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Many experiments have demonstrated that the rhythms in the brain influence an initial

information processing. We investigated whether the alternation rate of the perception of

a Necker cube depended on the degree of synchronization between two streams of spikes,

one stemming from an external flashing image and the other from the action of an internal

impulse stream. Knowing how a flickering stimulus with a given frequency and duration

affects the alternation rate of bi-stable perception we could estimate properties of the

internal signal. As the internal spike frequency is difficult to control, we varied the

frequency of the flicker stimulus. Our results show that the duration of the dominant

stimulus perception depends on the frequency or duration of the flashing stimuli. The

values of the stimuli, at which the changes of the duration of the perceived image was

maximal, we have called 8extremal9. While changing the flash duration, the extremal

parameters repeated periodically at 4ms intervals. Increasing the duration of the extremal

stimuli by less than 4 ms shortens the duration of the dominant stimulus perception.

Hence we may conclude that it is not the stimulus duration but the accurate coincidence

(timing) of the moments of switching on of external stimuli to match the internal stimuli

which explains our experimental results.
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1 Abstract

2

3 Many experiments have demonstrated that the rhythms in the brain influence an initial

4 information processing. We investigated whether the alternation rate of the perception of

5 a Necker cube depended on the degree of synchronization between two streams of spikes,

6 one stemming from an external flashing image and the other from the action of an internal

7 impulse stream. Knowing how a flickering stimulus with a given frequency and duration

8 affects the alternation rate of bi-stable perception we could estimate properties of the

9 internal signal. As the internal spike frequency is difficult to control, we varied the

10 frequency of the flicker stimulus. Our results show that the duration of the dominant

11 stimulus perception depends on the frequency or duration of the flashing stimuli. The

12 values of the stimuli, at which the changes of the duration of the perceived image was
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13 maximal, we have called 8extremal9. While changing the flash duration, the extremal

14 parameters repeated periodically at 4ms intervals. Increasing the duration of the extremal

15 stimuli by less than 4 ms shortens the duration of the dominant stimulus perception.

16 Hence we may conclude that it is not the stimulus duration but the accurate coincidence

17 (timing) of the moments of switching on of external stimuli to match the internal stimuli

18 which explains our experimental results.

19

20 Introduction

21

22 Neurophysiological studies addressing the coding of visual information in the brain led to 

23 the discovery of neurons which respond selectively to specific features of visual stimulus such as 

24 size, colour, orientation, movement, characteristics of contour and spatial location: subsequently 

25 called feature detectors (Lettvin et al., 1959; Hubel & Wiesel, 1959; Barlow, 1972; Barlow, et 

26 al., 1967; DeValois, 1973; Bishop, 1996; Bishop & Pettigrew, 1986). It was believed that the 

27 responses of these detectors lead to the identification of various features of stimuli essential for 

28 recognition. However, the properties of these detectors were not sufficient to explain the 

29 processes of stimuli perception and it became clear, that the spatial-temporal features (not spatial 

30 features alone) of a stimulus are very important. In addition to the selection of basic features the 

31 questions arise as to how these features are extracted from a background and analyzed and also 

32 how more complex features are synthesized (<time 3space= binding process King-Smith & 

33 Kulikowski, 1975; Pomerantz, Sager & Stoever, 1977; Parraga et al., 2005; Womelsdorf et al., 

34 2007; Lakatos et al., 2008).
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35 It has been shown that the brain rhythms enhance responses of different detectors (Cardin 

36 et al., 2009; Stanley et al., 2012), play a part in the formation of <more complex detectors= 

37 (Kiper et al., 1996; Leonard et al., 1996), increase signal to noise ratio and, hence, help to 

38 distinguish the signal from background noise (Kandil & Fahle, 2003; Roelfsema et al., 2004). 

39 There is also evidence that these rhythmic processes can influence processes related to both 

40 binocular and monocular rivalry or to bi-stable perception (Suzuki & Grabowecky, 2002; van Ee 

41 et al., 2005; Alais & Blake, 2005) but the mechanisms of this influence are not yet understood.

42 Some researchers have indicated that high-frequency rhythms can control the input of 

43 information in sensory systems (Gray & Singer, 1989; Cardin et al., 2009; Fründ et al., 2008; 

44 Laczo et al., 2011; Stanley et al., 2012). It has also been shown that when the external rhythm of 

45 a signal presentation coincided with the internal high-frequency rhythm, signal dispersion 

46 decreased and its effectiveness increased (Montemurro et al., 2008; Fründ et al., 2008; Cardin et 

47 al., 2009; Siegel et al., 2008; Vinck et al., 2010; Stanley et al., 2012). Thus, the factors 

48 influencing the perception of bi-stable figures, are many (Blake & Lee, 2005; Lankheet, 2006).

