5m×1.5m×0.3m, length×width×height) covered in net (mesh size=1 mm) 79 

which was suspended from 4 buoys with the culture basket at a depth of 50cm. Ten oysters were 80 

each placed in each culture basket. Ambient pCO2 treatment was maintained by bubbling 81 

untreated air independently through the water in each culture basket. Elevated pCO2 treatment 82 

was maintained by enriching the air (from a portable air pump) with CO2 (from a CO2 gas 83 

cylinder) in a 500ml mixing vessel (after Findlay et al., 2008; Rastrick et al., 2014). Throughout 84 

the experiment, no mortality of oysters was observed in both control and OA-stressed groups. 85 

Following the incubation, the gill tissues of three or four oysters from each culture basket were 86 

randomly sampled for metabolomics analysis. After collection, the samples were immediately 87 

frozen in liquid nitrogen immediately and stored at -80°C for later metabolite extraction. 88 

Monitoring of the physicochemical variables of seawater 89 

During the experiments, seawater temperature, salinity, dissolved oxygen concentration (DO) 90 

and pH in each mesocosm were measured twice a day. Seawater temperature, salinity and 91 

dissolved oxygen concentration (DO) were measured using YSI Professional Plus handheld 92 

multi-parameter water quality meter (Yellow Springs Instrument Company, USA). The pH level 93 

was measured using a commercial combination electrode (Ross type, Orion) calibrated on the 94 

U.S. National Bureau of Standards (NBS) scale. The precision of pH measurements was ± 0.001 95 

pH units. Total alkalinity (AT) was analysed weekly via a Metrohm 848 Titrino plus automatic 96 
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titrator (Metrohm, USA) on 100 mL GF/F filtered samples. The accuracy of measurements was ± 97 

5 mmol·L-1. Total dissolved inorganic carbon (CT), aqueous partial pressure of CO2 (pCO2), the 98 

CaCO3 saturation state for calcite (Ωcalc) and aragonite (Ωarag) were calculated with the CO2SYS 99 

Package based on the pH and total alkalinity (AT) measurements (Table 1). 100 

GC-TOF-MS analysis 101 

Preparation of samples for GC-TOF-MS analysis was preformed after Cervera et al (2012). In 102 

brief, 50 mg of each frozen samples were extracted by 0.4mL extraction reagent with 20 μL of 103 

L-2-Chlorophenylalanine as an internal standard in a 2 mL centrifuge tube. And then, samples 104 

were vortexed for 30s and homogenized in a ball mill for 4 min at 45Hz, before being sonicated 105 

in ice-water bath for 5 min. Subsequently, the tubes were centrifuged at 13000 rpm at 4 °C for 15 106 

min. The 0.35mL supernatant was then transferred to 2 mL GC/MS glass vials for vacuum-drying. 107 

The dried samples were dissolved and derivatized using a two-step procedure involving 108 

oximation and silyaltion before injection for GC-MS analysis.  109 

GC-TOF-MS analysis was carried out with an Agilent 7890 gas chromatograph system 110 

coupled with a Pegasus HT time-of-flight mass spectrometer (after Ji et al., 2016). Samples (1 μL) 111 

were injected with splitless mode. The carrier gas was helium with a constant flow rate of 1mL 112 

min-1. The initial temperature was heated at 50°C for 1min, then raised to 300°C at a rate of 10°C 113 

min-1 and maintained at 300°C for 12min. The injection, transfer line, and ion source 114 

temperatures were 280, 270, and 220°C, respectively. The mass spectrometry data were obtained 115 

at full-scan mode (m/z 50-500) at a rate of 20 spectra per second under -70eV electron impact 116 

mode. All the samples and replicates were continuously injected as one batch in random order to 117 

discriminate technical from biological variations.  118 

Data processing and statistical analysis 119 

Peaks were detected with Chroma TOF4.3X software (LECO Corporation, St. Joseph, MI, 120 
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USA). Metabolite annotation was carried out by LECO-Fiehn Rtx5 database using with a 121 

retention time index tolerance of 5000. All raw data were analyzed by principal component 122 

analysis (PCA) and orthogonal projection to latent structures-discriminant analysis (OPLS-DA) 123 

using SIMCA-P 14.1 software package (MKS Data Analytics Solutions, Umea, Sweden) after 124 

performing a unit variance procedure. A variable importance in projection (VIP) that exceeded 1 125 

with a P-value less than 0.05 indicated the significant metabolites. In addition, Kyoto 126 

