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Mutualistic symbiosis with fungal endophytes has been suggested as a possible

mechanism for extreme environment colonization by Antarctic vascular plants. Fungal

endophytes improve plant stress tolerance and performance by increasing plant hormone

production and the uptake of water and nutrients. However, there are still gaps regarding

the mechanisms by which these process ocurr. This work explores the role of root fungal

endophytes in the production of exolytic enzymes involved in endophyte-mediated

mineralization and nutrient uptake, as well as their impact on the performance of Antarctic

plants. Hence, we evaluated the ability of fungal endophytes isolated from the two native

Antarctic vascular plants, Colobanthus quitensis and Deschampsia antarctica, to

enzymatically degrade different nutrient sources, mediate nitrogen mineralization and

enhance growth of the host plant. Single-spore derived isolates were identified using

molecular and morphological approaches. Penicillium chrysosgenum and Penicillium

brevicompactum were identified as the dominant root endophytes in C. quitensis and D.

antarctica, respectively. Root endophytes exhibited hydrolytic and oxidative enzymatic

activities involved in carbohydrate or protein breakdown and phosphorus solubilization. In

addition, the rates and porcentages of nitrogen mineralization, as well as the final total

biomass were significantly higher in C. quitensis and D. antarctica individuals with root

endophytes relative to those without endophytes. Our findings suggest that root

endophytes exert a pivotal ecological role based not only on their capability to breakdown

different nutrient sources but also accelerating nitrogen mineralization, improving nutrient
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acquisition and promoting plant growth in limited nutrient soils in Antarctic terrestrial

ecosystems
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ABSTRACT 30 

Mutualistic symbiosis with fungal endophytes has been suggested as a possible mechanism for 31 

extreme environment colonization by Antarctic vascular plants. Fungal endophytes improve plant 32 

stress tolerance and performance by increasing plant hormone production and the uptake of water 33 

and nutrients. However, there are still some gaps regarding the mechanisms by which these 34 

processes occur. This work explores the role of root fungal endophytes in the production of 35 

exolytic enzymes involved in endophyte-mediated nitrogen mineralization and nutrient uptake, as 36 

well as their impact on the performance of Antarctic plants. Hence, we evaluated the ability of 37 

fungal endophytes isolated from the two native Antarctic vascular plants, Colobanthus quitensis 38 

and Deschampsia antarctica, to enzymatically degrade different nutrient sources, mediate nitrogen 39 

mineralization and enhance growth of the host plant. Single-spore derived isolates were identified 40 

using molecular and morphological approaches. Penicillium chrysogenum and Penicillium 41 

brevicompactum were identified as the dominant root endophytes in C. quitensis and D. antarctica, 42 

respectively. Root endophytes exhibited hydrolytic and oxidative enzymatic activities involved in 43 

carbohydrate or protein breakdown and phosphorus solubilization. In addition, the rates and 44 

percentages of nitrogen mineralization, as well as the final total biomass, were significantly higher 45 

in C. quitensis and D. antarctica individuals with root endophytes relative to those without 46 

endophytes. Our findings suggest that root endophytes exert a pivotal ecological role based not 47 

only on their capability to breakdown different nutrient sources but also accelerating nitrogen 48 

mineralization, improving nutrient acquisition and promoting plant growth in limited nutrient soils 49 

in Antarctic terrestrial ecosystems. 50 

 51 
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INTRODUCTION 55 

 56 

Microbial endophytes are defined as symbiotic microorganisms capable of migrate into the plant 57 

endosphere, colonizing healthy plant tissues inter-and/or intracellularly and persisting for the 58 

whole or part of the life cycle without cause disease symptoms in the host plant (Porras-Alfaro et 59 

al 2011; Hardoim et al 2015). In mutualistic symbiosis, microbial endophytes can enhance nutrient 60 

acquisition and transfer, promote growth, increase reproductive success, confer biotic defense or 61 

abiotic stress tolerance to their host plant (Bacon and White 2000; Hardoim et al 2015; Bacon and 62 