49 Stanley et al. (2012) showed that the selectivity of cat LGN neurons, sensitive to the 

50 direction of movement and orientation, increased with the occurrence of synchronous firing 

51 (external and internal streams) at the inputs of neurons. These authors proposed that the 

52 summation of excitation signals coming through different channels could not explain the 

53 observed effect. In this case the number of events of precise timing of incoming spikes are 

54 important but not the total cumulative effect. Moreover, it has been demonstrated that the greater 

55 the phase shift in time between two sequences of spikes affecting inputs of a neuron, the less the 

56 cumulative influence of these streams of impulses on the neuron activity. (Bi & Poo (2001); 

57 Zhang et al., 1998; Song et al., 2000). This property could be used for both recognition and 
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58 memorizing of the time-space pattern characteristics of an impulse stream in neural nets 

59 (Krunglevicius, 2015). It is proposed that for external pattern recognition it is important to know 

60 when the time-space properties of an external impulses stream coincide with the properties of an 

61 internal impulse stream. One research area where the properties of internal rhythms could be 

62 investigated is perception of bi-stable images. It is important to know the properties of the 

63 internal space-time pattern of the impulse stream when the alteration of ambiguous perception 

64 occurs.

65 It is assumed that when input and internal impulses are synchronized, their impact on the 

66 alteration of bi-stable perception increases. The question arises as to what are the temporary 

67 properties of the internal impulse stream which cause the alteration of bi-stable perception. As 

68 previously mentioned, the rhythmic processes can influence the processes related to both 

69 binocular and monocular rivalry or to bi-stable perception (Suzuki & Grabowecky, 2002; van Ee 

70 et al., 2005; Alais & Blake, 2005).

71 While varying the stimulus frequency, we recorded the alterations in perception of a 

72 Necker cube and the duration of the perception of a dominant image. The aim was to test 

73 whether the flash frequency and duration of stimuli influence perceptual alterations of bi-stable 

74 images.

75

76

77 Methods

78 Participants

79 Eight subjects (7 males, 1 female) participated in the experiments. Three (32, 49 and 66 

80 years old) had experience in psychophysical research. The other five (19, 20, 21, 22 and 22 years 
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81 old) were naive. Two experienced subjects participated in 20 sessions, one experienced and 1 

82 naive subject participated in 10 sessions and the remaining four participated in only three 

83 sessions. Results from the first session for one subject that participated in 20 sessions were 

84 removed from the data analysis because they varied significantly and differed significantly from 

85 the rest of his sessions. Subjects participated in one session per day, every day or with a less than 

86 5-day interval. All subjects signed an informed consent approved by Vilnius Region Ethics 

87 Commitee of Biomedical Research.

88

89 Stimuli and apparatus

90 Stimulus was the standard Necker cube, drawn in black lines on a white (85 cd/m2 3 

91 measured with PR680) background. The stimulus size was 1.7x1.7 degrees of visual angle. The 

92 transparent slide with the Necker cube was mounted on the specially designed tachistoscope with 

93 20 mm aperture. It had a chin or headrest, stabilizing the subject9s head. White PC-controlled 

94 LED illuminated the slide: a specially written program controlled an electric circuit to form LED 

95 luminous flux and the data was transmitted to a PC through an LPT port. The stimulus was 

96 switched on and off, i.e. flashed rhythmically at selected frequencies. The flash duration had an 

97 accuracy of about 5 ¿s. Subjects watched the stimulus monocularly with the right eye and this 

98 flashing image was seen for a fixed period. Subjects responded by pressing a key on a response 

99 box connected to the LPT port of the PC.

100

101 Procedure

102 The experiments were carried out in a dark and partly soundproofed room. Before each 

103 session, the subject adapted to darkness for 10 min. The Necker cube was rhythmically turned on 
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104 and off within a block lasting 180 s. On and off periods were equal and the frequency (as 

105 duration) of presentation in one block was constant. Eighteen blocks, each with a different flash 

106 duration and with a 60 s pause in between the blocks, were randomly presented during each 

107 session. The minimal flash duration was 4 ms, the maximum 20 ms, i.e. flash duration varied in 1 

108 ms steps in the different blocks. The non-flashing Necker cube was presented in one block. The 

109 position of the Necker cube was called <up position= (abbreviated UP) if its front wall was 

110 perceived higher than the rear, and the alternative position was called <down position= 

111 (abbreviated DOWN). The task was to press and keep the key pressed when the position of the 

112 Necker cube DOWN was perceived and to release and keep the key released when the position 

113 of the Necker cube UP was perceived. Knowing the moments of perceptual changes it was 

114 possible to determine the duration of perception of each of the Necker cube positions. We named 

115 this duration of perception an absolute perception time (abbreviated PT).

