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Potential Natural Vegetation (PNV) is the vegetation cover in equilibrium with climate, that

would exist at a given location if not impacted by human activities. PNV is useful for raising

public awareness about land degradation and for estimating land potential. This paper

presents results of assessing Machine Learning Algorithms (MLA) 4 neural networks (nnet

package), random forest (ranger), gradient boosting (gmb), K-nearest neighborhood (class)

and cubist 4 for operational mapping of PNV. Three case studies were considered: (1)

global distribution of biomes based on the BIOME 6000 data set (8057 modern pollen-

based site reconstructions), (2) distribution of forest tree taxa in Europe based on detailed

occurrence records (1,546,435 ground observations), and (3) global monthly Fraction of

Absorbed Photosynthetically Active Radiation (FAPAR) values (30,301 randomly-sampled

points). A stack of 160 global maps representing biophysical conditions over land,

including atmospheric, climatic, relief and lithologic variables, were used as explanatory

variables. The overall results indicate that random forest gives the overall best

performance. The highest accuracy for predicting BIOME 6000 classes (20) was estimated

to be between 33% (with spatial Cross Validation) and 68% (simple random subsetting),

with the most important predictors being total annual precipitation, monthly temperatures

and bioclimatic layers. Predicting forest tree species (73) resulted in mapping accuracy of

25%, with the most important predictors being monthly cloud fraction, mean annual and

monthly temperatures and elevation. Regression models for FAPAR (monthly images) gave

an R-square of 90% with the most important predictors being total annual precipitation,

monthly cloud fraction, CHELSA bioclimatic layers and month of the year, respectively.
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Further developments of PNV mapping could include using all GBIF records to map the

global distribution of plant species at different taxonomic levels. This methodology could

also be extended to dynamic modeling of PNV, so that future climate scenarios can be

incorporated. Global maps of biomes, FAPAR and tree species at 1 km spatial resolution

are available for download via http://dx.doi.org/10.7910/DVN/QQHCIK.
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Potential Natural Vegetation (PNV) is the vegetation cover in equilibrium with climate, that would exist at

a given location if not impacted by human activities. PNV is useful for raising public awareness about land

degradation and for estimating land potential. This paper presents results of assessing Machine Learning

Algorithms (MLA) — neural networks (nnet package), random forest (ranger), gradient boosting (gmb),

K-nearest neighborhood (class) and cubist — for operational mapping of PNV. Three case studies were

considered: (1) global distribution of biomes based on the BIOME 6000 data set (8057 modern pollen-based

site reconstructions), (2) distribution of forest tree taxa in Europe based on detailed occurrence records

(1,546,435 ground observations), and (3) global monthly Fraction of Absorbed Photosynthetically Active

Radiation (FAPAR) values (30,301 randomly-sampled points). A stack of 160 global maps representing

biophysical conditions over land, including atmospheric, climatic, relief and lithologic variables, were used

as explanatory variables. Overall, random forest models gave the best performance. The highest accuracy

for predicting BIOME 6000 classes (20) was estimated to be between 33 % (with spatial Cross Validation)

and 68 % (simple random subsetting), with the most important predictors being total annual precipitation,

monthly temperatures and bioclimatic layers. Predicting forest tree species (73) resulted in mapping

accuracy of 25 %, with the most important predictors being monthly cloud fraction, mean annual and

monthly temperatures and elevation. Regression models for FAPAR (monthly images) gave an R-square of

90 % with the most important predictors being total annual precipitation, monthly cloud fraction, CHELSA

bioclimatic layers and month of the year, respectively. Further developments of PNV mapping could include

using all GBIF records to map the global distribution of plant species at different taxonomic levels. This

methodology could also be extended to dynamic modeling of PNV, so that future climate scenarios can be

incorporated. Global maps of biomes, FAPAR and tree species at 1 km spatial resolution are available for

download via http://dx.doi.org/10.7910/DVN/QQHCIK.
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INTRODUCTION43

Potential Natural Vegetation (PNV) is the “vegetation cover in equilibrium with climate, that would exist44

at a given location non-impacted by human activities” (Levavasseur et al., 2012; Østbye Hemsing and45

Bryn, 2012). It is a hypothetical vegetation state assuming natural (undisturbed) physical conditions, a46

reference status of vegetation assuming no degradation and/or no unusual ecological disturbances. PNV is47

especially useful for raising public awareness about land degradation (Weisman, 2012) and for estimating48

land potential (Herrick et al., 2013). For example, Omernik (1987) details PNV maps for USA; Bohn et al.49

(2007) provides maps for EU; Carnahan (1989) for Australia; Marinova et al. (2018) maps PNV for the50

Eastern Mediterranean–Black Sea–Caspian-Corridor; and maps of PNV for Latin America are available51

in Marchant et al. (2009). Regarding specific tree species, San-Miguel-Ayanz et al. (2016) provide habitat52

suitability maps for the main forest tree species in Europe, based on environmental variables, especially53

bioclimatic variables such as average temperature of the coldest month, precipitation of the driest month54

and similar. Potapov et al. (2011) generated a global map of potential forest cover at 1 km resolution55

(publicly available from http://globalforestwatch.org/map/). Erb et al. (2017) produced a global56

map of potential biomass stocks by reversing the current managed land use systems to natural vegetation.57

Levavasseur et al. (2012) and Tian et al. (2016) predict global PNV classes using environmental covariates58
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such as climatic images and landform parameters. Griscom et al. (2017) recently produced a global59

reforestation map at 1 km resolution.60

A common limitation of existing maps is their coarse spatial resolution (about 25 km) limiting the61

use of these maps for operational planning (e.g. Marchant et al. (2009); Levavasseur et al. (2012) and62

Tian et al. (2016)). In addition, comparisons of multiple overlapping sources of PNV maps shows that63

they rarely agree with one another since they do not share the same mapping criteria and, traditionally,64

emphasize regionally-specific botanical groupings rather than functional classifications. Limitations of65

maps based on field surveys of PNV (e.g., Bohn et al. (2007)) arise from assumptions about controls on66

vegetation distribution based on extrapolation from a limited number of field surveys.67

Here we provide an update of comparable global PNV maps produced by Potapov et al. (2011);68

Levavasseur et al. (2012); Tian et al. (2016) and Erb et al. (2017). We explore the possibility of increasing69

the mapping accuracy using up-to-date maps of climate, atmosphere dynamics, landform and lithology,70

and state-of-the-art machine learning methods. Our final aim is to produce PNV maps that are more71

detailed, richer in information, based on objective reproducible methods; and potentially more usable72

for global modeling and awareness raising projects. We focus on improving the spatial detail, thematic73

accuracy and reproducibility of maps, at the cost of increasing the total computing load. We also consider74

automation of the prediction process so that the maps can be rapidly updated as new ground truth data is75

obtained. Our modeling follows three phases:76

(a) model selection: we compare possible models of interest for PNV mapping and choose the optimal77

spatial prediction framework based on the cross-validation results,78

(b) model assessment: we assess the uncertainty of predictions per vegetation class and try to determine79

objectively the limitations of the mapping products for wider uses, and80

(c) prediction: we use the best performing models to produce spatial predictions, then visually assess81

maps and if necessary repeat steps a–c.82

METHODS AND MATERIALS83

Theory84

PNV is the hypothetical vegetation cover that would be present if the vegetation were in equilibrium with85

environmental controls, including climatic factors and disturbance, and not subject to human management.86

When considering PNV, one needs to distinguish between potential “natural’ and potential “managed”87

vegetation, and “actual” natural and “actual” managed vegetation (Fig. 1a). Vegetation is in general88

a dynamic feature. Also PNV changes as the climatic conditions change. For example, with the future89

global warming and changes in our climate, PNV might be significantly different than pre-industrial90

revolution. Therefore it is important to reference PNV to the time period of interest, so that historic PNV91

and current or future PNV maps can be produced (Fig. 1b).92

In addition to the differentiation between the potential and actual natural vegetation, there are also93

three sub-types of the PNV that need to be considered:94

1. PNV model A: based on the autochthonous or native vegetation and living species only.95
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Figure 1. Schematic explanation of differences between (a) potential and actual natural/managed

vegetation, and (b) current and historic vegetation in the context of global land area.