White 2016). For example, it has been proposed that the interaction between both, plant and 63 

mycorrhiza (van der Heijden et al. 2008) and plant and microbial endophytes (Rodríguez et al. 64 

2009) is a key factor for the performance and survival of plants in terrestrial ecosystems (Mandyam 65 

and Jumpponen 2005). Nevertheless, in cold-stressed habitats, where mycorrhizas are usually 66 

absent, fungal endophytes frequently act as the main root mutualistic symbionts (Mandyam and 67 

Jumpponen 2005; Upson et al. 2009).  68 

Root-associated dark septae endophytes (DSE) share numerous similarities with 69 

mycorrhizal; nevertheless, most endophytes do not have an obligate biotrophic life stage and live 70 

at least part of their life cycle away from the plant (Mandyam and Jumpponen 2005; Newsham 71 

2011). The mechanisms for plant colonization and the nature of the symbiosis are poorly 72 

understood when compared with mycorrhizal fungi (Saikkonen 2007). In this context, the ability 73 

of fungal endophytes to transfer nutrients to the host is a relatively new discovery and the 74 

mechanisms of this transfer are unknown (Behie et al. 2012, 2014). Previous reports have 75 

demonstrated that fungal endophytes are able to produces extracellular enzymes and use different 76 

sources of carbon, nitrogen and phosphorus suggesting that fungal endophytes can access to and 77 
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process organic nutrient pools (Caldwell et al. 2000, Mandyam et al. 2010). Since almost all plants 78 

in natural ecosystems appear to be symbiotic with fungal endophytes (Rodriguez et al. 2009), it is 79 

important to investigate the potential role of root fungal symbionts in nutrient uptake and transfer 80 

(Behie et al. 2014) as well as their impact on the adaptation of symbiotic plants to stressful 81 

environments characterized by nutrient shortage.  82 

The Antarctic continent represent one of the most stressful environments on Earth for plant 83 

life (Pointing et al 2015) entirely covered by permanent ice and snow, with only 2-3% of its surface 84 

area available for plant colonization and development (Convey et al. 2008). It is subject to severe 85 

environmental conditions, including cold temperatures and shortage of water and organic nutrients 86 

(carbon, organic matter, nitrogen and phosphorus) in its acidic soils (Convey et al. 2011, Convey 87 

et al. 2014). In these extreme conditions, only two native vascular plants, Colobanthus quitensis 88 

(Antarctic pearlwort) and Deschampsia antarctica (Antarctic hairgrass) occur naturally (Lewis-89 

Smith 2003). 90 

In Antarctic terrestrial ecosystems, nitrogen (N) supply regulates primary productivity, 91 

then the ability to acquire N at an early stage of availability is relevant to the success of 92 

photosynthetic organisms (Hill et al. 2011). The accumulation of faeces from penguins in rookeries 93 

(ornithogenic soils) represents an abundant source of organic nitrogen (Lindeboom 1984), which 94 

is mineralized for the benefit of Antarctic plants by soil microbial activities (Roberts et al. 2009). 95 

Nevertheless, in areas where there are low inputs of animal faeces, plants are largely dependent on 96 

organic nitrogen, which enters the soil as protein, in the form of short peptides (Hill et al. 2011). 97 

Thus, the growth of Antarctic plants may be limited both by slow rates at which proteins are 98 

decomposed to amino acids, as well as by low nitrogen mineralization rates to ammonium (NH4
+) 99 

and nitrates (NO3
-), the main forms in which antarctic plants are able to acquire and use this 100 
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nutrient (Rabert et al. 2017). But despite these limitations, antarctic plants are able to take up 101 

organic nitrogen directly either as peptides or amino-acids, conferring a key advantage for the 102 

acquisition of limiting nutrients in this stressful ecosystem (Hill et al. 2011).  103 