116

117 Data analysis

118  As the aim of this work was to check how the frequency and duration of stimulus affects 

119 the alternation of Necker cube perception, instead of PT we analyzed the changes of PT 

120 (abbreviated dPT), i.e.  and ÿÿýÿ(ý,ÿ) = ÿýÿ(ÿ) 2 ÿýÿ(ý,ÿ) &ÿÿÿÿý(ý,ÿ) = ÿÿÿÿý(ÿ) 2 ÿÿÿÿý
121 . Here i=the number of session, k = the block number (k= 1, ..., 18),  and  is (ý,ÿ) ÿýÿ(ÿ) ÿÿÿÿý(ÿ)
122 the mean dPT of UP and DOWN for all chosen blocks k over whole the ith session, and  ÿýÿ(ý,ÿ)
123 and  is the mean dPT of UP and DOWN for block k of the ith  session. Next, we ÿÿÿÿý(ý,ÿ)
124 calculated the means of dPT for the k-th blocks over all n sessions separately for UP and DOWN, 

125 i.e. , and joint averaged UP and DOWN function: ÿÿýÿ, ÿÿÿý(ý) = 3ÿÿ = 1
&ÿýÿ,  ÿÿÿý(ý,ÿ)/ÿ &ÿ
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126  For the means of dPT (  and ) we ran (ý) = ý(&ÿýÿ(ý) +  &ÿÿÿÿý(ý)). &ÿýÿ(ý,ÿ) &ÿÿÿÿý(ý,ÿ)
127 ANOVA and factor analysis.

128 Moreover, we determined the numbers of local extrema (maxima) of function �Ç(k,i) as a 

129 function of the duration frequency of the flashed stimulus. For that we firstly calculated the 

130 following function:

131 ,&ÿ1
(ý,ÿ) = {

1,   ÿÿ &ÿ(ý 2 1,ÿ) < &ÿ(ý,ÿ)
 

> &ÿ(ý + 1,ÿ) 0,   ÿÿ ýý/ÿÿ ýÿýÿ              �
132 i.e. function  will equal 1, if at point k a local maximum of function  is observed, &ÿ1

(ý,ÿ) &ÿ(ý,ÿ)
133 otherwise it will equal 0. Next, we summed dependencies obtained over all sessions &ÿ1

(ý) =

134 . The value of function  at point k is an integer number, and defines how many 3ÿ&ÿ1(ý,ÿ) &ÿ1
(ý)

135 times a local maximum at point k (duration of displayed stimulus) was observed through all 

136 sessions. Furthermore, we calculated the mean value M(�Ç1 (k)) of function . We also &ÿ1
(ý)

137 calculated how many maxima at point k of function  were above and below the value M. &ÿ1
(ý)

138 We assigned <1= for the all values that exceeded the value M, and <0= for the all values that were 

139 below the value M. Thus, we produced a sequence of 19s and 09s. The total number of 19s is 

140 named <number of case A=, and the total number of 09s is named <number of case B=. Thus, we 

141 had separate intervals at k-axis filled with 19s and 09s. The number of such intervals is called 

142 <number of runs=. We used <runs test for randomness= to check whether the distribution of 19s 

143 and 09s along the k-axis was random or non-random. In order to estimate how extreme points of 

144 function �Ç(k) were distributed over k-axis <runs test for randomness= was applied (Bradley, 

145 1968; SPSS)
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146 The factor analysis (PCA) was separately run on each of four sets of data obtained for 

147 RB, AS, MK and the five observers Rm5 (aggregated data of AV, IS, GS, MR and AS2 

148 observer).

149 As not all extracted factors may be significant (some may be related to random 

150 changes/fluctuations), we need to identify non-random factors. One of the most commonly used 

151 methods is the Kaiser9s criterion (Fabrigar et al., 1999), which retains factors with eigenvalues 

152 greater than 1. It is assumed that these factors characterize the assessed process reliably, although 

153 it should be noted that, according to other researchers (Hayton & Allen, 2004), such a liberal 

154 method of factor extraction does not guarantee that the selected factors will not be random. It is 

155 therefore suggested to perform parallel factor analysis on a randomly formed data array with the 

156 same data structure as the experimental data (Fabrigar et al., 1999; Hayton & Allen, 2004). 

157 Random factors are extracted with parallel factor analysis. When eigenvalues of these random 

158 factors are higher or approximately equal to eigenvalues extracted with PCA, the latter values 

159 should be rejected as related to random influences. In order to identify non-random factor, we 

160 also used parallel factor analysis. In our case the number of non-random factors was 6 to7 and 

161 they explained about 67 3 75% of the experimental data dispersion.