Encyclopedia of Genes and Genomes (KEGG) (http://www.genome.jp/kegg/) and NIST 127 

(http://www.nist.gov/index.html) were utilized to link these metabolites to metabolic pathways. 128 

Results 129 

Metabolic profiling in response to OA stress 130 

The total ion current (TIC) chromatograms demonstrated a strong signal, large peak capacity, 131 

and reproducible retention time, indicating the reliability of metabolomic analysis. Obvious 132 

chromatographic differences were observed between different sample groups and a total of 859 133 

peaks were assigned to compounds. By setting the threshold of spectral similarity ≥600, 158 134 

metabolites were left through interquartile range denoising method. 135 

The score plot of the PCA showed that samples were all lying inside the 95% confidence 136 

region (Hotelling T2 ellipse) (Fig. 1a). The results indicated an obvious separation between 137 

OA-stressed and control groups were detected. In order to obtain a higher level of group 138 

separation and get a better understanding of variables responsible for classification, OPLS-DA 139 

was used to investigate the separation further. A clear discriminability was observed between 140 

OA-stressed and control groups (Fig. 1b). Score plots based on OPLS-DA displayed significant 141 

distinct clustering trend, suggesting extensively different metabolic profiles of each intervention 142 

group (R2Ycum= 0.99, Q2cum= 0.761). With Q2 intercepting the Y axis at -0.107 in the 200 143 

random permutations test, the supervised model was considered well-guarded against overfitting. 144 
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Identification of the OA-responsive metabolites 145 

To identify which variables were accountable for such significant separation, variable 146 

importance in the projection (VIP) values greater than 1 were considered the most relevant 147 

metabolites for explaining the responses. On the basis of the VIP>1, a total of 36 OA-responsive 148 

metabolites with significant changes (student’s T-test P<0.05) were identified (Table 2. Among 149 

them, 4 compounds were unknown. Compared to the non-treated control group, 10 metabolites 150 

were found to be higher in OA group, while 26 were lower. Of these 32 well-identified 151 

metabolites, 7 metabolites including oleic acid, 6-phosphogluconic acid, L-malic acid, 152 

xanthurenic acid, phosphate, beta-Alanine and ornithine had VIP values above 2.0, which 153 

indicated high relevance to the difference between sample groups. Alanine, showing the greatest 154 

fold change (log2 fold change=23.43), was the gill metabolite found to be most increased in OA 155 

group compared to control and 1,3-diaminopropane was the metabolite most depleted (log2 fold 156 

change = -3.03). 157 

Pathway mapping and metabolite-to-metabolite network construction 158 

The 32 well-identified altered metabolites affected by OA stress were mapped to the biological 159 

pathways involved in KEGG database which were assigned to 60 pathways. Holistic pathway 160 

enrichment analysis applied by MetaboAnalyst3.0 showed that these metabolites were primarily 161 

involved in alanine, aspartate and glutamate metabolism and glycine, serine and threonine 162 

metabolism (Fig. 2). 163 

Discussion 164 

In this study, we report a comprehensive analysis of metabolic changes in gills of Pacific 165 

Oyster M. gigas responding to elevated levels of pCO2 predicted under OA using a 166 

GC-TOF-MS-based metabolomics approach. Numerous studies have been derived for describing 167 

the physiological response of bivalves to elevated pCO2. Few of these, however, have been 168 
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verified in the field. The experimental method used herein is based on in situ mesocosm 169 

experiments rather than laboratory-based measurements. The successful mesocosm approach 170 

close to “the real world” designed in the present study provides a powerful tool to link between 171 

small-scale single species laboratory experiments and observational correlative approaches 172 

applied in field surveys. The results indicated that elevated pCO2 affects metabolite alterations. 173 

Pathway enrichment analysis revealed that two amino acid pathways (alanine, aspartate and 174 

glutamate metabolism, glycine, serine and threonine metabolism) and one carbohydrate 175 

