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Abstract. Statistical inference often fails to replicate. One reason is that many results may be 
selected for drawing inference because some threshold of a statistic like the P-value was crossed, 
leading to biased reported effect sizes. Nonetheless, considerable non-replication is to be 
expected even without selective reporting, and generalizations from single studies are rarely if 
ever warranted. Honestly reported results must vary from replication to replication because of 
varying assumption violations and random variation; excessive agreement itself would suggest 
deeper problems, such as failure to publish results in conflict with group expectations or desires. 
A general perception of a "replication crisis" may thus reflect failure to recognize that statistical 
tests not only test hypotheses, but countless assumptions and the entire environment in which 
research takes place. Because of all the uncertain and unknown assumptions that underpin 
statistical inferences, we should treat inferential statistics as highly unstable local descriptions of 
relations between assumptions and data, rather than as generalizable inferences about hypotheses 
or models. And that means we should treat statistical results as being much more incomplete and 
uncertain than is currently the norm. Acknowledging this uncertainty could help reduce the allure 
of selective reporting: Since a small P-value could be large in a replication study, and a large P-
value could be small, there is simply no need to selectively report studies based on statistical 
results. Rather than focusing our study reports on uncertain conclusions, we should thus focus on 
describing accurately how the study was conducted, what problems occurred, what data were 
obtained, what analysis methods were used and why, and what output those methods produced. 
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The "crisis of unreplicable research" is not only about alleged replication failures. It is also about 

perceived non-replication of scientific results being interpreted as a sign of bad science (Baker 

2016). Yes, there is an epidemic of misinterpretation of statistics and what amounts to scientific 

misconduct, even though it is common practice (such as selectively reporting studies that 

"worked" or that were "significant"; Martinson, Anderson, and de Vries 2005; John, 

Loewenstein, and Prelec 2012). But all results are uncertain and highly variable, even those from 

the most rigorous studies. 

Because a small P-value could result from random variation alone, Fisher (1937) wrote that 

"no isolated experiment, however significant in itself, can suffice for the experimental 

demonstration of any natural phenomenon." And Boring (1919) said a century ago, "scientific 

generalization is a broader question than mathematical description." Yet today we still 

indoctrinate students with methods that claim to produce scientific generalizations from 

mathematical descriptions of isolated studies. Naturally, such generalizations will often fail to 

agree with those from other studies – and thus statistical inference will fail to replicate. Because 

our current academic reward system is built on single publications (usually reporting the results 

of one or a few similar studies), it should come as no surprise that many conflicting 

generalizations are published, and hence that a high proportion of generalizations must be wrong. 

A core problem is that both scientists and the public confound statistics with reality. 

But statistical inference is a thought experiment, describing the predictive performance of models 

about reality. Of necessity, these models are extremely simplified relative to the complexities of 

actual study conduct and of the reality being studied. Statistical results must eventually mislead 

us when they are used and communicated as if they present this complex reality, rather than a 

model for it. This is not a problem of our statistical methods. It is a problem of interpretation and 

communication of results. 

In the following, we argue that the crisis of unreplicable research is mainly a crisis of 

overconfidence in statistical results. We recommend that we should use, communicate, and teach 

inferential statistical methods as describing logical relations between assumptions and data (as 

detailed in the Appendix), rather than as providing generalized inferences about universal 

populations. 
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Inferences are not about hypotheses 

 

A statistical model is a set of assumptions, and thus a compound hypothesis, about how the data 

could have been generated. The model matches reality to the degree that assumptions are met, 

starting from the assumptions that we measured what we think we measured and that 

measurement errors were either absent or adequately accounted for. Such model assumptions are 

part of what are called "auxiliary hypotheses" (Popper 1968), "auxiliary theories" (Meehl 1990), 

or "currently subordinate factors" (McShane et al. 2018). 

Thus, statistical models imply countless assumptions about the underlying reality. A null 

hypothesis such as "the means of these two populations do not differ" is an explicit assumption. 

Further assumptions that are often explicitly addressed in research reports are that sampling was 

random or that residuals are independent and identically distributed. Other assumptions may not 

even be recognized or mentioned in research reports, such as that there was no selection of 

particular results for presentation, or that the population from which we drew our random sample 

is equivalent to the population we have targeted for inference. Whether it is assumptions that are 

reviewed by inspecting residuals, or further assumptions that link statistics to reality, the validity 

of statistical inferences depends on the entire set of assumptions. 

For example, we should think of a P-value1 as referring not only to the hypothesis it claims to 

test, such as a null hypothesis. A P-value refers to the entire model including other usually 

explicit assumptions like randomization of treatment and linearity of effects, plus usually implicit 

procedural assumptions such as that the equipment for taking measurements was in perfect 

working order (Greenland et al. 2016; Greenland 2017; Amrhein 2018). Whether recognized or 

not, these assumptions underpin the usual inferences from a test (Greenland 2018b). A small P-

value is the net result of some combination of random variation and violations of model 

assumptions, but does not indicate which (if any) assumption is violated. 