Upson and coworkers (2009) reported the activity of DSE root-endophytic fungi in the 104 

nitrogen uptake involving organic nitrogen sources (mainly peptides), thus pointing out a possible 105 

second route of nitrogen assimilation. In this context, the role of these endophytes in litter protein 106 

breakdown and amino-acid mineralization could appear to be determinant for nitrogen acquisition. 107 

However, besides the study of Upson et al. (2009) and Hill et al. (2011) with Deschampsia 108 

antarctica, this complementary route for nitrogen acquisition has been seldom evaluated, for 109 

which the involved mechanism remains unknown for other species like Colobanthus quitensis.  110 

To date, there have been few attempts to characterize the exolytic enzyme production 111 

mediated by fungal endophytes and its impact on the nutrient uptake process (but see, Mandyam 112 

and Jumpponen 2005; Mandyam et al. 2010). In fact, as far away we know, this mechanism has 113 

not been evaluated among antarctic vascular plants. Accordingly, the present study aims: i) to 114 

identify dominant root fungal endophytes associated with both native antarctic vascular plants, ii) 115 

to evaluate the ability of antarctic fungal endophytes to produce enzymatic extracellular machinery 116 

able to degrade the main nutrient sources, iii) to test the ability of plant-endophyte partnership to 117 

mineralize nitrogen, and iv) to assess the effect of fungal endophytes on growth of C. quitensis and 118 

D. antarctica. 119 

 120 

 121 

 122 

 123 
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METHODS 124 

 125 

Isolation and identification of fungal endophytes 126 

We count with the authorization given by Chilean Antarctic Institute (INACH) to collect all these 127 

plants (authorization number: 1060/2014). Plants of D. antarctica and C. quitensis were collected 128 

from sites around of the Antarctic Polish Station “Henryk Arctowski” on King George Island, 129 

South Shetland Islands (62º09´S; 58º27´W during growing season (January 2013-2014). The study 130 

site corresponds to a fringe parallel to coast line (Western shore of Admirantly Bay, King George 131 

Island) with smooth slopes, influence of salt spray, abundant sandy substrate. This site experiences 132 

prevailing northwest winds which generate a high evaporative demand for plant and substrates 133 

with low water availability (Kozeretska et al. 2010; Molina-Montenegro et al. 2013). In these 134 

coastal areas, the ocean is the primary source of mineral salts and contributes to the salinity of 135 

freshwater bodies and soils (Kozeretska et al. 2010). Vegetation in this area is typical of the 136 

Maritime Antarctic ice-free soils and dominated mainly by flowering plants such as D. antarctica 137 

and C. quitensis, with these species occupying fairly large area adjacent to the cost line.  138 

For isolation of root-inhabiting fungi, individual plants from D. antarctica and C. quitensis, 139 

were sampled and surface sterilized with bleach (0.5% active ingredient sodium hypochlorite) for 140 

1 min, washed with sterile water and treated with 70% alcohol for 2 min followed by several 141 

washes with sterile distilled water. The root fragments were cultured on agar water (1.5%) and 142 

incubated up to two months at 25 ºC in darkness. Roots were routinely observed under a dissecting 143 

microscope, and the emerging fungi were transferred onto cornmeal agar and potato dextrose agar 144 

(CMA; PDA; Becton Dickinson & Co, Maryland). Single-spore derived isolates were obtained, 145 

purified and maintained by routine sub-culturing. After incubation and growing on solid media 146 
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plates, individual cultures were stored at 4ºC. Additionally, mycelia pieces were kept in sterile 147 

glycerol at -80ºC for long-term preservation. Colonies growing out from individual root fragments 148 

were identified according to taxonomical keys (Kieffer and Morelet 2000). Afterwards, the identity 149 

of single-spore derived fungal isolates was confirmed using molecular tools as described below. 150 

The frequency of root fungal endophytes (FFE) was calculated according to the following 151 

formula: [(Nrc / Nra) x 100], where Nrc and Nra, are the number of roots from which fungi were 152 

independently isolated and the total number root fragments analyzed, respectively (Rosa et al. 153 