2. PNV model B: based on the autochthonous or native vegetation that includes also extinct species.96

3. PNV model C: PNV based on any vegetation whether native or introduced or extinct.97

Derivation of maps of PNV model A could be of interest to e.g. nature conservationists; PNV model98

C could be of more interest to e.g. forestry and agroforestry organizations as it provides an objective basis99

for introducing non-native species to a new area.100

Conveniently, locations that have not been subject to human disturbance/management can provide101

relevant information about vegetation cover in historic times, which can serve as a guide to PNV. A major102

limitation of modeling PNV is that we unfortunately do not have equally detailed information about the103

status of vegetation and environment across historic periods. For instance, about half of the Earth’s mature104

tropical forests have disappeared in the last 150 years and original habitats have been reduced to 10 %105

(Hansen et al., 2013). Given that climates have changed and few areas are truly human impact “free”,106

even undisturbed historic vegetation only represents one possible expression of PNV for a given set of107

climate conditions at a specific time.108

Regardless of the hypothetical nature of PNV, the concept (both as a classification and as a regression109

type problem) is still a helpful yardstick against which land cover change can be quantitatively measured110

and land restoration designs can be planned. Erb et al. (2017) have estimated that almost half of the111

standing global vegetation biomass carbon stocks has been lost, almost equally due to land cover change112

(e.g. tree cover to cropland) and management effects within land cover types (e.g. croplands managed at113

lower biomass carbon stocks than tree covered areas). PNV maps can thus help quantify such differences,114

both deficit and surplus, in biomass stocks caused by the current land management system more objectively115

and served as an input to the redesign of land management systems.116

PNV mapping and species distribution modeling117

In principle, PNV mapping is a special case of species distribution modeling (Elith and Leathwick, 2009;118

Østbye Hemsing and Bryn, 2012; Hijmans and Elith, 2018): at the core of PNV mapping is statistical119

modeling of the relationship between species (or natural associations of species or communities) and a120
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list of predictors i.e. biotic and abiotic site factors (Elith and Leathwick, 2009). The difference between121

mapping actual distribution of species and PNV mapping is that PNV involves extrapolating the model to122

the whole land mask, assuming a hypothetical distribution under a specific set of undisturbed bioclimatic123

and/or biophysical conditions:124

Pr(Y ) = f (Relief,BioClimate,Lithology) (1)

where Y is the target variable, which could be vegetation types or plant species with a finite number of125

states Y * {1,2, . . . ,k} and/or vegetation properties. PNV mapping can be considered as a classification-126

type or regression-type problem depending on whether we map factors such as vegetation types or127

continuous vegetation properties such as biomass or leaf area index.128

The primary assumptions we make when applying a PNV model to the training data are:129

1. The ecological gradients captured in training data reflect only natural ecological gradients and130

not human controls such as land use systems, civil engineering constructions, or one-off major131

disturbance events such as volcanic eruptions, floods, or tsunamis.132

2. Remote sensing data such NDVI often reflect human-altered vegetation patterns and ought not be133

used as covariates in PNV mapping (Leong and Roderick, 2015).134

3. The training data are representative of the study area, especially considering the feature space135

(ecological gradients) of the study area.136

Assuming a log-linear relationship between ecological gradients and target variables, PNV classes137

can be modeled using a multinomial log-linear model:138

f (k, i) = β0,k +β1,kx1,i +β2,kx2,i + · · ·+βM,kxM,i (2)

where f (k, i) is the linear predictor function, β are the regression coefficients associated with the mth139

explanatory variable and the kth outcome. An efficient implementation of the multinomial logistic140

regression is the multinom function from the R package nnet (Venables and Ripley, 2002). The output of141

predictions produced using multinom are k probability maps (0–100 %) such that all predictions at each142

site sum up to 1:143

K

∑
k=1

Pr(Yi = k) = 1 (3)

In this paper, all prediction models are used in the “probability” mode i.e. to derive probability maps144

per class.145

Note that a PNV spatial prediction model divides geographic space among all possible states given146

the training points. It is therefore necessary, for Eq.(1), that all possible states of Y are represented with147
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training data so that the model can be applied over the whole spatial domain of interest. If all of the states148

are not known, then the space will be artificially filled-in with known classes occupying similar ecological149

niches and which can lead to prediction bias. In other words, as with species distribution modeling of150

individual species, both presence and absence data play an equally important role for model calibration151

(Elith and Leathwick, 2009).152

Input data: training points153

We consider three ground-truth data sets for model calibration:154

1. an expanded version of the BIOME 6000 DB data set representing site-based reconstructions from155

surface pollen samples of major vegetation types or biomes (http://dx.doi.org/10.17864/156

1947.99),157

2. EU Forest (Mauri et al., 2017) and GBIF (Global Biodiversity Information Facilities) occurrence158

records of the 76 main forest tree taxa in Europe (http://dx.doi.org/10.15468/dl.fhucwx),159

3. Long-term Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) monthly images160

derived using a time-series of Copernicus Global Land products (https://land.copernicus.161

eu),162

BIOME 6000 and EU Forest and GBIF occurrences are point data sets, while FAPAR consists of163

remote sensing images at relatively fine spatial resolution (250 m), from which we sample a large number164

of values (ca 100,000) using random sampling after masking for areas of natural vegetation.165

BIOME 6000166

The BIOME 6000 data set (http://dx.doi.org/10.17864/1947.99) includes vegetation reconstruc-167

tions from modern pollen samples, preserved in lake and bog sediments and from moss polsters, soil and168

other surface deposits. The use of pollen data to reconstruct PNV relies on the fact that although modern169

pollen samples may contain markers of land use, the predominant pollen types found in any one sample170

are those of the regional vegetation within a radius on the order of 10–30 km around the sampling site.171

Even if forests have fragmented, these fragments continue to produce and disperse pollen grains, and the172

composition of the pollen assemblage provides information on tree taxa that are still present.173

The BIOME 6000 data set is an amalgamation of multiple data sets. BIOME 6000 initially produced174

maps for individual regions: Europe, Africa and the Arabian Peninsula, the Former Soviet Union and175

Mongolia and China. Additional regions were subsequently added including Beringia, western North176

America, Canada and the eastern United States and Japan, and the data for northern Eurasia, China177

and southern Europe and Africa were also updated. These regional compilations were summarized178

in Prentice and Jolly (2000). Subsequent regional updates include China (Harrison et al., 2001), the179

circum-Artic region (Bigelow et al., 2003), Australia (Pickett et al., 2004) and South America (Marchant180

et al., 2009). Additionally, we have also combined these data with pollen-based vegetation reconstructions181

from the Eastern Mediterranean-Black Sea-Caspian Corridor (EMBSeCBIO) region (Marinova et al.,182

2018) available from http://dx.doi.org/10.17864/1947.109, to produce a more complete and183

up-to-date compilation of the BIOME 6000.184
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Figure 2. Spatial distribution of BIOME 6000 training points. A total of 8057 unique locations are

shown on the map.