Yes, a small P-value may arise because the null hypothesis is false. But it can also mean that 

some mathematical aspect of the model was not correctly specified, that sampling was not a 

hundred percent random, that we accidentally switched the names of some factor levels, that we 

unintentionally, or intentionally, selected analyses that led to a small P-value (downward "P-

                                                
1 We focus on P-values and confidence intervals not because they are better or worse than other methods, but 
because they are probably the most often used, and most often misused, inferential statistics. Throughout the text, P 
is the random variable and p is its observed value (realization) in a given sample. 
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hacking"), that we did not measure what we think we measured, or that a cable in our measuring 

device was loose (Amrhein 2018). And a large P-value may arise from mistakes and procedural 

errors, such as selecting analyses that led to a large P-value (upward P-hacking), or using a 

measurement so noisy that the relation of the measured construct to anything else is hopelessly 

obscured. 

 

Replication studies have a false-negative problem 

 

Even the best single studies will be imperfect. In addition to random variation, their results will 

usually vary from replication to replication because of varying assumption violations, whether 

recognized or hidden, and thus the observed effect sizes can easily differ across settings. 

Consider the replication project by the Open Science Collaboration (2015): Of 97 psychological 

studies with "significant" results (p ≤ 0.05) out of 100 that were subject to replication, 35 had p ≤ 

0.05 in the replication. This is much less than would have been expected if all original null 

hypotheses were false and only random variation caused differences between the original and 

replication – under these circumstances, with an average power of 92% in the replications, 89 of 

the 97 replicates were expected to have p ≤ 0.05. One explanation by the authors is that in the 

original studies, results were selected for reporting based on having p ≤ 0.05, which led to 

inflated effect sizes (see next subsection) that could not be replicated. 

The reports of such replication projects are often misinterpreted as showing that the original 

"significant" studies were mostly or entirely false positives. To see the error in such 

interpretations, consider that the Open Science Collaboration (2015) observed 97 − 35 = 62 

replications with p > 0.05 for which the original study had p ≤ 0.05, which is 64% of the 97 

replications. This emphatically does not mean that 64% of the 97 original null hypotheses with 

"significant" P-values were correct, or that 62 of the 97 "significant" results were false positives. 

Why not? If as suggested (and indicated by the replications) the original reported effect sizes 

were largely inflated due to selective reporting based on p ≤ 0.05, then the actual effect sizes 

(both in the original and replication studies) could easily be too small to provide high power for 

replication (Camerer et al. 2018). 

Suppose for example that among the 97 "significant" original studies, 70% of the null 

hypotheses were false, for a total of 0.70(97) = 68 false nulls, and the average power for the 

effects in these non-null cases was 50% in the replication studies (and not 92% as calculated 
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based on the probably inflated original effect sizes). Then the expected number of "true positive" 

replications (those with p ≤ 0.05 for a false null) would be 0.50(68) = 34, while the number of 

"false positive" replications (those with p ≤ 0.05 for a true null) would be 0.05(97 − 68) = 1.45, 

resulting in a total of about 35 out of 97 replications having p ≤ 0.05, as observed. That means 

that, given selective reporting in the original studies, the observed 64% of the 97 replication 

attempts with p > 0.05 could have been expected even if only 97 − 68 = 29 or 30% of the null 

hypotheses were correct! 

Thus, with selective reporting in the original studies, it may be not surprising to get "non-

significant" results in about two-thirds of replications. And even with no selective reporting and 

only random variation present, replication studies remain subject to what may be severe false-

negative errors. Consequently, "non-significant" replications (those with p > 0.05) do not reliably 

flag original studies as being false positives. For example, with a statistical power of 80%, two 

studies will be traditionally judged as "conflicting," meaning that one is "significant" and the 

other is not, in one third of the cases (Greenland et al. 2016; Amrhein, Korner-Nievergelt, and 

Roth 2017). This means that, unless statistical power of the replication is nearly 100%, 

interpretations of replication attempts must allow for false-negative errors as well as false-

positive errors, and that "significance" and "non-significance" cannot be used to reliably judge 

success or failure of replication (Goodman 1992; Senn 2001, 2002). As importantly, valid 

interpretation must take into account any background research (prior information) on the 

hypothesis under study, especially if there are conflicts between the original and replication 

studies. 