162

163

164

165 Results

166 The data revealed that the PT of the dominant image varied in timing from a few seconds 

167 to ten seconds depending on the subject. For example, DOWN was perceived longer than UP by 
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168 subjects RB and IS (2.09 s vs 1.67 s and 3.65 s vs 2.57 s respectively), but UP was perceived 

169 longer than DOWN by subjects AS and AV (8.4 vs 2.14 s and 4.07 s vs 3.04 s, respectively).

170 The results of ANOVA for a single factor (Table 1) reveal the factor of duration (the 

171 duration of exposure was 18 values: 0 and 4320 ms, where 0 = non-flickering condition) to be 

172 significant for all subjects.

173 The statistical analysis (post hoc LSD test) of the experimental data confirmed that the 

174 differences between the minimum and maximum values were statistically significant, and the 

175 extreme points were recurrent (Table 1 and Fig. 1, 2 a and b).

176 In summary: the maxima and minima of function  differ from each other with &ÿ(ý)

177 statistical significance (see Fig. 1 and 2 (a, b)). Furthermore, the preliminary statistical analysis 

178 leads us to hypothesize that the influence of the stimulus duration could be periodic. In order to 

179 check this hypothesis, we searched a periodic functions fitting for the approximation of 

180 experimental function . In other words, we searched function:&ÿ1
(ý)

181 ,ÿ(ý) = ÿ0 + ýsin (ÿ(ý 2 ÿ0)/ý)
182 in regard to which square deviation of function  was minimal (see OriginPro 9.1 software &ÿ1

(ý)

183 by OriginLab Corporation). Functions y(k) are pictured by dotted lines in Fig. 1 and 2 c, d. Their 

184 parameters (w) are presented in Table 2. According to the results of the approximation by the 

185 sine function, the duration and frequency of the stimulus influences the changes of perceived 

186 stimulus. This influence is repeated periodically with the changes to the frequency and duration 

187 of the stimulus. The sine period is TPT = 2×w, where w equals 3.8, 3.28, 3.42, and 2.98 ms for 

188 subjects AS, RB, MK and Rm5 respectively.
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189 In a similar way the function �Ç0 (k) describes how the other extrema (minima) points of 

190 function �Ç (k,i) are distributed along the k axis. Because the correlations between functions �Ç1(k) 

191 and �Ç0(k) were high and equal -0.8 ÷ -0.9, we analyzed only the functions �Ç1(k).

192 It should be noted that although the �Ç(k) dependences established have a similar 

193 periodicity for all subjects, the amplitudes of these functions at the extreme points vary 

194 considerably for different subjects.

195 This could mean that the deviation of perception time (dPT) depends upon several 

196 factors, rather than a single factor. That would be in agreement with other authors. For example, 

197 it was demonstrated that the so called <stochastic resonance= in the presence of a hypothetical 

198 neuronal noise and <periodic driving= (displaying stimulus) influence the alteration rate of the 

199 perception of the dominant image (Kim, Grabowecky & Suzuki, 2006). Moreover, according to 

200 Lankheet, (2006) the adaptation of detectors, and mutual backward lateral inhibition among 

201 them, affects the alteration rate of the dominant image. Pearson & Brascamp, (2008); Knapen et 

202 al., (2009) demonstrated that the properties of so called <perceptual memory= also have an 

203 influence on the dominance of the perceived stimulus. Taking these findings into account a 

204 factor analysis was run on the data (�Ç (k)) (principal components analysis 3 PCA). As only each 

205 of three subjects (RB, AS and MK) participated in a sufficient number of trials (20 trials), then 

206 PCA was performed for these three subjects separately (Fabrigar et al., 1999). Moreover, PCA 

207 was also run on aggregated data of five additional observers - Rm5 

208 PCA identified up to six eigenvectors for each subject. These eigenvectors explain on 

209 average 66.72 % -75% of the total data distribution. Parallel factor analysis (Fabrigar et al., 

210 1999; Hayton & Allen, 2004) was applied to identify non-random (significant) factors. As a 

211 result, it can be argued that four or five factors are non-random. However, knowing the 
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212 significant factors it is difficult to identify the relationship of all extracted factors with the 

213 processes responsible for the changes in perception of ambiguous figures. But some factor 

214 loadings (F3 or F4) explicitly depend on stimulus duration. We need to examine in detail this 

215 factor (F) loading, the value of those factor loadings versus duration of stimulus are shown in 