Some sites in the BIOME 6000 data set have multiple reconstructions based on multiple nearby185

modern pollen samples (up to 30), which provides a useful measure of the reconstruction uncertainty, but186

could lead to modeling bias because the number of modern samples varies between sites. To reduce these187

unwanted effects, we use only the most frequently reconstructed biome at each site and for those sites188

with two equally common reconstructions (ca. 900) we use both observations.189

The number of biomes differentiated varies from region to region, and some biomes were only190

reconstructed in specific regions where they are particularly characteristic, although they may occur, but191

not be recognized, elsewhere. Furthermore, some biomes that can be recognized on the modern landscape192

were never reconstructed in the BIOME 6000 data set (e.g. cushion forb tundra) — either because of193

the sample distribution or because the characteristic plant-functional types were also spread amongst194

other biomes. Simplified or “megabiome” classifications (e.g. Harrison and Bartlein (2012)) involve a195

substantial loss of information. We have therefore created a new standardization of the classification196

scheme (see further Table 1; the final scheme has 20 globally applicable and distinctive biomes) which197

preserve the maximum number of distinct biomes that were reconstructed as present in multiple regions.198

There are relatively few data vegetation reconstructions for tropical South America, which could lead199

to extrapolation problems and omission of important PNV classes in Latin America, but also potentially in200

tropical parts of Africa and Asia. To reduce under-representation of tropics, we have added 350 randomly201

simulated points based on the RADAM Brazil natural vegetation polygon map at high spatial detail202

(Radam Vegetação SIRGAS map) (Veloso et al., 1992) obtained from ftp://geoftp.ibge.gov.br/.203

Before generating the pseudo-observations for Brazil, we translated SIRGAS map legends to match the204

BIOME 6000 classes. This translation is also available via the project’s github repository. This gave a205

total of 8057 unique individual locations represented in the combined data set i.e. a total of 8959 training206

observations (Fig. 2).207

We have mapped the distribution of biomes for all land pixels, with the exception of water bodies,208

barren land and permanent ice areas. Barren land and permanent ice areas were masked out using the209

ESA’s global land cover maps for the period 2000–2015 (https://www.esa-landcover-cci.org)210

and the long-term FAPAR images, both available at relatively fine resolution of 300 m. We only mask out211
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pixels that are permanent ice/barren ground and have a FAPAR = 0 throughout the period 2000–2015.212

European Forest Tree occurrence records213

For mapping PNV distribution of forest tree taxa (note: most of these are individual species, but some214

are only recognised at sub-genus or genus level) in Europe we have merged two point data sets: EU215

Forest (Mauri et al., 2017) (588,983 records covering 242 species) and GBIF occurrence records of216

the main forest tree taxa in Europe. The GBIF Occurrence data was downloaded on 23rd January217

2017 (http://dx.doi.org/10.15468/dl.fhucwx). We focus on modeling just the 76 forest tree taxa218

indicated in the European Atlas of Forest Tree Species (San-Miguel-Ayanz et al., 2016).219

Figure 3. Merge of EU Forest (Mauri et al., 2017) and GBIF occurrence records used to build models to

predict PNV for the 76 forest tree taxa. Total of 1,546,435 shown on the map.

Global GBIF occurrence data can be obtained by using the rgbif package, in which case the only220

important parameter is the taxonKey (e.g. “Betula spp.” corresponds to GBIF taxon key 2875008). After221

the bulk data download (which gives about 4 million occurrences), we imported all points and then subset222

occurrences based on the list of taxon keys and and coordinate uncertainty (<2 km positional error). This223

gave a total of 1,546,435 training points from which about 2/3 are GBIF points (Fig. 3). We assume in224

further analysis that the EU Forest point locations and representativeness are more trustworthy, hence we225

assign 4× higher weights to these points than to the GBIF points.226

Certain forest tree species (Chamaecyparis lawsoniana, Eucalyptus globulus and Pseudotsuga men-227

ziesii), that are shown in the European Atlas of Forest Tree Species are introduced i.e. planted and do not228

generally propagate naturally. Hence, they were removed from the list of target forest tree species. We229

retained, however, three species (Ailnthus altissima, Picea sitchensis and Robinia pseudoacacia) that are230

not native but are extensively naturalized. The total number of target forest tree taxa was 73.231

We built predictive models for European forest tree taxa using information on their global distribution,232

but only generate predictions for Europe. In other words, we use a global compilation for model training233

to increase the precision of the definition of the ecological niche of each taxon, but then predict only for234

Europe as the selection of taxa is based on the European Atlas of Forest Tree Species (San-Miguel-Ayanz235

et al., 2016).236
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FAPAR237

Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) monthly images for 2014–2017 were238

obtained from https://land.copernicus.eu (original values reported in the range 0–235 with scaling239

factor 1/255 i.e. with a maximum value of 0.94). From a total of 142 images downloaded from https:240

//land.copernicus.eu we derived minimum, median and maximum value of FAPAR per month (12)241

using the 95 % probability interval using the data.table package (http://r-datatable.com). For242

regression modeling we only report results of predictions of median values of FAPAR; predictions of243

minimum and maximum FAPAR can be obtained from the data repository.244

Figure 4. World’s Protected Areas (dark gray) based on http://protectedplanet.net and Intact

Forest Landscapes for year 2000 (green) based on http://intactforests.org. These maps were

used to randomly select some 30,000 training points to predict potential FAPAR under PNV.

We model median and upper 95 % FAPAR values as a function of the same covariate layers used in245

all three case studies. For model training we use ca. 30,000 randomly sampled points (Simple Random246

Sampling) exclusively from protected area as shown in the World Database on Protected Areas (WDPA)247

data set (http://protectedplanet.net) and the Intact Forest Landscapes (IFL) data set for 2000 and248

2013 (Potapov et al., 2008) Fig. 4). We use about 3× more training points from the IFL 2013 areas for249

model development than from the WDPA and IFL 2000 masks to emphasize more ecological conditions250

of intact vegetation.251

The prediction model for FAPAR under PNV is in the form of:252

R> FAPAR ~ cm + X1m + X2m + X3 + ... + Xp

where X1m is the covariate with monthly values (for example precipitation, day-time and night-time253

temperatures etc), X3 is the environmental covariates that do not vary through year (e.g. lithology or DEM254

derivatives), and cm is the cosine of the month number:255

cm = cos(µ/12 ·2 ·π) (4)

where µ is the month number 1–12. The total number of training observations used to build models is in256

fact 180,483 (each training site is represented up to 12 times).257
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For PNV FAPAR mapping we have masked out all water bodies including lakes and rivers, following258

the ESA’s global land cover maps for the period 2000–2015 (https://www.esa-landcover-cci.org)259

and permanent ice/barren ground.260

Input data: environmental covariates261

For modeling purposes, we use a stack of 160 spatially explicit co-variate data layers that represent262

standard ecological gradients essential for growth and survival of plants:263

• DEM derivatives quantifying various landscape metrics and hydrological processes: slope, curva-264

ture, topographic index, topographic openness, valley depth and multi-resolution valley bottom265

index; all derived using the SAGA GIS (Conrad et al., 2015);266

• Mean, minimum and maximum monthly temperatures derived as a mean between WorldClim v2267

(http://worldclim.org/version2) and CHELSA climate (Karger et al., 2017).268

• Mean monthly precipitation images derived as a weighted average between the WorldClim v2,269

CHELSA climate and Global Precipitation Measurement Integrated Multi-satellitE Retrievals for270

GPM (IMERG) rainfall product.271

• CHELSA Bioclimatic layers downloaded from http://chelsa-climate.org/, including: an-272

nual mean temperature, mean diurnal temperature range, isothermality (day-to-night temperature273

oscillations relative to the summer-to-winter oscillations), temperature seasonality (standard de-274

viation of monthly temperature averages), maximum temperature of warmest month, minimum275

temperature of coldest month, temperature annual range, mean temperature of warmest quarter,276

mean temperature of coldest quarter, annual precipitation amount, precipitation of wettest month,277

precipitation of driest month, precipitation of wettest quarter, precipitation of driest quarter (Karger278

et al., 2017);279

• European Space Agency’s CCI-LC snow probability monthly averages based on MODIS snow280

products MOD10A2 downloaded from http://maps.elie.ucl.ac.be/CCI/viewer/index.281

php;282

• USGS Global Ecophysiography landform classification and lithological map at 250 m resolution283

obtained from http://rmgsc.cr.usgs.gov/outgoing/ecosystems/Global/ and based on284