Another often overlooked point about hacking and replication failures is that both random and 

selection artefacts will arise even if we ban all tests and focus instead on estimates. Some degree 

of variation, and hence non-replication, is the norm across honestly reported studies, even when 

all assumptions are met, and estimates can be selected for reporting based directly on their size 

rather than their P-value. Add to these problems other assumption violations and we will find that 

error rates are usually far from the nominal rates given in the report – e.g., 95% confidence 

intervals cannot realistically be claimed to have as much as 95% coverage of the true effect when 

study imperfections exist. Consequently, having confidence in generalizations from single studies 

means having overconfidence in most cases. Inference that could be called trustworthy would 

require merging information from multiple studies and lines of evidence. 
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Overconfidence triggers selection bias 

 

Unfortunately, even a combination of studies does not guarantee that inferences will be valid. As 

noted above, published results tend to be biased, for example because they may be selected from 

unpublished results based on some statistical criterion. Such bad yet common scientific practice 

introduces bias by accumulating statistical inferences that go into a certain direction, typically 

emphasizing results that cross some P-value threshold (Amrhein, Korner-Nievergelt, and Roth 

2017; Locascio 2017). 

We suspect that a major driver of result-selection bias is overconfidence in statistical 

inference. For decades, scientists were taught to judge which results are trustworthy and which 

are not, and which results are thus worth being published or not, based on statistics obtained from 

single studies. Statistics was misused as an automated scientific decision machine, both for 

statements about hypotheses and for selection of studies for publication. And this made 

interpretation, publication, and public advertising much easier, because everybody assumed that 

statistical inferences based on P-value thresholds or other rigid criteria would be "reliable," in the 

sense that a replication would probably meet the same thresholds or criteria again. So if 

researchers expect that a small P-value or a short interval estimate indicate "reliable" results, 

while all other results are "unreliable," they may be "prepared to ignore all results which fail to 

reach this standard" (Fisher 1937, p. 15; one of many published pleas by various authors 

encouraging selective reporting). 

But any selection criterion will introduce bias. If there is a tendency to publish results because 

the estimates are yellow, because interval estimates are short, and because P-values are small or 

the point estimates are far from null, then the published literature will become biased towards 

yellow results with underestimated variances and overestimated effect sizes. The latter effect is 

the "winner's curse," or inflation of effect sizes, that is reflected in the findings of the Open 

Science Collaboration (2015): the average effect size in the original studies was about twice as 

large as in the replication studies that reported all results and thus did not suffer from selection 

bias. 

Even if authors report all study outcomes, but then select what to discuss and to highlight 

based on P-value thresholds or other aids to judgement, their conclusions and what is reported in 

subsequent news and reviews will be biased (Amrhein, Korner-Nievergelt, and Roth 2017). Such 

selective attention based on study outcomes will therefore not only distort the literature but will 
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slant published descriptions of study results – biasing the summary descriptions reported to 

practicing professionals and the general public. 

One way to reduce selective reporting and attention is to maintain that all results are uncertain. 

If we obtain a small P-value, a large effect estimate, or a narrow interval estimate – or even all 

three – we should not be confident about textbook inferences from these results. In one of the 

next replications, p will be large, the effect estimate will be small, or the interval estimate wide, 

and thus the textbook inferences will shift dramatically due to random variation or to assumptions 

we have not modeled. Because of this uncertainty, there is simply no need to selectively report 

studies based on statistical results. 

We should thus "move toward a greater acceptance of uncertainty and embracing of variation" 

(Gelman 2016) and focus on describing accurately how the study was conducted, what problems 

occurred (e.g., non-response of some subjects, missing data), and what analysis methods were 

used, with detailed data tabulation and graphs, and complete reporting of results. The advent of 

online supplements and preprint servers eliminate the common excuse that space limitations 

prevent reporting such detail. 

 

Don't blame the P-value 

 

A clear sign that overconfidence has ruled the era of hypothesis testing is that many people still 

are surprised by the "dance of the P-values" (Cumming 2014), that is, by the way a valid P-value 

bounces around its range even in the largest of samples. This variability means that p < 0.05 is no 

guarantee for p < 0.05 in a replication (Goodman 1992; Senn 2001, 2002; Gelman and Stern 

2006); after all, if the (null) hypothesis tested is correct and experimental conditions are ideal, the 

P-value will vary uniformly between 0 and 1. And even if our alternative hypothesis is correct, 

the P-value in the next sample will typically differ widely from our current sample: "The fickle P 

value generates irreproducible results" (Halsey et al. 2015), at least if reproducibility is defined 

by whether P is above or below a threshold and the power is not very high. 

But the P-value itself is not supposed to be "reliable" in the sense of staying put (Greenland 

2018a). Its fickleness indicates variation in the data from sample to sample. If sample averages 

vary among samples, then P-values will vary as well, because they are calculated from sample 

averages. And we don't usually take a single sample average and announce it to be the truth. 

But if instead of simply reporting the P-value, we engage in "dichotomania" (Greenland 2017) 
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and use it to decide which hypothesis is wrong and which is right, such scientifically destructive 

behavior is our fault, even if socially encouraged; it is not the fault of the P-value. 

Further, if we overlook the sensitivity of P-values to possible violations of background 

assumptions, by assuming that P-values are only about deciding whether to reject "null 

hypotheses," we are privileging what may be a scientifically irrelevant hypothesis and are 

engaging in "nullism," a compulsion to test only one hypothesis among many of importance. 