2010). The relative isolation frequency (RIF) corresponds to a measure of abundance of each of 154 

the fungal endophytes calculated by the following formula: percentage abundance of single fungal 155 

endophyte = (occurrence of single fungal endophyte x 100 / occurrence of total fungal endophytes) 156 

(Hoff et al. 2004). The values of relative isolation frequency (RIF) were considered to determine 157 

the most abundant fungal morphotypes in D. antartica and C. quitensis.  158 

The most abundant single-spore derived isolates from each Antarctic plant were used in 159 

the subsequent experiments including screening of enzymatic activities and nitrogen 160 

mineralization assays. The inoculum of fungal isolate was derived from single spore fungal isolates 161 

cultured on potato dextrose agar (PDA) medium diluted ten times and supplemented with 50–100 162 

mg/ml of ampicillin, tetracycline, and streptomycin. Fungal cultures were incubated at 22 ºC with 163 

a 12 h light regime. After 5–14 days of growth, conidia were harvested from plates by adding 10 164 

ml of sterile water and gently scraping off spores with a sterile glass slide. The spore suspension 165 

was adjusted to 100 ml of 0.05% Tween-80, sterilized solution, filtered through four layers of 166 

sterile cotton cheesecloth gauze and spore concentration adjusted to 107–108 spores/ml. 167 

 168 

 169 
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Extracellular enzymes activities 170 

Extracellular hydrolytic and oxidative enzymatic activities were assayed in solid media using five 171 

Petri dishes plates per assay (Krishnam et al. 2016). A basal medium composed of mineral salts 172 

was used and supplemented with the appropriate target substrate as described below. Each plate 173 

containing the tested culture media was inoculated with a 5-mm fungal plug cored from PDA 174 

slants. Petri dishes of each isolates were incubated in darkness in different growth chambers, over 175 

a period of four weeks at three different temperatures 4°C, 15° C and 25°C (Krishnam et al. 2016). 176 

For detection of amylase, cellulase and hemicellulase activities (polysaccharides hydrolases), 1% 177 

of starch [-1,4 glucan], cellulose-azure (Green and Highley 1997) and xylan were used as carbon 178 

sources. The strength of activity was classified based on the diameter of the hydrolyzed zone or 179 

the development or disappearance of color in the solid media. All halo tests were performed 180 

incorporating negative controls, consisting of plugs with active mycelia subjected to a process of 181 

inactivation by pulses of UV light (5.6 J/cm2 per pulse, each pulse of 15 minutes, three pulses) 182 

according to protocols described by Krishnamurthy and coworkers (2007). Hydrolysis of fatty acid 183 

ester (1% Tween 40) was determined by an opaque halo of calcium palmitate crystals. Protein 184 

hydrolysis was determined by formation of a clear halo in basal medium supplemented with gelatin 185 

(4 g/l) as the sole nitrogen source. A positive test was indicated by liquefaction in the tube after 186 

chilling for a period of 30 min as previously described (Mandyam et al. 2010). Urease activity was 187 

tested on urea agar plates with 2% urea and phenol red and confirmed by the formation of a pink-188 

colored clear zone surrounding plugs (MacFaddin 2000). Pikovskaya's agar medium was used to 189 

assay phosphate solubilization (Nautiyal 1999). Phenoloxidase activity was assayed using 190 

lignolytic indicator dyes, Poly R-478, Remazol Brilliant Blue and O-dianisidine (0.01%) (Oses et 191 

al. 2006). 192 
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Plant growth and axenic production of individuals 193 

Soil samples from field were submitted to sterilization process (121°C/1.5 atmospheres for 2.5 194 

hour) in order to obtain sterilized soil for the following experiments. After this procedure, soil sub-195 

samples were cultivated on PDA plates using a serial dilution method with the purpose to check 196 

microbial removal from soil before transplanting endophyte-free plants to pots. Current condition 197 

for total nitrogen content was based on the average of 15 soil samples taken from the study site 198 