216 Fig. 1 and 2 (e, f).

217 The curves (functions) shown are approximately periodic (Fig. 1, 2 (a, b, c, d)). The 

218 standard peak analyzer procedure (OriginPro 9.1) was used to determine the maxima of 

219 functions. The locations of peaks for the different functions varied slightly. The first (k1), second 

220 (k2), third (k3) and fourth (k4) peaks are located along abscissa axis on intervals (5-7), (9-11), (13-

221 15) and (16-19) ms respectively. Differences in locations of the peaks for RB, AS, MK and Rm5 

222 are approximately equal to 2 ms. However, the factor loadings have four 3 five peaks, which are 

223 repeated at about the same value ~ 3.5 - 4 ms (see Fig. 1, 2 and Table 2). That means the 

224 obtained functions are shifted in phase relative to each other and their periods differ slightly 

225 (from 3.68 to 4ms).

226 It should be noted that for three observers (RB, AL and MK) the location of the peaks of 

227 factor loadings approximately coincide with the peaks of dPT, (�Ç (k)) and functions of 

228 maximum number (�Ç1(k) (Fig. 1(e, f), 2(e, f)). For these curves the first maxima are located at 

229 about the same interval ~ 738 ms. The second, third and fourth peaks are at 10 ~ 11 ms, ~ 13315 

230 ms and ~ 17319 ms respectively. The averaged distance among the peaks of all three functions 

231 for three observers (RB, AS, MK) are 3.93, 3.43 and 3.58 respectively. All of the functions for 

232 Rm5 data are also periodic, although their periods are slightly shorter. The averaged periods of 

233 (�Ç (k)), (�Ç1(k)) and F3 equal 4, 2.98 and 3.68 ms respectively. Distances among minima are 

234 also about 4 ms.
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235 Some years ago we addressed the problem of how the duration and frequency of flashing 

236 binocular competitive images affect the unstable perception in case of binocular rivalry. It was 

237 shown that while the flash frequency was changing, the rate of perceptual alteration varied 

238 periodically (Geissler et al., 2012; Vaitkevicius et al. 2013). In order to examine whether the 

239 PCA results obtained in case of the perception of ambiguous figures and binocular rivalry are 

240 similar, we compared these results. Fig. 3 graphically presents the factor loadings for 

241 experimental data on binocular rivalry and on the data of the Necker cube perception. 

242 Factor loadings obtained on the aggregated data for all observers who participated in 

243 Necker cube and binocular rivalry experiments are approximated by the following functions:

244 (F=5.24; p=0.02) andÿýý(ý) = 0.03 + 0.36 sin [
Ã(k + 0.02)

2.34
]

245  (F=6.67; p = 0.006) respectively.ÿýÿ(ý) =2 0.02 + 0.44sin [
Ã(k + 0.19)

2.27 ]

246 In both cases the periods of sine functions equal 4.68 and 4.54 ms. The periods of 

247 experimental curves recently obtained equal 3.5 - 4 ms (see Fig. 1, 2 and Table 2), i.e. 

248 differences are rather small.

249

250

251 Discussion

252 Analysis of the experimental results demonstrate that the duration and frequency of 

253 flashing stimulus influence the perception time (PT) of a dominant image, extending or 

254 shortening it. As our aim was to test whether the flash frequency and duration of stimuli 

255 influence perceptual alterations of bi-stable images we analysed the changes of PT rather than 

256 the absolute values. Similar analysis has been conducted by Fesi and Mendola (2014), who found 
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257 an inverse correlation between the alternation rate and the peak frequency of late evoked gamma 

258 activity in the primary visual cortex (in regions V1 and V2) for bi-stable images. Analysis of the 

259 data shows the influence of the stimulus frequency and durations on the alternation rate of 

260 perception to be periodic. The extrema (maxima or minima) of all three functions (�Ç(k), �Ç1(k) 

261 and loadings on F3 factor) recur along the k-axis, not only periodically, but also located 

262 approximately at the same places (see Fig. 1, 2 and Table 2). The stimuli, when the function Ç(k) 

263 is maximal or minimal is referred to as extremal. Moreover, we see that the number of extrema 

264 (maximum) versus duration of stimuli (or frequency of flashing) repeats periodically along the k 

265 axis. Locations of maximum and minimum points, as well as distances between them along the k 

266 axis are similar for all subjects. 

267 Analysing maximum points of functions �Ç(k) and �Ç1(k) along k-axis, we see that 

268 maximum points repeat periodically at about 4 ms intervals. This is consistent with the results 

269 described by Fesi & Mendola (2014) who showed that when the frequency of stimulus 

270 presentation is synchronized with the gamma activity, the rate of perception change decreases. 