But again, such bad behavior is our fault, even if socially encouraged. We could instead provide 

P-values for relevant alternatives, and arguably should do so if we compute any P-value at all 

(Poole 1987a,b). And if we interpret a small null P-value as providing support for some 

alternative hypothesis (which currently seems to be a standard interpretation) without testing the 

alternative as well, this too is our fault, not the fault of the P-value. 

 

Ban statistical tests? 

 

It may help to ban some practices, at least temporary and in specific contexts. Despite the general 

acceptance of alcohol2 in relaxed settings and possible beneficial effects from light use, we ban 

its drinking before or during driving, and recognize that its use easily becomes abuse. Reaching 

for statistical tests to force out "inferences" (whether traditional "p ≤ α" testing or substitutes like 

tests using Bayes-factor criteria) is, like drinking alcohol, a culturally ingrained habit. Statistical 

testing (like alcohol) often gives the wrong impression that complex decisions can be 

oversimplified without negative consequences, for example by making decisions solely because p 

was above or below some cutoff like 0.05. And many researchers are addicted to such 

oversimplification. These addictions are worth breaking. 

At the very least, partial or temporary bans are one way to force researchers to learn how to 

analyze data in alternative ways (Trafimow and Marks 2015). Hopefully, thinking about 

advantages and disadvantages of alternatives will lead to more sober interpretation of statistics. 

One concern, however, is that complete prohibition could lead to misuse and abuse of other 

methods, such as Bayesian techniques – which have an additional source of non-replicability 

insofar as what are acceptable priors can vary dramatically across research groups. 

 

                                                
2 We prefer this analogy above comparing P-values or hypothesis tests with guns, as we have heard or read 
sometimes. 
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Long live no king 

 

Fixed-cutoff (α-level) hypothesis testing has been king for over 80 years. We propose not to 

banish the king – a fixed-cutoff decision procedure may be useful, for example, in industrial or 

laboratory quality control, or "sampling tests laid down in commercial specifications" (Neyman 

and Pearson 1933), in which automated decisions to stop a production line or to recalibrate 

equipment may be necessary. For scientific inference, however, we hope that dichotomania from 

which such procedures suffer can be cured by abandoning them in favor of data description and 

direct presentation of precise P-values – including P-values for alternative hypotheses (Poole 

1987a,b; Cohen 1994; Ziliak and McCloskey 2008; Hurlbert and Lombardi 2009; Amrhein, 

Korner-Nievergelt, and Roth 2017; Greenland 2017; Greenland 2018a,b; Amrhein and Greenland 

2018; McShane et al. 2018; Trafimow et al. 2018). Parallel criticisms and remedies apply to tests 

or decisions (such as whether to report or highlight results) based on Bayes factors, posterior 

odds, or any other statistical criterion. 

Yes, sometimes we need to make decisions in science, for example whether to further pursue a 

study or not. For such a decision, we will usually weigh scientific and personal costs and benefits 

of our decision, applying informed personal judgment (Gigerenzer 1993). But when it comes to 

weigh evidence against, or in favor of, a scientific hypothesis, statistical tests cannot suffice, and 

may even be destructive if degraded into a binary form as in reporting tests as significant/non-

significant, or in basing conclusions on whether the null value was included in or excluded from 

an interval. This is especially true when (as almost always) these results are sensitive to doubtful 

assumptions, such as absence of measurement-error dependencies. And even in the unlikely case 

that all model assumptions are met, we would still need to consider costs and benefits, as well as 

the published and unpublished literature, to judge a scientific hypothesis as being largely correct 

(subject to further evidence to the contrary). We hope that classical hypothesis testing will be 

retired quickly from research reporting, so that regicide is not necessary. 

 

Empire of diversity 

 

But what comes next? There are countless possibilities. The most common proposal is to replace 

hypothesis tests with interval estimates. While doing so is helpful for sophisticated researchers, it 

has not reduced what we see as the core psychological problems – which is unsurprising, because 
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the classical confidence interval is nothing more than a summary of dichotomized hypothesis 

tests. Consider that a 95% confidence interval encompasses a range of hypotheses (effect sizes) 

that have a P-value exceeding 0.05. Instead of talking about hypothetical coverage of the true 

value by such intervals, which will fail under various assumption violations, we can think of the 

confidence interval as a "compatibility interval" (Greenland 2018a,b), showing effect sizes most 

compatible with the data according to their P-values, under the model used to compute the 

interval. Likewise, we can think of a posterior probability interval, or Bayesian "credible 

interval," as a compatibility interval showing effect sizes most compatible with the data, under 

the model and prior distribution used to compute the interval (Greenland 2018a). Again, whether 

such intervals include or exclude zero should play no role in their interpretation, because even 

with only random variation the intervals from different studies can easily be very different 

(Cumming 2014). 