Global Lithological Map (GLiM) (Hartmann and Moosdorf, 2012);285

• MODIS Cloud fraction monthly images obtained from http://www.earthenv.org/cloud (Wil-286

son and Jetz, 2016);287

• Global Water Table Depth in meters based on Fan et al. (2013);288

• NASA’s monthly MODIS Precipitable Water Vapor images (MYDAL2_M_SKY_WV data set at http:289

//neo.sci.gsfc.nasa.gov);290

• Potential wetlands GIEMS map (Fluet-Chouinard et al., 2015);291

• Global Surface Water dynamics images: occurrence probability, surface water change, and292

water maximum extent; downloaded from https://global-surface-water.appspot.com/293

download (Pekel et al., 2016);294

• Density of earthquakes based on the USGS Earthquake Archives (http://earthquake.usgs.295

gov/earthquakes/);296
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Some CHELSA bioclimatic layers contained too many missing pixels or artifacts (e.g. mean temper-297

ature of wettest quarter, mean temperature of driest quarter, precipitation seasonality, precipitation of298

warmest quarter and precipitation of coldest quarter) and hence were not used for further modeling to299

avoid propagating those artifacts to final predictions.300

All original layers have been resampled to the standard grid at a spatial resolution of 1/120 decimal301

degrees (about 1 km) covering latitudes between -62.0 and 87.37. Some layers such as Water Vapour302

needed to be downscaled from 10 km to 1 km resolution, for which we used the bicubic splines algorithm303

as implemented in GDAL (Mitchell and GDAL Developers, 2014). We do not map Antarctica as this304

continent is dominantly covered with permanent ice and there are no training points. We limit all analysis305

to 1 km i.e. 1/120 degrees in geographical coordinates, to avoid too high of a computational load, even306

though many of environmental covariates are also available at finer resolutions.307

We use the same stack of covariates for mapping global distribution of biomes, FAPAR and forest tree308

species in Europe, in order to be able to compare model performance and investigate whether the most309

important covariates differ among the three case studies.310

Machine Learning Algorithms (MLA) examined311

We examine predictive performance of the following MLA’s:312

• Neural networks (Venables and Ripley, 2002),313

• Random forest (Breiman, 2001; Cutler et al., 2007; Biau and Scornet, 2016; Hengl et al., 2018),314

• Generalized Boosted Regression Models (Friedman, 2002),315

• K-nearest neighbors (Venables and Ripley, 2002),316

Neural networks are available from several packages in R. Here we use the nnet package (Ripley and317

Venables, 2017) also described in Venables and Ripley (2002). Random forest is efficiently implemented in318

the ranger package (Wright and Ziegler, 2016) and can be used to to process large data sets. Generalized319

Boosted Regression Models are available via the gbm package (Ridgeway, 2017). The K-nearest320

Neighbour Regression is available via the class package i.e. the knn function (Venables and Ripley,321

2002). Of these four algorithms, the K-nearest neighbors is computationally the least intensive and results322

in relatively simple models, while random forest is computationally the most intensive and results in323

large models. However, a limitation of the K-nearest neighbors approach is that it does not handle high324

dimensional data in comparison to random forest or neural nets.325

We also test using the same packages to fit models for regression-type problems (e.g. modeling326

of FAPAR), with the exception of the class package i.e. the knn function which can only be used for327

classification problems. For modeling FAPAR we instead added use of the Cubist approach, available via328

the Cubist package (Kuhn et al., 2017), and the Extreme Gradient Boosting approach available via the329

xgboost package (Chen and Guestrin, 2016).330

The caret package has many more MLA of interest for classification and regression problems than331

presented here, but many are not fully optimized for large data sets and hence also not applicable for large332

data sets (k 1000 observations with k 100 covariates).333
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Model selection334

For model fitting and model selection we use the caret package implementation for automated evaluation335

of models. When comparing performance of the models we look at classification accuracy based on336

cross-validation with refitting implemented in the caret package via the setting (Kuhn, 2008; Kuhn and337

Johnson, 2013):338

R> ctrl <- trainControl(method="repeatedcv", number=5, repeats=2)

which translates as: models are refit 5 times using 80 % of the data and predictions derived from the fitted339

models are compared with the remaining observations; this process is then repeated two times to produce340

stable results. The reported accuracy is the map accuracy (0–100 %) and/or Root Mean Square Error341

(RMSE) derived using all merged cross-validations (Kuhn, 2008; Kuhn and Johnson, 2013). Since most342

of the data sets are fairly large and model fitting can take hours, even in a High Performance Computing343

environment, we limit the number of repetitions to 2.344

For FAPAR (regression modeling) and selection of the final prediction model we use the same repeated345

cross-validation as implemented via the caret package. This is, in principle, similar to evaluation of the346

classification accuracy, except the comparison criterion is RMSE.347

All analyses were run on a High Performance Computing Amazon ec2 server with 64 threads (32348

CPU’s) and 256 GiB RAM. Total computing time to produce all outputs is about 12 hours of optimized349

computing (or about 600 CPU hours). 1 km data can be processed with 2 degree tiles, which usually350

requires some 5000 tiles to represent the land mask. All processing steps and preparation of input351

and output maps are fully documented at https://github.com/envirometrix/PNVmaps. All output352

maps are available for download via http://dx.doi.org/10.7910/DVN/QQHCIK under the Open353

Database License (ODbL).354

Performance of classification algorithms355

Performance of classification algorithms is assessed using 5–fold cross-validation with refitting of models.356

For evaluation of the mapping accuracy for biomes and tree species we use the map purity (0–100 %)357

and kappa metrics for the dominant (hard) classes as the key measures of predictive performance (Kuhn358

and Johnson, 2013). For each class we also provide predicted probabilities, which can be used to model359

transition zones and correlation between classes. For the predicted probabilities of class occurrences (0–1)360

we derived the True Positive Rate (TPR) and the Area Under the receiver operating characteristic Curve361

(AUC) as implemented in the ROCR package (Sing et al., 2005, 2016). TPR value = 1 indicates a perfect362

match to the class positives in ground data while TPR values < 0.5 can be considered poor mapping363

accuracy. Likewise, values of AUC close to 1 indicate high prediction performance, while values around364

0.5 and below are considered poor. TPR and AUC provide probably a more informative measure of the365

mapping accuracy than overall mapping accuracy / kappa, as they also allow detection of problematic366

classes.367

We also use Scaled Shannon Entropy Index, which can be derived using the per-class probability maps368
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(Shannon, 1949; Borda, 2011):369

SSEIs(x) =2
b

∑
i=1

Pi(x) · logb Pi(x) =
2∑

b
i=1 Pi(x) · logPi(x)

2b ·b21 · logb21
(5)

where b is the total number of possible classes and P is probability of class i. The Scaled Shannon370

Entropy Index (SSEI) is in the range from 0–1, where 0 indicates a perfect classification and 1 (or 100 %)371

indicates maximum confusion. Scaled Shannon Entropy Index should not be confused with classification372

accuracy assessment. For example, SSEIs < 60 % indicates relatively low confusion between classes i.e.373

high accuracy, while mapping error of 60 % would be considered a relatively poor classification accuracy374

result.375

For the biomes data set, where spatial clustering of points is significant, we also use repeated spatial376

cross-validation as implemented in the mlr package (Bischl et al., 2016):377

R> learner.rf = makeLearner("classif.ranger", predict.type = "prob")

R> resampling = makeResampleDesc("SpRepCV", fold = 5, reps = 5)

It has been shown that spatial autocorrelation in data and serious spatial clustering in training points378

can lead to somewhat biased estimate of the actual accuracy (Brenning, 2012). A solution to this problem379

is to apply spatial partitioning so that possible bias due to spatial proximity is minimized.380