271 According to the results obtained, when the duration of the extremal stimulus is increased by less 

272 than 4 ms, the duration of the perception of the dominant image decreases, although the external 

273 stimulus is longer and coincides in time with the internal action, the frequency of which keeps 

274 constant. Lengthening the flashing period of extremal stimulus by 4 ms, resulted in the 

275 probability of the extremal action of external stimulus recurring. On the basis of these results we 

276 can state that the exact time (discrete time) of switching on of the stimulus (but not stimulus 

277 duration) is important in order to reproduce the extremal action of the stimulus.
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278 The same will be true if we analyse another distribution of extremal (minima) points 

279 �Ç0(k). The dependency �Ç0 (k) was calculated in the same way as the function �Ç1(k). The 

280 correlation between functions �Ç1(k) and �Ç0 (k) was about -0.8 ÷ -0.9.

281 How could we explain, that the probability of change of perception versus the flicker 

282 frequency (or duration) of stimulus is a periodic function?

283

284 Hypothetical mechanism of interaction between internal rhythm and sequence of external 

285 stimulus presentation

286 Considering the influence of rhythmically flickering stimulus on the alternation rate of a 

287 dominant image, it should be noted that the period of flicker is about 2×4 ms = 8 ms. In other 

288 words, we assume that there is some internal rhythm, which specifies the discrete shortest time 

289 moments, when the sensory system input is the most sensitive. If the frequency of the stimulus 

290 presentation is a multiple of the frequency of this internal oscillator, then the efficiency of the 

291 stimuli should recur and be maximum every 8 ms. Thus, according to these results, the frequency 

292 of an internal oscillator should be approximately equal to 103/(2 × 4.0) = 125 c/s.

293 If a sequence of input stimuli coincides with a sequence of electrical activity of some 

294 internal oscillator, the time span of a stimulus presentation completely overlaps the time span, 

295 when the system is maximally susceptible. In this case, we can speak about synchronization of a 

296 sequence of external stimulus with a rhythm generated by an internal generator. This agrees with 

297 the experimental data of other authors (Vanagas et al., 1976; Geissler, 1987; Vanagas, 2001; 

298 Hasenstaub et al., 2005; Geissler et al., 2012; Fesi & Mendola, 2014). Moreover, it has been 

299 demonstrated that gamma frequency in the activity of thalamic cells boosts the selectivity of 

300 <detectors= of orientation and direction of motion (Stanley et al., 2012) and that high frequency 
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301 activation of neurons in the barrel cortex of the mouse reduces the dispersion of the response to 

302 olfactory stimulus (Huber et al., 2008).

303 The question is whether the efficiency of stimulus and its perceived brightness (strength) 

304 may be related. It is well known that perceived brightness of flashing stimulus depends on the 

305 flashing frequency and its duration (Talbot-Plateau law). In other words, the perceived brightness 

306 depends on stimulus power (which in our case is constant). However, the law holds when the 

307 frequency of flashing stimulus is higher than the critical flicker fusion (abbreviated CFF) (Hecht 

308 & Wolf, 1932; Bartley, 1938), otherwise, the influence of rhythmic stimulus on perception is 

309 more complex. For example, when the frequency of flashing stimulus increases, its perceived 

310 brightness changes non-uniformly: it increases at the beginning and then decreases (<brightness 

311 enhancement effect= Brüke-Bartley and Broca-Sulzer phenomena, Bartley, 1938, 1939).

312 Thus, when the frequency of stimulus presentation is lower than the CFF, the dependency 

313 of brightness of perceived stimulus on frequency is complicated, and it is difficult to relate it 

314 directly with the stimulus power. However, taking into account our data, it is difficult to explain 

315 why the influence of stimulus varies periodically every 4 ms. Lengthening the optimal duration of 

316 stimulus by 1, 2 and 3 ms, its efficiency initially reduces and recovers only after lengthening it by 

317 4 ms. After this its efficiency reduces again, until it is lengthened again by another 4 ms etc. Thus, 

318 duration of displaying stimulus alone does not determine the observed effect 3 the efficiency of 

319 stimulus varies every 4 ms, i.e. it is also related to the moment of time when the stimulus is 

320 switched on. Thus it can be related to the accurate coincidence in time of two streams (external 

321 and internal) of neuron impulses (Huber et al., 2008; Stanley et al., 2012). That means the changes 

322 of stimulus in time are important (at the moment of switching on stimulus its changes are 
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323 maximum), in other words we need to take into account the differentiation of stimulus with respect 

324 to time.