(7.8 ± 0.8 mg/kg). It is well known that thermal soil sterilization may affect nutrient availability 199 

and soil samples were therefore tested for differences in total nitrogen in sterilized and non-200 

sterilized soil samples (n = 5); no difference was found between both soils samples (t = 0.93; p = 201 

0.77). 202 

To assess the effect of fungal endophytes on the nitrogen mineralization process in C. 203 

quitensis and D. antarctica, a manipulative experiment was conducted involving endophyte-free 204 

plants (hereafter, E- plants or control) and endophyte-free plants re-inoculated with single spore 205 

fungal endophyte, growing on sterilized Antarctic soil (hereafter, E+ plant or treatment). 206 

Endophyte-free plants of each species were obtained from samples collected at the study site. 207 

Samples were transported and planted in 300 ml plastic pots filled with Antarctic soil from the 208 

study site and maintained in a climatic chamber at 4º C with a photon flux density (PFD) of 190 209 

µmol m-2 s-1 and 16/8 h light/dark photoperiod mimicking Maritime Antarctica climatic conditions 210 

for four months. 211 

To remove fungal endophyte infections from Antarctic plants, the commercially available 212 

fungicide Benlate (containing benomyl [methyl [1-butylamino carbonyl]-1H-benzimidazol-2-yl] 213 

carbamate, DuPont, Wilmington, DE, USA) was used as treatment. Benomyl was chosen because 214 

no phytotoxic effects have been detected on perennial ryegrass (Spiering et al. 2006). Leaves and 215 
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roots were completely submerged in tap water containing 2 g/l of Benlate and maintained for 1 h 216 

at room temperature. Thereafter 10-12 tillers (6.0 ± 0.3 cm height) were transplanted to pots (50 217 

ml) filled with sterilized soil taken from the study site. In order to reinforce the removal treatment 218 

of fungal endophytes, tillers were sprinkled with Benlate solution (2 g/l) once a week. After 4–5 219 

weeks of growth, newly emerged tillers were examined microscopically in order to evaluate the 220 

success of endophyte elimination after Benlate treatment. Detection of fungal infection was tested 221 

using two approaches including detection by light microscopy techniques, and culture-based 222 

methods (Bacon and White 2000). 223 

Firstly, to assess the success of endophyte elimination after Benomyl treatment, the 224 

infection status was checked microscopically on a subset of at least 10% of new emerged plants (n 225 

= 50). Clearing and staining methods were conducted to quantify percentage of endophytic 226 

colonization or percentage of infested root length (Bacon and White 2000; Spiering et al. 2006). 227 

Endophyte occurrence in tissues was quantitatively determined by counting aniline blue-stained 228 

endophyte hyphae in leaf and roots cross-sections. This method is a reliable and direct measure of 229 

the amount of viable endophyte mycelium (Spiering et al. 2006). Secondly, after Benlate treatment, 230 

endophyte-free plants were submitted to re-isolation protocols using culturing-based methods 231 

described previously. The samples of plant tissue that showed no outgrowth of fungi into the 232 

surrounding solid media were considered clean or endophyte-free plants suitable for use in the 233 

subsequent experiments. This procedure was carried out to ensure that nitrogen mineralization 234 

experiments included endophyte-free plants only. Thus, an endophyte-free individual of D. 235 

antarctica corresponds to a tussock composed by 10 tillers, of 6.0 ± 0.3 cm height, 550.5 ± 8.5 mg 236 

of weight and for C. quitensis corresponds to 6 rosettes, of 3.0 ± 0.1 cm height, 825.0 ± 5.5 mg of 237 

weight (fig. 1B).  238 
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Endophyte-free plants obtained after Benomyl treatment were re-inoculated with an 239 

inoculum of fungal endophyte derived from single spore isolates to re-generate endophyte-plant 240 

symbiotic association but with a single isolate. The most dominant fungal endophytes isolated 241 

from each host plant were used as inoculum. Re-inoculated plants with single spore derived 242 

endophytic isolates (10 ml of 108 spores per pot) and non-inoculated plants (10 ml of 108 spores 243 