(glyoxylate and dicarboxylate metabolism) were the most statistically enriched pathways. Among 176 

these three pathways, alanine, succinate and 4-aminobutanoate (GABA) were the significantly 177 

accumulation metabolites. Amino acids play central roles both as building blocks of proteins and 178 

as intermediates in metabolism. The 20 amino acids that are found within proteins convey a vast 179 

array of chemical versatility. However, amino acid metabolism cannot be regarded independently 180 

of carbon metabolism. Therefore, we linked the changes in amino acid levels in the present study 181 

to the carbohydrates metabolism and the TCA cycle (Fig. 3). Previous studies indicated that 182 

alanine and succinate accumulation is the indicator of anaerobic metabolism in bivalves and 183 

alanine accumulation typically precedes that of succinate (Grieshaber et al., 1994; Michaelidis et 184 

al., 2005; Kurochkin et al., 2009). 185 

Alanine is a non-essential amino acid and plays an important role in preserving balanced levels 186 

of nitrogen and glucose in the body. Previous studies showed that the alanine fermentation would 187 

be one of the most suitable pathway to prevent pyruvate accumulation, with the additional 188 

advantage that alanine can accumulate to high concentrations without the detrimental side effects 189 

and inhibitory effects on the activities of pyruvate kinase (De Sousa & Sodek, 2003; Miyashita et 190 

al., 2007; Reggiani et al., 1998). There are two possible pathways acting as an explanation of 191 

alanine accumulation. One way is the alanine shunt where pyruvate generated from glycolysis is 192 
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transaminated into alanine and 2-Oxoglutarate with glutamate as amino donor. Alanine 193 

accumulation has previously been reported and tend to be explained by the induction of the gene 194 

expression of alanine aminotransferase (AlaAT) and an increase in the enzyme activity (Muench 195 

& Good, 1994). The other way is the GABA-shunt where the synthesis of GABA from glutamate 196 

followed by the production of alanine and succinic semialdehyde (Fait et al., 2008). In the present 197 

study, the observed accumulation of GABA in gill of oyster under elevated pCO2 indicates the 198 

activity of a GABA shunt. However, further studies are still needed to corroborate the direct 199 

evidence. Considering the conservation of lactate and ethanol levels, alanine accumulation in 200 

CO2-exposed oyster in the present study appears is likely related to alanine fermentation 201 

primarily functions to regulate the level of pyruvate which being considered as the core 202 

intermediate in the complex metabolic network. 203 

GABA is a four-carbon non-proteinogenic amino acid and act as the major inhibitory 204 

neurotransmitter in the central and peripheral nervous systems of vertebrates and in the peripheral 205 

nervous system of some invertebrates (Jessen et al., 1979). The GABA accumulation has 206 

previously been explained by the activation of glutamate decarboxylase (GAD) when the 207 

cytosolic pH decreases (Crawford et al., 1994). The GAD-catalyzed reaction from glutamate to 208 

GABA consumes H+ and has been proposed to buffer cellular acidification during metabolic 209 

oxygen limitation. It seems that the accumulation of GABA is a positive physiological response 210 

when exposed to the acidify condition. However, studies have indicated that the OA-induced 211 

neural signal transmission disruption through GABA-GABA receptors is directly related to the 212 

behavior of the bivalves (Nilsson et al., 2012, Clements & Hunt, 2015; Peng et al., 2017). 213 

Numerous studies with various species of bivalves have reported the sensitivity of the clearance 214 

rate to elevated CO2 (Fernández-Reiriz et al., 2011; Navarro et al., 2013). The GABA 215 

accumulation in the gills in this study might offer a potential explanation that ocean acidification 216 
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induced Cl- and HCO3- concentration changes disrupt neural signal transmissions and 217 

subsequently affect the feeding activities. To date, the potential relationship between the 218 

abnormal feeding activities and the role of GABA is not yet fully understood and requires further 219 

investigation. 220 

Succinate is an important intermediate of the TCA cycle and plays a crucial role in generating 221 

adenosine triphosphate (ATP), also modulating energy supply for metabolism (Mills & O'Neill, 222 

2014). Elevated succinate in the gill tissue of oysters as shown here has also been previously 223 

observed in tissue of bivalves exposed to elevated pCO2 (Lannig et al., 2010; Ellis et al., 2014). 224 