With additional (and inevitable) nonrandom variation, the true effect size will frequently be 

outside the interval. In reality, it will not happen that every assumption is met, nor will we be 

aware of every assumption. Stating that our data "support" any value in the compatibility interval 

(e.g., a zero effect), or that, upon unlimited replication, the intervals would cover the true value at 

some rate, or that the interval "measures uncertainty" by indicating the range of possible effect 

sizes (as opposed to compatible effect sizes, given the model), makes the compatibility interval 

into an overconfidence interval. 

To avoid the dichotomization retained by interval estimates, one could report a measure of 

refutational evidence such as a traditional P-value in a continuous fashion (as recommended by 

classic texts on testing such as Lehmann 1986, p. 71), reporting an observed P-value as a measure 

of the degree of compatibility between the hypothesis or model it tests and the data (Greenland 

2018a). Better still, we could report the Shannon information or S-value (surprisal) of the test, 

−log2(p), which is a measure of the evidence against the model supplied by the test, expressed in 

units of bits (binary digits) of information. Among its advantages, the S-value is unbounded 

above and thus difficult to misinterpret as a hypothesis probability (Greenland 2017, 2018a,b). 

Considering that the 95% confidence interval is the range in which the parameter values have p > 

0.05, the values in the interval are those for which the S-value s is less than −log2(0.05) = 4.3. 

This means that, under the model used to construct the interval (e.g., a regression model), the 

values in a 95% confidence interval have only about 4 bits or less information against them; that 
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is very little information indeed (4 bits is the same as the evidence against "fairness" of coin 

tosses provided by obtaining 4 heads in a row). 

If we want to compare the relative support for different parameter values or models, we could 

use likelihood ratios or Bayesian methods. But we should not lapse back into dichotomous 

thinking by using some P-value threshold, or by making binary inferences based on confidence 

intervals or Bayes factors. And we should not expect posterior probabilities to solve the 

problems, especially since they rely on the same often questionable assumptions about the data-

generating model that both hypothesis tests and confidence intervals use. 

The empire of "statistical significance" has its roots in the 19th century writings of Edgeworth 

(1885) and reached full dominance with the spread of cutoffs for testing, formalized by Jerzy 

Neyman and Egon Pearson as Type-I error rates. Like the political empires of their period, such 

hypothesis testing for scientific (as opposed to mechanical) inference is a relic of a bygone era, 

whose destructive effects reverberate to this day. We hope this era is over. As for what comes 

next, there is no substitute for accepting methodologic diversity (Good 1957; Cox 1978; Box 

1980; Barnard 1996; Little 2006; Senn 2011; Efron and Hastie 2016; Crane 2017), with careful 

assessment of uncertainty as the core motivation for statistical practice (e.g., by discussing the 

effect sizes compatible with the data, given the model, as outlined above). 

 

The replacement for hypothesis tests 

 

We "don't look for a magic alternative to NHST [null hypothesis significance testing], some other 

objective mechanical ritual to replace it. It doesn't exist" (Cohen 1994). And if it existed, we 

would probably not recommend it for scientific inference. What needs to change is not 

necessarily the statistical methods we use, but how we select our results for interpretation and 

publication, and what conclusions we draw. Why would we want a mechanical decision 

procedure for single studies, if not for selecting results for publication or interpretation? As we 

described above, every selection criterion would introduce bias. We therefore join others who 

have advised that we should, to the extent feasible: 

(a) Target results for publication and interpretation before data are collected, i.e., state our 

hypotheses and predictions in a defined protocol or a binding research proposal. 

(b) Before analyzing data (and preferably before collecting them), make an analysis plan (i.e., 

a pre-analysis protocol), setting out how data will be analyzed; and, in the publication, 
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show what results the protocol produced before displaying the results of any analyses 

deviating from the predefined protocol. 

(c) Emphasize and interpret our estimates rather than tests, explicitly discussing both the 

lower and upper limits of our interval estimates. 

(d) When reporting statistics, give their precise values rather than mere inequalities; for 

example, if we are reporting a P-value and it is 0.03, report "p = 0.03," not "p < 0.05".3 

(e) Not use the word "significant" to describe scientific results, as it implies an inappropriate 

level of certainty based on an arbitrary criterion, and has produced far too much confusion 

between statistical, scientific, and policy meanings. 

(f) Acknowledge that our statistical results describe relations between assumptions and the 

data in our study, and that scientific generalization from a single study is unwarranted. 

(g) Openly and fully report our detailed methods, materials, procedures, data, and analysis 

scripts. 

As an example, consider a study by Brown et al. (2017), who reported that "in utero 

serotonergic antidepressant exposure compared with no exposure was not associated with autism 

spectrum disorder in the child," based on an estimated hazard-rate ratio (HR) of 1.61 (a 61% rate 

increase in the exposed relative to the unexposed) and a 95% confidence interval of 0.997 to 2.59. 