325 The question is, whether such an information processing method, when the static signal is 

326 differentiated with respect to time, can occur under natural conditions, when there is no flashing 

327 signal in reality. Investigation of neural processes in the retina (Roska et al., 2006; Hsueh et al., 

328 2008) confirmed that the differentiation of signals with respect to time could be initiated at the 

329 low level of the visual system. It is shown that ganglion cells receive excitation signals from 

330 bipolar cells and inhibition delayed signals from amacrine cells. Due to this interaction, ganglion 

331 cells get differentiated signals with respect to time. Moreover, it is well known that the eye is 

332 constantly moving, hence the image of an object is shifted in time from one place to another on 

333 the retina. Amplitudes of the small movements (or tremor) are about (20340 arcsec) but 

334 frequency can be high (803250 Hz) (Carpenter, 1988; see also King-Smith 1978).

335 Due to these two processes at the output of separate ganglion cells, information about the 

336 changes of image in the vicinity of its receptive field (RF) with respect to time and space can be 

337 gathered. Thus, at the outputs of ganglion cells a high-frequency sequence of discrete signals can 

338 be formed (Vaitkeviius et al., 1983).

339 There are experimental findings confirming that the micro movements of the eyes could 

340 be involved in this low-level coding process of sensory information (differencing of signals with 

341 respect to time and space) (Kulikowski, 1971; Leopold·& Logothetis, 1998; Roska et al., 2006).

342 It is also important to note, that according to our data, the influence of the frequency of 

343 stimulus flicker on the alternation rate of the dominant image perception is similar in both 

344 conditions of a binocular rivalry and monocular perception of bi-stable images. Binocular rivalry 

345 originates from the different images presented to the retinas of each eye: it is impossible for the 
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346 human to perceive two different stimuli at the same point in space. At any given moment of time 

347 only one object (the dominant image) is perceived, and another object (the image on the retina of 

348 the other eye) is not perceived 3 it is suppressed. The situation is different in the case of the 

349 Necker cube: the image of a cube is displayed in the retina of one eye. In other words, two 

350 different Necker cubes can create exactly the same perceived image. Since it is impossible to 

351 perceive two different objects in the same time and point in space, the subject perceives only one 

352 of two possible images (dominant image) at different moments in time, and any other possible 

353 perceptual option is suppressed. The loadings on the factors (F3) as a function of stimulus 

354 duration are similar both in the case of binocular rivalry and in the case of the Necker cube (see 

355 Fig. 3). Comparing perception of ambiguous figures and binocular rivalry, O9Shea et al. (2009) 

356 previously drew the same conclusion. Thus, we can assume that these factor loadings are the 

357 result of similar processes involved both in monocular and binocular perception.

358

359 Influence of other processes on perception

360 The hypothesis about availability of discrete time moments optimal for the acceptance of 

361 external stimulus can only partially explain the influence of the stimulus frequency and duration 

362 on the alternation rate of bi-stable perception. The perception time of dominant images lasts for 

363 seconds, and is many times longer than the duration of the period of effective synchronizing 

364 rhythm. Consequently, the alternation rate of ambiguous images occurs after repeated 

365 presentations of stimuli. How can this be explained? In addition to the hypothesis of adaptive 

366 changes in activity of the dominant center corresponding to perception of a dominant stimulus, it 

367 is necessary to note the following: there is evidence that the perception time of dominant image 

368 (of bi-stable stimulus) increases when bi-stable stimulus is switched off for a few seconds and is 
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369 switched on again (Leopold et al., 2002; Leopold & Logothetis, 1999). As the duration of iconic 

370 memory does not exceed 0.231 s (Sperling, 1967), the subject cannot see the stimulus at this 

371 moment at all. It can be assumed that at least two processes must be distinguished in this case, 

372 one related to the maintenance of the dominant image, another related to the influence on the 

373 alteration of the perceived image. For perceptual alteration to occur, one should have an 

374 alternative. However, after the stimulus is switched off the subject sees nothing (there is no 

375 alternative stimulus in iconic memory) (Leopold & Logothetis, 1999). Due to inertia, only a trace 

376 of the dominant image is maintained in the <top-down= streams but not in iconic memory. In this 

377 case, the absence of stimulus on the input of the sensory system can extend the perception time 

378 of the dominant image: as there is no information as to which alternative image is possible to see 

379 (Leopold & Logothetis, 1999; Leopold et al., 2002; Lee et al., 2005; Pearson & Brascamp, 

380 2008).

381 Thus, we can assume that in order to initiate the changes to a perceived image it is 

382 necessary to have enough strong sensory stimuli, the time 3space code of which would coincide 

383 with the code of an alternative image.

384 We further conducted the simulation of interaction between the external and internal 

385 streams of pulses. For the sake of simplicity, we assumed that the external and internal streams 

386 of pulses can be described by sequences of rectified harmonic signals. Moreover, the external 

387 and internal streams of pulses transferred to inputs of a neuron, the output of which was equal to 

388 the product of two input stimuli (two rectified harmonic signals). Digital simulations 

389 demonstrated that the beating of pulses of two streams originated at the output of this neuron. 