Lannig et al. (2010) reported that the most notable alteration was an increase in succinate 225 

concentration during prolonged exposure to elevated CO2 levels in the gills and hepatopancreas 226 

of M. gigas. Wei et al. (2015a) showed that the concentrations of succinate, ATP, and amino acids 227 

including arginine and lysine were significantly increased in elevated pCO2 treated oysters M. 228 

gigas and suggested that increase of succinate concentration might be a bioindicator OA stress in 229 

the tissue of oysters. Succinate accumulation has previously been explained by the inhibition of 230 

succinate dehydrogenase (SDH), the enzyme responsible for the oxidization of succinate to 231 

fumarate under oxygen limitation (Rocha et al., 2010; King, Selak & Gottlieb, 2006). The other 232 

possibility of succinate accumulation can be potentially explained by activation of the GABA 233 

shunt. However, the connection between GABA and TCA cycle maybe unlikely occurred under 234 

the condition of oxygen limitation which will limit the NAD+ supply for the reaction from GABA 235 

to succinate (Rocha et al., 2010). Moreover, decreased cytosolic pH will inhibit the activity of 236 

succinic semialdehyde dehydrogenase (SSADH) which catalysis GABA to succinate (Felle, 237 

2005). Therefore, the GABA shunt is probably not responsible for the accumulation of succinate. 238 

In the present study, the levels of most intermediates of the TCA cycle that we were able to 239 

determine did not change significantly under CO2-exposure, with the clear exception of succinate 240 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26866v1 | CC BY 4.0 Open Access | rec: 18 Apr 2018, publ: 18 Apr 2018



accumulation and malate decrease in combination with the alanine and GABA accumulation. 241 

This suggests that adjustments in energy metabolism previously described in M. gigas and other 242 

bivalves (Lannig et al., 2010; Wei et al., 2015a) possibly related to changes in energy demand 243 

and aerobic scope in response to simulated OA maybe related to alanine and GABA shunts, with 244 

disruption to the TCA cycle via succinate accumulation. Since TCA is the most crucial central 245 

pathway linking with almost all the individual metabolic pathway, the metabolic disorder of TCA 246 

cycle will likely not only inference energetic supply and demand but induce metabolic 247 

abnormalities which present an amazing complexity considering our current knowledge on the 248 

TCA cycle function and biogenesis. 249 

Conclusions 250 

  Overall, this study has revealed the distinct metabolic profiles in gills of Pacific Oyster M. 251 

gigas associated with elevated pCO2 based on in situ mesocosm. The results indicated that 252 

elevated pCO2 disturb the TCA cycle via succinate accumulation and M. gigas most likely adjust 253 

their energy metabolic via alanine and GABA accumulation. Further investigations are needed to 254 

determine activities of key enzymes involved in TCA cycle and GABA shunt and/or metabolite 255 

fluxes to fully unravel the mechanisms of the observed metabolite shifts and their physiological 256 

consequences and triggers. 257 
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Figure 1(on next page)

Score plots of PCA (a) and OPLS-DA (b) for OA-stressed (red) and control (black) groups
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Figure 2(on next page)

Pathway enrichment analysis of the altered metabolites upon OA stresses exposure
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Figure 3(on next page)

Response of metabolism pathways to OA stress in gills of oyster

The metabolites colored with red and blue indicate the up- and down-regulated (P < 0.05)

metabolites respectively
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Table 1(on next page)

Summary of the OA-responsive metabolites with significant changes derived from GC-

TOF-MS analysis
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Table 1. Seawater chemistry variables over the 30 days experimental period

Control pHNBS 8.0 Low pHNBS 7.7

Measured

Temperature(℃) 19.08±2.06A 19.09±1.95A

Salinity 32.07±0.48A 32.09±0.43A

pHNBS 7.97±0.15A 7.68±0.17B

AT (μmol kg-1) 2211.53±92.72 A 2206.00±77.74 A

Calculated

CT(μmol kg-1)* 2081.88±34.39 2169.69±50.28

pCO2(μatm) 625.40±21A 1432.94±27B

Ωcalc 2.61±0.32 1.43±0.30

Ωarag 1.68±0.20 0.92±0.19

HCO3
- (μmol kg-1) 1950.93±38.64 2060.67±48.29

CO3
2- (μmol kg-1) 106.79±12.90 58.77±12.30

Temperature, salinity and pHNBS scale were measured three times a day. Total alkalinity (AT) was measured weekly. All other 

parameters [pCO2; calcite and aragonite saturation state (Ωcalc and Ωarag, respectively); HCO3
-; and CO3