As is often the case, the authors misused the confidence interval as a hypothesis test, and they 

claim to have demonstrated no association because the lower limit of the interval was slightly 

below no association (which corresponds to a hazard-rate ratio of HR = 1), ignoring that the 

upper limit exceeded 2.50. A more correct summary of the results would have been: "Our 

estimate of the hazard-rate ratio was 1.61, and thus exposure could be associated with autism; 

however, possible hazard-rate ratios that are highly compatible with our data, given our model, 

ranged from 0.997 (essentially no association) to 2.59 (a relatively strong association)." If 

applicable, this could then be followed by a discussion of why the authors seem to think the 

exposure effect might be negligible despite the association, and how strong they judge their 

evidence not only based on the width of an interval estimate, but also in view of possible 

shortcomings of their study, of their prior knowledge about other studies on autism, and of 

possible costs of their interpretation for the health of the patients. 

                                                
3 An exception: If a P-value is below the limit of numerical accuracy of the data, an inequality would be called for, 
but the precision would be context dependent: e.g., p < 10−8 is typical in genomics, p < 0.001 is common in medicine 
and ecology. 
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Had the authors found an interval of 1.003 to 2.59 rather than 0.997 to 2.59, the reporting 

should have been the same. Even with an interval of 0.900 to 2.59, the description of the results 

should be largely similar – the point estimate would still be a HR well above 1, indicating a 

possible positive association. What would need to change with the latter interval is the 

description that not only relatively large positive, but also small negative associations would fall 

within the interval. 

 

Anything goes? 

 

So what do we conclude from a study like Brown et al. (2017)? If we would interpret an interval 

of 1.003 to 2.59 and of 0.997 to 2.59 in the same way, does that mean that the floodgates of 

"anything goes" are wide open? Yes, the floodgates should be open – for reporting our results. 

Everything should be published in some form if whatever we measured made sense before we 

obtained the data because it was connected in a potentially useful way to some research question. 

If after doing the study, it appears the measure did not make sense or the methods were faulty, at 

least other researchers can learn that lesson without repeating the error – provided our report 

contains enough detail to allow such critical evaluation. 

However, the floodgates should be closed for drawing conclusions from virtually any single 

study. For example, because they found a confidence interval that barely included the null value, 

Brown et al. (2017) reported conflict with previously observed associations that were nearly the 

same size (hazard ratios around 1.6) but had confidence intervals that did not include the null 

value. We think that, at most, a conclusion could be drawn that the new study was largely 

consistent with previous studies, but that the null value was also compatible with their data, given 

the model. 

In view of all the unmodeled uncertainties, it would be good to plan and publish single studies 

with the goal of their easy entry into meta-analyses. In the words of Trafimow et al. (2018): "It is 

desirable to obtain precise estimates in those studies, but a more important goal is to eliminate 

publication bias by including wide confidence intervals and small effects in the literature, without 

which the cumulative evidence will be distorted." 
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Abandon statistical inference? 

 

We do not suggest to completely abandon inference from our data to a larger population 

(although the title of a preprint of this paper was "Abandon statistical inference"; Amrhein, 

Trafimow, and Greenland 2018). But we say this inference must be scientific rather than 

statistical, even if we use inferential statistics. Because all statistical methods require subjective 

choices (Gelman and Hennig 2017), there is no objective decision machine for automatic 

scientific inference; it must be we who make the inference, and claims about a larger population 

will always be uncertain. 

So when can we be confident that we know something? This is the topic of the vast domains 

epistemology, scientific inference, and philosophy of science, and thus far beyond the scope of 

the present paper (and its authors). Nonetheless, a successful theory is one that survives decades 

of scrutiny. If every study claims to provide decisive results (whether from inferential statistics or 

narrative impressions – or a confusion of the two), there will be ever more replication failures, 

which in turn will further undermine public confidence in science. We thus believe that decision 

makers must act based on cumulative knowledge – which means they should preferably not rely 

solely on single studies or even single lines of research (even if such contributions may determine 

a decision when all other evidence appears ambiguous or unreliable). 

 

If we are researchers ... 

 

... and we obtained a large P-value for the null hypothesis or an interval estimate that includes a 

null effect, our interval will show that the null hypothesis is only one of many different 

hypotheses that are compatible with the data (Rothman, Greenland, and Lash 2008; Greenland et 

al. 2016). Unlike what Brown et al. (2017) suggested with their hazard-rate ratios, we cannot 

claim our statistics indicate there is no effect, because even if the data remain consistent with a 

zero effect, they remain consistent with many other effects as well. A "proof of the null 

hypothesis" such as "the earth is flat (p > 0.05)" is therefore not possible (Greenland 2011; 

Amrhein, Korner-Nievergelt, and Roth 2017). And we should remember there are lots of 

additional hypotheses outside the interval estimate that will also be compatible with our data, due 

to methodologic limitations that we have not modeled. 
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Thus, we should not be overconfident about our "weak evidence" from a large P-value or an 

interval estimate that includes the null. Almost never will we have found absolutely no effect. Let 

us free our "negative" results by allowing them to be positive contributions to knowledge 

(Amrhein, Korner-Nievergelt, and Roth 2017). This means that, unless the interval estimate is 

entirely within an explicit interval of "practical equivalence" to the null,4 we should first and 

foremost ban the following statements from our thinking, from our papers, and from our talks: 

"there was no effect," "there was no difference," "there was no interaction," or "we deleted this 

term from the model because it had no influence." 