390 When the frequency of the internal stimuli was a multiple of the frequency of the external 

391 stimuli, the envelope of the beating can be described by a rectified single harmonic and the 
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392 maxima of the envelope along the k axis recurs periodically at intervals equal to the flash 

393 duration of the external stimulus. Moreover, the value of all the maxima are equal. In other cases 

394 the number of maxima of the envelope increase. They are distributed along the k axis non-

395 periodically and their amplitudes vary significantly. That is consistent with our experimental 

396 results.

397 The maxima mean that the perception time of the dominant image increases and hence 

398 the rate of the perceptual alteration decreases, i.e. the probability to perceive the suppressed 

399 alternative image decreases. Thus, when the extremal sequence of stimuli are displayed, the 

400 suppression of the alternative image increases maximally, i.e. the suppressive strength of the 

401 external stimuli is maximal. According to (Stanley et al., 2012) it is not the duration of two 

402 acting pulses but their accurate coincidence (timing) which determines the strength of the action 

403 of these two stimuli (external and internal stimuli). If the frequency of the internal rhythm is 

404 constant then, taking our data into account, this frequency should be approximately equal to 125 

405 c/s.

406

407

408 Conclusions

409 Our paper addresses the problem of how the flickering image of a Necker cube influences 

410 the alternation rate of the perception of an ambiguous figure. We measured the durations of the 

411 perception of a dominant stimulus and calculated the changes in the duration of the dominant 

412 stimulus perception versus the frequency and duration of a displayed Necker cube. These 

413 changes in duration were longest at some values of the stimuli, which we called extremal. 

414 Increasing these changes increases the duration of the dominant stimulus perception, i.e. the rate 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26778v1 | CC BY 4.0 Open Access | rec: 27 Mar 2018, publ: 27 Mar 2018



415 of perceptual alternation decreases. While changing the duration and frequency of flash, the 

416 extremal parameters recur periodically at approximately 8 ms intervals which suppose existance 

417 of internal rhythm of 125c/s for bi-stable visual perception.

418
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Figure 1

The dPT function (�Ç(k)) versus the flash duration (or block number) (a, b) for observers

(AS and RB) respectively.

The abscissae 3 duration of flashing stimulus (ms), the ordinate 3 dPT value (s). The dashed

line represents the dPT of non-flickering stimulus relative to the mean of perception time for

all sessions of the given subject. The continuous curve with filled symbols 3 the curves dPT.

Capital letters on the top of every picture mark different observers (number of all sessions,

on which the data was collected, is in the brackets). The points labelled by asterisks mark

points, where differences among neighbouring extrema of �Ç(k) were statistically significant.

(c, d): The number of local maximum vs flash duration (function <!--[if !msEquation]--> <!--

[endif]-->); (e, f): Factor loadings (F) vs the flash duration (ms) for observers AS and RB

respectively. The solid lines present the functions pictured experimental dependences; the

dashed lines are sinusoidal functions optimally approximated experimental dependences.
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Figure 2

The analogous functions as in Figure 1 for MK and Rm5 observers.

All the symbols are the same as in Figure 1.
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Figure 3

Factor (F3) loadings against duration of flashing stimulus.

(a) The continuous solid and dashed point-like curves are the factor loadings (F3) calculated

for the Necker cube and binocular rivalry data of two different groups of observers

respectively (Geissler et al., 2012; Vaitkevicius et al. 2013). (b, c) The solid line indicates

factor loadings for Necker cube (Nc) and binocular rivalry (BR) respectively. The dashed lines

show sine functions approximated experimental curves.
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Table 1(on next page)

ANOVA results for the factor of flash duration for separate subjects.
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Table 2(on next page)

The parameters of y(k) functions.
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Subjects
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�Ç (k)

�Ç1(k)

F

�Ç (k)

�Ç1(k)

F

�Ç (k)

�Ç1(k)

F

k
1

7

8

6-8

8-9

8

7

7

7

7

6-7

6-7

5

k
2

11

10-11

11

12

11

11

10

10

10

9

9

9

k
3

15

15

15

14-15

14-15

15

13

13

14-15

15

15

13

k
4
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18
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T
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T
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3.42, (w = 1.71)

4 (w = 2)

Mean = 4
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3.68, (w = 1.84)
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3 F factor loading.

4 k1, k2, k3 and k4 3 the location of the first, second, third and fourth extrema peak (maxima) of 

5 corresponding function along abscissa (k).

6

7

8
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