We also compare results of modeling potential distribution of tree species in Europe with the habitat381

type maps of Europe produced independently by San-Miguel-Ayanz et al. (2016) and Brus et al. (2012).382

This comparison is visually based only.383

Performance of regression algorithms384

Performance of regression algorithms is also assessed using 5–fold cross-validation with refitting of385

models. For assessment of the mapping accuracy for FAPAR we use as the main performance measures386

the root mean squared error (RMSE):387

RMSE =

√

∑
m
j=1[ŷ(s j)2 y(s j)]2

n
(6)

and mean error (ME):388

ME =
∑

m
j=1[ŷ(s j)2 y(s j)]

n
(7)

where ŷ(s j) is the predicted value of y at the cross-validation location, and m is total number of cross-389

validation points. We also report amount of variation explained by the model (R2) derived as:390

R2 =

[

12
SSE

SST

]

×100% (8)
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where SSE is the sum of squared errors at cross-validation points and SST is the total sum of squares. A391

coefficient of determination close to 1 indicates a perfect model.392

RESULTS393

Global maps of biomes394

Results showed that a relatively accurate model of PNV could be produced from the BIOME 6000 data395

set using the existing stack of covariates at 1 km spatial resolution. Results of cross-validation show396

the random forest (RF) model to be the best performing method and distinctively superior to all other397

approaches (Fig. 5). The choice of the random forest mtry parameter had little impact on overall accuracy,398

most likely because there was a high overlap in covariate maps so that even with smaller mtry bagging399

the performance was relatively similar. The best prediction accuracy from among the four methods used400

for mapping global biomes was about 68 %. The predicted biome classes are presented in Fig. 6.401

nnet

gbm

kknn

ranger

0.45 0.50 0.55 0.60 0.65 0.70

ï
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Accuracy
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Figure 5. Predictive performance of the target machine learning algorithms for mapping global

distribution of biomes (N = 8653; spatial distribution of training points is available in Fig. 2). ranger =

random forest, kkn = K-nearest neighbors, gbm = Generalized Boosted Regression Models, nnet =

Neural networks.

The most important covariates for the random forest model were: total annual precipitation, monthly402

temperatures, CHELSA bioclimatic layers, atmospheric water vapor images and monthly precipitation.403

Landform parameters and lithology are not amongst the top 20 most important predictors. The decline in404

variable importance was, however, gradual — even lower ranked covariates might still affect the accuracy405

of predictions.406

The detailed cross-validation results show that the only difficult class to predict was prostrate dwarf407

shrub tundra (Table 1). The TPR value for most class probabilities ranges from 0.83 to 0.94 indicating408

relatively high match with ground data. The Scaled Shannon Entropy Index map (Fig. 7) showed that the409

zones of highest confusion between classes can be found in Afghanistan, Nepal, mountainous parts of the410

USA and Mexico, parts of Angola and Zambia. The map of the SSEI is comparable to the confusion map411
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Figure 6. Predicted PNV distribution for (a) global biomes with a zoom in on areas in Brazil (b) and

Europe (c). Labels indicates training points from the BIOME 6000 data set (Fig. 2). Background map

data: Google, DigitalGlobe.
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Figure 7. Scaled Shannon Entropy Index (SSEI) derived using predicted probabilities for 20 biomes

(classes) based on Eq.(5). High values of SSEI (red color) indicate high confusion between classes.

Table 1. Summary results of cross-validation for mapping global distribution of biomes (20 classes).

Classification accuracy for predicted class probabilities is based on 5–fold cross-validation with refitting.

ME = “Mean Error”, TPR = “True Positive Rate”, AUC = “Area Under Curve”, N = “Number of

occurrences”.

Biome class ME TPR AUC N

cold deciduous forest -0.01 0.89 0.96 201

cold evergreen needleleaf forest 0.01 0.87 0.98 892

cool evergreen needleleaf forest -0.07 0.87 0.93 201

cool mixed forest 0.01 0.86 0.97 1549

cool temperate rainforest 0.01 0.92 0.99 95

desert 0.00 0.89 0.96 330

erect dwarf shrub tundra -0.01 0.89 0.98 145

graminoid and forb tundra -0.03 0.83 0.91 128

low and high shrub tundra -0.01 0.88 0.98 393

prostrate dwarf shrub tundra -0.02 0.54 0.90 11

steppe 0.01 0.87 0.94 889

temperate deciduous broadleaf forest -0.01 0.84 0.94 961

temperate evergreen needleleaf open woodland 0.01 0.92 0.97 307

temperate sclerophyll woodland and shrubland 0.00 0.94 0.99 154

tropical deciduous broadleaf forest and woodland 0.01 0.86 0.97 215

tropical evergreen broadleaf forest 0.00 0.87 0.99 333

tropical savanna 0.01 0.89 0.99 291

tropical semi evergreen broadleaf.forest -0.05 0.87 0.98 160

warm temperate evergreen and mixed forest 0.01 0.85 0.96 985

xerophytic woods scrub -0.02 0.88 0.95 388

produced by Levavasseur et al. (2012), except in our case the Rocky Mountains in USA and mountains412

chains in South America show somewhat higher confusion. Many of the areas with high confusion index413

occur because the prediction model has problems distinguishing between closely-related biomes such as414

the “cold evergreen needleleaf forest” and “cool evergreen needleleaf forest” (e.g. Scotland).415

Results of the accuracy assessment based on the spatial Cross-Validation (mlr package implementation416
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(Bischl et al., 2016)) further indicate that the spatial clustering of points does have a large effect on the417

mapping accuracy: spatial CV drops from 0.68 to 0.33 and weighted kappa to 0.45. This likely happens418

due to high spatial clustering of the biome points and due to the high spatial autocorrelation of biomes.419

European forest tree species420

The results of 5–fold cross validation with re-fitting at each fold, confirms that random forest was also the421

best prediction method for the forest taxa data set (Fig. 8). The overall mapping accuracy was significantly422

lower than for biomes, but this reduction in accuracy was to be expected as many of these taxa occur423

in communities, resulting in natural overlap of forest tree taxa distribution. The mapping accuracy of424

individual taxa, however, can be relatively high with TPR values of between 0.16–0.90 and an average425

value of around 0.69 (Table 2). The final maps (Fig. 9) showed a relatively good match with ground426

data, meaning that with the exception of some species of rarer occurrence (Picea omorika, Cupressus427

sempervirens, Prunus mahaleb), the species probability distribution maps were relatively accurate.428
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Figure 8. Predictive performance of the target machine learning algorithms for mapping forest tree

species (N =1.5 million distribution of training points is available in Fig. 3). ranger = random forest, gbm

= Generalized Boosted Regression Models, nnet = Neural networks, kkn = K-nearest neighbors.

Table 2. Results of cross-validation for the forest tree taxa. Classification accuracy for predicted class

probabilities based on 5–fold cross-validation. ME = “Mean Error”, TPR = “True Positive Rate”, AUC

= “Area Under Curve”, N = “Number of occurrences”. Taxa with less than < 50 observations were

omitted from analysis.