Such statements will usually be wrong even if our point estimate is exactly null (and thus p = 

1), because our interval estimate will usually show there are many important non-null effects that 

are highly compatible with our data. This means that an outcome of a study can only be 

"negative" in a falsificationist sense of finding little incompatibility between the data and the 

predictions of a model that includes a hypothesis of no effect. A P-value of 1 for the test of the 

null only means our data are perfectly compatible with our model (including the null hypothesis); 

but "perfectly compatible" with one hypothesis, or model, does not mean that all other 

hypotheses, or models, are refuted. Indeed, typical interval estimates will reveal a large number 

of non-null hypotheses that we would call highly compatible with our data (e.g., because their P-

values exceed 0.05), given our model is correct. 

Thus, most studies with large P-values or interval estimates that include the null should be 

considered "positive" in the sense that they leave open the possibility of important effects, even if 

they also leave open the possibility of no effect. The best we can do is describe the values 

covered by our interval estimates – and if those values have qualitatively different practical 

consequences, we should admit that our current set of data could not settle the matter even if we 

knew that all the auxiliary assumptions were correct. 

Conversely, if we believe we have "strong evidence" because our P-value is small and our 

point estimate is large, or because our interval estimate is not near the null, we are placing too 

much faith in our inferential statistics. Keep in mind that these statistics do not "measure" 

uncertainty. At best, the interval estimate may give a rough idea of uncertainty, given that all the 

assumptions used to create it are correct. And even then, we should remember the "dance of the 

                                                
4In terms of α-level equivalence testing (Wellek 2010; Lakens et al. 2018), for example, this means that all effects 
with symmetric two-sided p > 2α are inside the interval of equivalence; for Bayesian analysis this would mean the 
posterior probabilities of being below the interval and being above the interval both exceed α. 
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confidence intervals" (Cumming 2014) shows a valid interval will bounce around from sample to 

sample due to random variation. 

Because every inferential statistic (including P-values, interval estimates, and posterior 

probabilities) is derived from the multiple implicit as well as explicit assumptions that compose 

the model, we should treat these statistics as descriptions of the relation of the model to the data 

rather than as statements about the correctness of the model. This discipline may be more 

difficult for Bayesians to accept, since Bayesian methods do produce hypothetical probabilities of 

models by using assumptions hidden in restrictions on the models considered. Regardless, it is 

hard enough to describe the known assumptions about our model. We should not draw inference 

and generalize based on assumptions we cannot be certain about or we do not even think about. 

For example, a P-value is merely the probability of one particular test statistic being as or 

more extreme than observed in our particular study, given that the model it is computed from is 

correct. No inferential meaning need be attached to that. For the next set of data, the P-value will 

be different. A small P-value is just a warning signal that the current model could have a 

problem, so we should check our model assumptions (including an assumption such as "the 

means of these two populations do not differ", i.e., our tested hypothesis). And this assumption 

checking does not only mean inspecting residuals, but also checking the extent of deviations of 

our study from a perfect randomized experiment or random survey, whether from failures of 

protocol, measurement, equipment, or any of the innumerable details that real research must 

confront (Greenland 2017; Stark and Saltelli 2018). 

Science includes learning about assumption violations, then addressing those violations and 

improving the performance of our models about reality. Statistics can help by formalizing parts 

of the models, and by assisting in careful assessment of uncertainty. We should thus 

communicate our limited conclusions about our data, not our generalized inferences about some 

ill-defined universal population. And decisions to communicate and interpret a result should not 

be based on P-values, nor on any other statistic. Presentations that start with analysis plans that 

were formulated before the analysis (pre-analysis protocols) can help strengthen both the validity 

and credibility of our inferences. The reported description of our results will be a good 

description if it is complete and honest. If we think we did a good study, we should thus be 

modest about our conclusions, but be proud about our painfully honest and thorough description 

and discussion of our methods and of our data. 
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And if we are working as journal editors, we should be proud about our exhaustive methods 

sections and consider "results blind evaluation" of manuscripts (Locascio 2017), i.e., basing our 

decisions about the suitability of a study for publication on the quality of its materials and 

methods rather than on results and conclusions; the quality of the presentation of the latter is only 

judged after it is determined that the study is valuable based on its materials and methods. 

 

If we are science writers and journalists ... 