2-] were calculated from 

pHNBS and AT with CO2SYS (Pierrot, Lewis & Wallace, 2006) using the dissociation constants of Mehrbach et al. (1973) as 

refitted by Dickson and Millero (1987). Values are means ± SD. Different letters indicate significant variation between 

treatments (ANOVA, P < 0.05).
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Summary of the OA-responsive metabolites with significant changes derived from GC-

TOF-MS analysis
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Table 2. Summary of the OA-responsive metabolites with significant changes derived from GC-TOF-MS analysis

Peak Similarity R.T. VIP p-value q-value log2 fold change

Oleic acid 894 22.8515,0 2.66 0.00 0.01 22.20 

6-phosphogluconic acid 716 24.4599,0 2.52 0.00 0.00 -1.33 

L-Malic acid 929 15.1303,0 2.41 0.00 0.01 -2.17 

Xanthurenic acid 903 23.2262,0 2.33 0.00 0.00 -2.17 

Phosphate 866 12.3447,0 2.12 0.01 0.04 3.02 

Beta-Alanine 935 14.433,0 2.05 0.00 0.00 -1.21 

Unknown 794 10.1494,0 2.05 0.01 0.03 -1.69 

Ornithine 891 18.964,0 2.00 0.00 0.00 -1.29 

1,2,4-Benzenetriol 713 16.5623,0 1.91 0.00 0.00 -1.07 

Unknown 694 18.1099,0 1.85 0.00 0.00 -2.41 

Alpha-D-glucosamine 1-phosphate 677 19.073,0 1.82 0.00 0.02 -1.05 

Alanine 918 9.87567,0 1.75 0.03 0.06 23.43 

O-Phosphorylethanolamine 937 18.5929,0 1.72 0.00 0.00 -0.96 

Unknown 657 19.7691,0 1.69 0.00 0.00 -2.12 

L-Allothreonine 950 13.8234,0 1.69 0.00 0.02 -0.71 

Conduritol b epoxide 733 20.2858,0 1.63 0.00 0.02 -1.18 

Methyl-beta-D-galactopyranoside 824 19.2909,0 1.59 0.00 0.02 -0.87 

Alpha-Aminoadipic acid 660 17.8244,0 1.59 0.00 0.01 -2.24 

Cytidine-monophosphate 664 20.9698,0 1.56 0.02 0.05 -0.91 

Lysine 899 20.0334,0 1.53 0.02 0.04 -1.05 

Serine 926 13.4789,0 1.51 0.00 0.02 -0.78 

Galactose 878 19.7292,0 1.50 0.00 0.02 2.32 

Myristic Acid 904 19.3209,0 1.50 0.02 0.05 -0.60 

O-Phosphoserine 773 19.1044,0 1.45 0.00 0.00 -2.49 

Ribose-5-phosphate 892 21.7439,0 1.42 0.00 0.01 -1.25 

Pyrogallol 792 15.8774,0 1.40 0.01 0.03 -0.91 

Unknown 702 23.8081,0 1.40 0.04 0.07 -2.73 

4-aminobutyric acid 766 15.7454,0 1.36 0.03 0.06 1.86 

Maltose 919 26.9238,0 1.31 0.02 0.05 1.78 

Lactose 732 26.7022,0 1.29 0.03 0.07 1.99 

Ciliatine 862 18.175,0 1.24 0.01 0.04 -0.74 

1,3-diaminopropane 729 17.138,0 1.22 0.01 0.03 -3.03 

21-hydroxypregnenolone 651 29.4326,0 1.20 0.04 0.08 0.40 

Succinic acid 868 12.8776,0 1.07 0.00 0.01 1.94 

1,5-Anhydroglucitol 676 19.4587,0 1.05 0.05 0.09 3.32 

Cycloleucine 706 13.6351,0 1.05 0.02 0.05 -0.91 
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