Species name GBIF taxon ID ME TPR AUC N

Abies alba 2685484 -0.01 0.77 0.92 16,150
Acer campestre 3189863 -0.01 0.65 0.83 19,819
Acer platanoides 3189846 -0.02 0.68 0.82 30,801
Acer pseudoplatanus 3189870 -0.01 0.69 0.79 65,039
Aesculus hippocastanum 3189815 -0.01 0.59 0.85 8,088
Ailanthus altissima 3190653 0.04 0.69 0.92 1,576
Alnus cordata 2876607 0.05 0.73 0.95 904
Alnus glutinosa 2876213 0.00 0.71 0.77 91,292

Continued on next page
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Table 2 – Continued from previous page

Species name GBIF taxon ID ME TPR AUC N

Alnus incana 2876388 -0.03 0.76 0.95 6,873
Betula spp. 2875008 -0.03 0.63 0.83 7,313
Carpinus betulus 2875818 0.00 0.75 0.89 22,765
Carpinus orientalis 2875780 0.07 0.21 0.92 284
Castanea sativa 5333294 0.00 0.74 0.91 13,049
Celtis australis 2984492 -0.01 0.54 0.92 594
Cornus mas 3082263 0.03 0.51 0.90 827
Cornus sanguinea 3082234 -0.03 0.59 0.82 8,837
Corylus avellana 2875979 -0.02 0.67 0.76 48,140
Cupressus sempervirens 2684030 -0.04 0.21 0.70 284
Euonymus europaeus 3169131 -0.02 0.61 0.83 12,119
Fagus sylvatica 2882316 0.00 0.73 0.81 89,044
Frangula alnus 3039454 -0.02 0.71 0.86 26,873
Fraxinus angustifolia 7325877 -0.05 0.63 0.94 1,757
Fraxinus excelsior 3172358 0.00 0.67 0.74 91,111
Fraxinus ornus 3172347 0.02 0.86 0.99 2,765
Ilex aquifolium 5414222 -0.01 0.66 0.82 26,873
Juglans regia 3054368 -0.03 0.60 0.89 3,643
Juniperus communis 2684709 -0.03 0.71 0.86 21,189
Juniperus oxycedrus 2684451 -0.07 0.71 0.97 1,705
Juniperus phoenicea 2684640 -0.07 0.74 0.98 1,137
Juniperus thurifera 2684528 -0.03 0.87 0.99 1,886
Larix decidua 2686212 -0.01 0.71 0.89 15,581
Olea europaea 5415040 0.00 0.90 0.99 7,080
Ostrya carpinifolia 5332305 0.06 0.90 0.99 1,809
Picea abies 5284884 0.02 0.76 0.86 122,713
Picea sitchensis 5284827 0.05 0.80 0.96 13,023
Pinus cembra 5285134 -0.01 0.77 0.96 853
Pinus halepensis and Pinus brutia 5285604 0.03 0.86 0.99 16,951
Pinus mugo 5285385 0.00 0.85 0.98 6,667
Pinus nigra 5284809 0.01 0.79 0.93 13,540
Pinus pinaster 5285565 0.01 0.86 0.98 17,080
Pinus pinea 5285165 -0.04 0.85 0.99 4,910
Pinus sylvestris 5285637 0.02 0.78 0.85 153,928
Populus alba 3040233 -0.01 0.54 0.86 4,522
Populus nigra 3040227 -0.01 0.65 0.89 5,478
Populus tremula 3040249 -0.02 0.66 0.74 44,057
Prunus avium 3020791 -0.01 0.63 0.77 25,711
Prunus cerasifera 3021730 0.00 0.73 0.94 3,928
Prunus mahaleb 3022789 -0.01 0.31 0.75 517
Prunus padus 3021037 -0.03 0.63 0.78 21,705
Prunus spinosa 3023221 -0.01 0.69 0.81 31,783
Quercus cerris 2880580 0.00 0.80 0.97 4,109
Quercus ilex 2879098 0.02 0.85 0.99 22,972
Quercus pubescens 2881283 0.01 0.86 0.98 9,096
Quercus pyrenaica 2878826 0.00 0.88 0.99 6,253
Quercus robur and Quercus petraea 2878688 0.01 0.69 0.76 141,938
Quercus suber 2879411 -0.04 0.86 0.99 5,504
Robinia pseudoacacia 5352251 0.01 0.71 0.90 13,411
Salix alba 5372513 0.02 0.72 0.90 11,938
Salix caprea 5372952 -0.03 0.68 0.78 40,879
Sambucus nigra 2888728 0.00 0.70 0.81 44,961
Sorbus aria 3012680 -0.01 0.59 0.87 5,426
Sorbus aucuparia 3012167 -0.01 0.70 0.76 86,977
Sorbus domestica 3013206 -0.04 0.48 0.87 801
Sorbus torminalis 3012567 -0.03 0.62 0.92 2,558
Taxus baccata 5284517 -0.02 0.58 0.82 8,062
Tilia spp. 3152041 -0.02 0.50 0.82 4,393
Ulmus spp. 2984510 -0.03 0.64 0.92 5,426
Tilia spp. 3152041 0.00 0.58 0.85 4,522
Ulmus spp. 2984510 -0.02 0.69 0.91 5,375
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Figure 9. Examples of predicted PNV distributions (probabilities) for European forest tree species (a)

Quercus Ilex (GBIF ID: 2879098; 36,724 training points) and (b) Quercus robur / petraea (GBIF ID:

2878688; 404,296 training points). Background map data: Google, DigitalGlobe.

Figure 10. Comparison between predicted PNV distribution for (a) Fagus sylvatica (GBIF ID:

2882316) based on our results, and (b) based on the maps generated by Brus et al. (2012) i.e. showing the

presumed actual distribution of the tree species. Background map data: Google, DigitalGlobe.

429

The most important predictors in the random forest model for forest tree taxa were mean annual daily430

temperature, other monthly temperatures, elevation, CHELSA bioclimatic images, monthly precipitation431

and MODIS cloud fraction images. Covariates for lithology and landform classification did not feature in432

the top 20 predictors. It could be that the Global Lithological Map (GLiM) (Hartmann and Moosdorf,433

2012), which was used to represent changes in lithology, is too general for this scale of work.434

Fig. 10 illustrates differences between the map of actual distribution of Fagus sylvatica, generated by435
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Brus et al. (2012), and our predictions. In this case, the potential for extending habitat of Fagus sylvatica436

is significant, especially over parts of France and Germany.437

Correlation analysis using all predicted distribution maps (matrix of Pearson’s rho rank correlation438

coefficients for all possible pairs) indicated that many forest species are positively correlated, especially439

Fagus sylvatica and Abies alba and Populus nigra and Salix alba. High overlap between species probability440

maps reflects co-existence within communities, and thus could help with objectively defining forest441

communities.442
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Global monthly FAPAR443

The random forest approach also produced the best preditcions of potential FAPAR (Fig. 11). The models444

for FAPAR were highly significant with R-squared around 90 % and RMSE at ±24 (original values in445

the range 0–232 where 235 corresponds to FAPAR=100 %) for the most accurate model based on 5–fold446

Leave-Location-Out cross-validation. However, unlike with biomes and forest species distributions, the447

regression-tree Cubist model achieves equal performance to that of random forest. The most important448

covariates for predicting FAPAR were total annual precipitation, MODIS cloud fraction images, CHELSA449

bioclimatic images, and monthly precipitation images. The caret package further suggested that mtry450

parameter for Random Forest needs to be set higher than the default values for modeling FAPAR. Setting451

up mtry >25 helps reduce the RMSE by about 7–8 %.452
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Figure 11. Predictive performance of four machine learning algorithms for mapping global distribution

of FAPAR (N = 180,990). gbm = Generalized Boosted Regression Models, xgboost = Extreme Gradient

Boosting, ranger = random forest, cubist = Cubist Regression Models. (a) RMSE = Root Mean Square

Error, (b) R-squared.