 

... we should continue writing about isolated experiments and replications. Single studies are the 

life blood of science. If we think we found a good study, or a bad study, we may report it. But let 

us try not to be impressed by what researchers say is surprising about their study – surprising 

results are often products of data dredging or random error, and are thus less reproducible (Open 

Science Collaboration 2015). So surprising results will often not point to general scientific 

discoveries, although they may still be valuable because they lead to new insights about study 

problems and violations of assumptions. 

Then too, we should not overemphasize what researchers say was unsurprising, since that may 

largely reflect their conformity to group expectations rather than what the data would actually 

show under close scrutiny. Indeed, we might consider not asking researchers about surprising or 

unsurprising results, but instead ask which results appeared most boring because they were 

shown several times before and thus seem to be trustworthy. More generally, we should not fall 

for overconfident claims by researchers or by other science writers or journalists. Rather, we 

should try to uncover overconfident claims and the bad incentives that lead to those claims. 

Clear signs of overconfidence are formulations like "we proved" or "we disproved" or "we 

rejected" a hypothesis, or "we have shown" or "demonstrated" a relation exists or is explained in 

some manner. So are "there was no effect / no association / no difference" (which almost always 

would be an impossible proof of the null hypothesis), and "our study confirms / validates / 

invalidates / refutes previous results" (because a single study has nothing definitive, it can only 

add one further data point to the larger picture; at most it can be "consistent / inconsistent with 

previous results"). If we find any of those or related phrases, we should question the 

interpretations being offered in the paper and search for arguments provided by the authors. If the 

main argument for a conclusion is that the results were "significant" or "not significant," this does 
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not automatically mean that the study is bad. But it does flag the paper as likely providing an 

unreliable interpretation of the reported results. 

The hard truth is that journalists cannot decide whether a result from a single study can be 

generalized – and the same is usually true for the authors of the study, and for editors and 

external experts. An important role for statistics in research is the summary and accumulation of 

information. If replications do not find the same results, this is not necessarily a crisis, but is part 

of a natural process by which science evolves. The goal of scientific methodology should be to 

direct this evolution toward ever more accurate descriptions of the world and how it works, not 

toward ever more publication of inferences, conclusions, or decisions. 
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Appendix: A Descriptive View of P-values and Posterior Probabilities 

 

We here provide a more technical explanation of why inferential statistics like P-values and 

posterior probabilities can be interpreted as being descriptive of logical relations between 

assumptions and the observed data. 

Consider a data-generating model M we wish to test and a test statistic (function of the data) T 

that has been selected as a summary measure of the absolute deviation of the data from the model 

predictions, with an observed value for T of t.5 Here, M is the assumption set or constraints used 

to derive the distribution of T. To say that this test gave back p = 0.04 is to say that under the 

model M, the probability that T ≥ t is 0.04, or symbolically that Pr(T ≥ t|M) = 0.04. This 

Fisherian6 P-value of 0.04 is thus a logical inference from the model M and the observation that 

T = t, the final deduction "p = 0.04" from a derivation that begins with the premises "the data 

                                                
5 There are of course many technical details we must gloss over such as optimization of T to detect a scientifically 
relevant type of deviation, and how to proceed when as usual M does not fully specify the distribution of T; see 
Bayarri and Berger (2000) for further discussion. For simplicity we here assume discrete data and model spaces. 
6 That is, a tail probability of an observed statistic. This device actually precedes Fisher, for example in the 
goodness-of-fit tests of Karl Pearson. 
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were generated from M" and "those data produced T = t." Thus the model and data are in a 

logical relation in which their conjunction implies a probability p for the tail event T ≥ t. 

Without further elements (such as an α-level cutoff) this observed P-value p implies absolutely 

no decision, inference, bet, or behavior. What people make of p = 0.04 in these or other practical 

terms requires additional contextual detail such as a loss function, acceptable error rates, or 

whatever else the analysis team can bring to bear (although usually it is just social conventions 

like α = 0.05 and program defaults that determine what gets claimed). 

The same comments apply to posterior probabilities. Now however "the model" (the set of 

assumptions used for deducing posterior probabilities) must include or entail a prior distribution 

Pr(M) over some restricted model family for generating a probability Pr(x|M) for the observed 

data x so that the full model provides a formula for Pr(x,M) = Pr(x|M)Pr(M) (Box 1980). Again 

the deduction of Pr(M|x) follows by conditioning on the observed data x (or equivalently on a 

sufficient statistic t, using T = t as a premise); that is, the posterior Pr(M|x) becomes a deduction 

from the observed data x and the full model Pr(x,M). Nonetheless, because one cannot construct 

a prior distribution over every conceivable model, this deduction is limited by the assumption 

that the model family used can approximate (within statistical error) the true data-generating 

process. In contrast, Fisherian P-values can be used to test this assumption before using it in the 

Bayesian deduction (Bayarri and Berger 2000; Robins et al. 2000). 
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