Fig. 12 depicts an example of actual vs predicted (PNV based) FAPAR for February in the urban453

area around São Paulo, where lower actual FAPAR reflects the removal of natural vegetation. Even454

larger differences between the potential and actual FAPAR are observed in parts of Africa (Fig. 13),455

likely reflecting land degradation and destruction of vegetation cover. In areas of intensive agricultural456

production (e.g. Western Australia and Midwest USA), actual FAPAR can be much higher than potential457

FAPAR under potential natural vegetation in a given month. However this is often a temporal effect, as458

when PNV FAPAR is aggregated over the whole year, most places modified by human management show459

actual FAPAR is lower than potential. In Western Australian cropping zones for example, crop fields460

have higher FAPAR during the winter growing season, but since the fields are bare for most of the year,461

aggregated annual PNV FAPAR is higher overall. Whilst this pattern may hold for rain-fed agriculture, in462

intensively irrigated areas the FAPAR of the managed vegetation can be much higher than of the PNV over463

the whole year, especially in arid and semi-arid areas (e.g. Nile Delta). This supplemental irrigation, plus464
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Figure 12. FAPAR values for February based on the PNV samples: (a) actual (250 m resolution) and (b)

predicted (1 km resolution). A zoom in area around the city of São Paulo in Brazil.
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Figure 13. FAPAR values for Subsaharan Africa: (a) actual (250 m resolution) and (b) predicted (1 km

resolution) potential FAPAR values for February. Background map data: Google, DigitalGlobe.
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Figure 14. Predicted global FAPAR values for August (a) and standard deviation of the prediction error

for the map above (b). To convert to percent divide by 253.
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the fact that total annual precipitation is the most important covariate, indicates that water availability/use465

efficiency is likely the main driver of FAPAR beyond natural conditions.466

Maps of the standard deviation (s.d.) of the prediction error (Fig. 14) as derived in the ranger package467

by using the quantreg setting (Meinshausen, 2006) provide useful information about model quality468

i.e. where collection of additional points would maximize model improvement and which additional469

covariates could be considered. For example, the highest prediction errors for FAPAR for the month of470

August occurred in the transition areas between tropical forest and savanna areas, and in various biome471

transition zones in Asia.472
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DISCUSSION473

Accuracy and reliability of produced PNV maps474

Our results of modeling potential spatial distribution of global biomes, potential FAPAR and European475

forest tree taxa, show that relatively accurate maps of PNV can be produced using existing data and476

publicly available environmental grids. In the case of the biomes and forest tree taxa case studies,477

random forest consistently outperforms neural networks, gradient boosting and similar MLA’s. This is478

consistent with some other vegetation mapping studies (Li et al., 2016). However, random forest and479

Cubist models perform equally well in the case of FAPAR. Accuracy assessment results of our work480

indicate improvement in product accuracy in terms of greater spatial detail and smaller classification error481

than found in the mapping products of Levavasseur et al. (2012) and Tian et al. (2016).482

Precipitation, temperature maps and bioclimatic images are consistently the most important covariates483

in all three case studies. Currently available lithology/parent material maps are not indicated as signifi-484

cantly important covariates in any of the case studies. This may be because the existing lithologic map485

(Hartmann and Moosdorf, 2012) is not detailed enough, and/or because the differences in lithology/parent486

material are more important at finer resolutions/scales than those mapped here. Landform and lithology/-487

parent material covariates may be important at local scales but, globally, vegetation distribution seems to488

be dominated by climate. This is not surprising since nutrient availability is also partially controlled by489

climate and partially by the vegetation itself. Upon visualization of the mapping products however, it was490

noticed that the influence of topography is visible, especially in the maps of European forest tree taxa,491

suggesting that DEM derivatives are still important for mapping PNV.492

We have also not considered any soil layers as inputs to modeling as these are also often predicted493

from similar climatic and remote sensing layers already used in our case studies as covariates. Moreover,494

most of the predictive soil mapping projects use RS images reflecting human induced changes, which we495

have tried to avoid as these are more relevant for mapping actual vegetation. For mapping of the Potential496

Managed Vegetation, however, it would be probably more important to include also soil property / soil497

type maps into the modeling framework.498

Further improvements in prediction accuracy of global biome may be limited due to:499

1. BIOME reconstructions representing the vegetation of an area around a given site rather than at the500

exact point location, since the source of the pollen is on the order of 10–30 km around the site.501

2. The ambiguity of reconstructions for about 10 % of the sites, so that maximum accuracy of any502

prediction technique may not exceed 90 % without additional observation data.503

3. The fact that the BIOME reconstruction accuracy is known to be lower at ecotonal boundaries and504

in mountainous areas because of pollen transport issues, particularly the long-distance transport of505

tree pollen.506

4. The BIOME data set is compiled from many regional reconstructions and all harmonization was507

done a posteriori, which may have introduced additional noise into the data.508
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So far, we did not explore opportunities for combining multiple MLA models based on validation509

data i.e. for doing ensemble predictions, model averages or model stacks. Stacking models can improve510

upon individual best techniques, achieving improvements of up to >30 %, with the additional costs511

including higher computation loads (Michailidis, 2017). In our case, the extensive computational load512

from derivation of models and product predictions had already obtained improved accuracies, making513

increasing computing loads further a matter of diminishing returns.514

Our list of MLA models could also be extended. For example, we did not consider the use of515

Support Vector Machines (Li et al., 2016), or the Extreme Learning Machine algorithm (Deo and Şahin,516

2015). Both have proven to be suitable for mapping vegetation distribution and quantitative properties of517

vegetation. Not all MLA methods are, however, suitable for large regression matrices, as the computing518

time can be excessive and hence parallelization options are crucial.519

Our models of PNV FAPAR are based on simulated point data and the accuracy of how well models rep-520

resent natural vegetation areas is dependent on the representativeness of the http://protectedplanet.521

net and http://intactforests.org data. Also, many of the world’s biomes such as the Mediter-522

ranean region and similar, have sustained high levels of human impact in the past and are perhaps523

under-represented in the http://protectedplanet.net data set. Nevertheless, our cross-validation524

results (Leave-Location-Out method) indicate a good match between training and validation points.525

It would be useful to further explore what the performance of the models we used would be if we526

removed whole continents in the cross-validation process, or at least larger countries such as USA, China,527

Brazil, Australia, India and/or the South African Republic. For biomes, spatial Cross Validation showed a528

significant drop in accuracy; removing some larger countries from model training will likely also make529

difference. We did not explore effects of spatial proximity on mapping forest species and FAPAR as these530

are very dense point data sets. In addition, FAPAR training points were generated using simple random531

sampling, so spatial clustering should be non-existent.532

Fourcade et al. (2018) recently demonstrated that randomly chosen classical paintings can also be533

added to predictive modeling, and sometimes such models might be even better evaluated than models534

computed using real environmental variables. MLAs have even higher tendency to over-fit data and535

often perform very poor in extrapolation areas. These two remain the biggest drawbacks of using MLAs536

for species distribution modeling. It appears that the key to avoiding over-fitting or using non-realistic537

mapping accuracy measures, based on Fourcade et al. (2018), is in putting more effort in cross-validation538

(i.e. making it more robust and more reliable) and in ensuring that most important predictors and partial539

correlations can also be explained.540

Possible uses of the produced PNV maps541

Newbold et al. (2016) argued that many terrestrial biomes today have transgressed safe limits for bio-542

diversity, with grasslands being most affected, and tundra and boreal forests least affected. “Slowing543

or reversing the global loss of local biodiversity will require preserving the remaining areas of natural544

(primary) vegetation and, so far as possible, restoring human-used lands to natural.” (Newbold et al.,545

2016) Roughly half of the difference of around 466 billion tonnes of carbon can be attributed to the546

clearing of forests and woodlands, mostly for agricultural purposes (Erb et al., 2017). The other half of547
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Figure 15. Example of comparison between the actual land cover and actual FAPAR curves and our

predicted potential natural vegetation (PNV) and predicted PNV FAPAR curves. According to our results,

this location (a–b) in southern Spain (latitude=37.938478, longitude=-2.176692) currently utilizes 51 %

of the predicted FAPAR capability under PNV, indicating a substantive short fall in on-site

photosynthetically active biomass (c). Background map (a) source: OpenStreetMap; landscape view (b)

map data: Google, DigitalGlobe.

biomass carbon stock losses is derived from the management effects within a land cover class (Erb et al.,548

2017). The expansion of agriculture will probably continue in the future, leading to decreased biodiversity549
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and soil degradation (Mauser et al., 2015; Molotoks et al., 2017). On the other hand, Griscom et al. (2017)550

identify reforestation (e.g. biomass restoration) as the largest natural pathway to hold global warming551

below 2 çC. In that context, accurate maps of PNV could become increasingly useful for assessing the552

level of land degradation/biomass shortfall relative to the potential of a site. Such information can also553

inform selection of optimal steps towards restoring biomass stocks in managed vegetation in ways that554

better reflect the PNV FAPAR in those areas.555

Other uses of PNV maps include assessing the land potential i.e. land use efficiency given the difference556

between actual and potential vegetation. Consider for example a location in southern Spain called557

“Altiplano Estepario”, which has been identified by the Commonland company (http://commonland.558

com) and partners as a landscape restoration site. Fig. 15 shows results of a spatial query for this location559

and values of our PNV and PNV FAPAR predictions, in comparison to the actual land cover and actual560

FAPAR images. The figure shows that the actual FAPAR is as good as PNV FAPAR in February and561

March but that differences are large in the summer months. Overall, the median and upper FAPAR for562

this specific location are only 51 % of the PNV FAPAR, so we can say that this site is currently operating563

at 51 % of the predicted FAPAR capability under PNV. This comparison should also consider that our564

estimates of FAPAR come with an RMSE of ±0.085. Furthermore, as landscape restoration efforts have565

recently begun on this site — this work suggests that it ought to be possible to: (a) identify priority areas566

of PNV FAPAR shortfall, (b) use this information to inform in part the type of restoration strategies567

used, and (c) monitor the progress of restoration efforts in monthly time steps over several decades. Such568

practical measurement, monitoring and verification efforts are required to mobilize further investment in569

this emerging sector.570
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Figure 16. Some possible uses of maps of Potential Natural Vegetation.

Our PNV maps could also be used to estimate soil carbon sequestration and/or evapotranspiration571

potential, and gains in net primary productivity assuming return of natural vegetation (Fig. 16). Further572

more, by combining various estimates of potential natural and managed vegetation, one could design the573

optimal use of land both regionally and globally. Herrick et al. (2013), for example, provide a theoretical574

framework for estimating land potential productivity which could theoretically connect all land owners in575

the world to share local and regional knowledge.576

Maps of PNV for European tree species could also be used as a supplement to the distribution and577
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ecology of tree species produced by San-Miguel-Ayanz et al. (2016) and Brus et al. (2012). Species such578

as Carpinus orientalis, Cupressus sempervirens, Prunus mahaleb, Sorbus domestica are all predicted with579

TPR<0.5 indicating critically poor accuracy. Possible reasons for such low accuracy are problems with580

representation of training points and somewhat too broad ecological conditions, especially if a species581

follows some other more dominant tree species that have wide ecological niche. These maps should582

probably not be used for spatial planning.583

PNV for European tree species analysis could be made even more quantitative so that even predictions584

of dendrometric properties of tree species could be produced using similar frameworks. Also, similar PNV585

mapping algorithms could be used to map the potential canopy height based on the previously estimated586

map of the global canopy height (Simard et al., 2011).587

Technical limitations and further challenges588

Running Machine Learning Algorithms on larger and larger data is computationally demanding; however,589

by using fully parallelized implementation of random forest in the ranger package, we were able to590

produce spatial predictions within days. Model fitting and prediction using EU Forest and GBIF data (1.5591

million training points) was, however, very memory and time consuming and is not recommended for592

systems with <126 GiB RAM. In our case, model fitting took several hours even with full parallelization,593

and final models were >10 GiB in size. Prediction of probabilities took an additional 5–6 hours with the594

current computational set-up. In the future, scalable cloud computing could be used to overcome some of595

these computational limits. Machine learning will in any case continue to play a central role in analyzing596

large remote sensing data stacks and extracting useful spatial patterns (Lary et al., 2016).597

With enough computing capacity, one could theoretically use all 160 million records of distribution598

of plant species currently available via GBIF (Meyer et al., 2016) and from other national inventories599

to map global distribution of each forest tree species. In Europe the list is very short; globally this list600

could be quite long (e.g. 60,000 species). The primary problems of using GBIF for PNV mapping will601

remain however, as these are primarily due to high clustering of points and under-representation of often602

inaccessible areas with very high biodiversity (Yesson et al., 2007; Meyer et al., 2016). GBIF records have603

been shown in the past to give biased results (Escribano et al., 2016), so that spatial prediction methods604

that account for high spatial clustering, i.e. bias in training point representation in both space and time;605

would need to be developed further to minimize such effects.606

CONCLUSIONS607

Although PNV is a hypothetical concept, ground-truth observations can be used to cross-validate PNV608

models and produce an objective estimate of accuracy. As the prediction accuracy becomes more609

significant, the reliability of the PNV maps increases. Our analyses show that the highest accuracy for610

predicting 20 biome classes is about 68 % (33 % with spatial Cross Validation) with the most important611

predictors being total annual precipitation, monthly temperatures and bioclimatic layers. Predictions of 73612

forest tree species had a mapping accuracy of 25 % and with average TPR of 0.69, with the most important613

predictors being mean annual and monthly temperatures, elevation and monthly cloud fraction. Regression614

models for FAPAR (monthly images) were most accurate with R-square of 90 % (Leave-Location-Out CV)615
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and with the most important predictors being total annual precipitation, MODIS cloud fraction images,616

CHELSA bioclimatic layers and month of the year, respectively. Machine learning can be successfully617

used to model vegetation distribution, and is especially applicable when the training data sets consist of a618

large number of observations and a large number of covariates. Extending the coverage of observations of619

natural and managed vegetation, including through making new ground observations, will allow regular620

improvements of such PNV maps.621
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Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E.,709

Linder, H. P., and Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas.710

Scientific data, 4:170122.711

Kuhn, M. (2008). Building Predictive Models in R Using the caret Package. Journal of Statistical712

Software, 28(1):1–26.713

Kuhn, M. and Johnson, K. (2013). Applied predictive modeling. Springer.714

Kuhn, M., Weston, S., Keefer, C., Coulter, N., and Quinlan, R. (2017). Cubist: rule-and instance-based715

regression modeling. R package version 0.2.2.716

Lary, D. J., Alavi, A. H., Gandomi, A. H., and Walker, A. L. (2016). Machine learning in geosciences and717

remote sensing. Geoscience Frontiers, 7(1):3 – 10. Special Issue: Progress of Machine Learning in718

Geosciences.719

Leong, M. and Roderick, G. K. (2015). Remote sensing captures varying temporal patterns of vegetation720

between human-altered and natural landscapes. PeerJ, 3:e1141.721

Levavasseur, G., Vrac, M., Roche, D., and Paillard, D. (2012). Statistical modelling of a new global722

potential vegetation distribution. Environmental Research Letters, 7(4):044019.723

Li, X., Chen, W., Cheng, X., and Wang, L. (2016). A comparison of machine learning algorithms for724

mapping of complex surface-mined and agricultural landscapes using ziyuan-3 stereo satellite imagery.725

Remote sensing, 8(6):514.726

Marchant, R., Cleef, A., Harrison, S. P., Hooghiemstra, H., Markgraf, V., van Boxel, J., Ager, T., Almeida,727

L., Anderson, R., Baied, C., Behling, H., Berrio, J. C., Burbridge, R., Björck, S., Byrne, R., Bush, M.,728

Duivenvoorden, J., Flenley, J., De Oliveira, P., van Geel, B., Graf, K., Gosling, W. D., Harbele, S.,729

van der Hammen, T., Hansen, B., Horn, S., Kuhry, P., Ledru, M.-P., Mayle, F., Leyden, B., Lozano-730

Garcia, S., Melief, A. M., Moreno, P., Moar, N. T., Prieto, A., van Reenen, G., Salgado-Labouriau, M.,731

33/35

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26811v2 | CC BY 4.0 Open Access | rec: 27 Jul 2018, publ: 27 Jul 2018
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