suspension per pot previously sterilized) of D. antarctica and C. quitensis were cultivated in 244 

growth chambers in the same conditions described earlier. After this period, with the aim to assess 245 

the re-colonization of aseptically grown tillers with a single dominant fungal endophyte, the 246 

infection status was checked microscopically and re-isolation protocols using culturing-based 247 

methods were conducted as described previously.  248 

 249 

Assisted plant growth and nitrogen mineralization 250 

Individuals of both Antarctic plant species, endophyte-free plants (E-) and endophyte-free plant 251 

but re-inoculated (E+) with a single dominant endophyte were transferred to pots (300 ml), filled 252 

with sterilized soil taken from the study site and put in a growth chamber to obtain enough 253 

vegetative material. The most regular and homogeneous individuals of both Antarctic plant 254 

species, endophyte-free plants (E-) and endophyte-free plant but re-inoculated (E+) with a single 255 

dominant endophyte (n = 7) were selected for the nitrogen mineralization experiments. At the onset 256 

and at the end of the nitrogen mineralization experiment (t = 60 days), in order to determine the 257 

status of endophytic colonization of roots, three random individuals of C. quitensis and D. 258 

antarctica were microscopically checked for endophytic infection (percentage of infested root 259 

length).  260 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26774v1 | CC BY 4.0 Open Access | rec: 27 Mar 2018, publ: 27 Mar 2018



14 

 

Considering the total nitrogen content in Antarctic soils at the start of the growing season, 261 

we applied the nitrogen equivalent to 8.0 mg/kg (Roberts et al. 2009) before the start of the 262 

experiment (t = 0 days). According to a previous report, urea pellets were added to the soil as a 263 

source of nitrogen (Jumpponen et al. 1998). Urea was chosen because is an intermediate compound 264 

in the degradation pathway of uric acid. Uric acid is rapidly degraded by aerobic and anaerobic 265 

microorganisms, through allantoin and urea and then to ammonium in summer when soils thaw 266 

(Lindeboom 1984). Further urea dissolves slowly over a 4-5-months period then nitrogen pulses 267 

were avoided during the experiment (Jumpponen et al. 1998). 268 

Total nitrogen determination was performed using a Kjeldahl digestion method (Allen 1989). 269 

Approximately 0.05 g of catalyst (lithium sulphate : copper sulphate in 10:1 ratio) and 1mL of 270 

digest reagent (33 g of salicylic acid, 1 L of concentrated sulphuric acid) was added to 0.2 g of soil 271 

sample in a digestion tube, and then heated at 370 ºC in a digestion block for 6 hours or until the 272 

solution goes clear. The digested soil sample was cooled, and then cautiously diluted with about 273 

10ml of water followed by filtration through Whatman N° 44 filter paper. The filtrate was further 274 

diluted to 50 mL in a volumetric flask, and the concentrations of the individual elements were 275 

determined through flame atomic absorption spectrometry. Organic nitrogen (nitrate and 276 

ammonium) was extracted from 5 g of air dried soil sample with 50 mL 2M potassium chloride 277 

solution for 30 min and filtered through Whatman paper Nº 42. The samples were later analyzed 278 

colorimetrically for nitrate and ammonium using a continuous flow injection analyzer (FIAflow2, 279 

Burkard Scientific, Uxbridge, UK) (Knepel 2003). 280 

Each E+ and E- plant received 50 ml of tap water every four days. Pots positions within the 281 

growth chambers were changed every five days to avoid block effect. The experimental treatments 282 

were carried out over 60 days and percentage of nitrogen mineralization was estimated as the 283 
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percentage of N-urea (source of nitrogen) transformed to N-NH4
+, measured in 50 g soil sub-284 

samples. Final total biomass was also measured in each individual plant at the end of the 285 

experimental period, including fallen leaves. All tissues were oven-dried at 70 ºC for 72 h, and 286 

weighted with an electronic precision balance (Boeco BBl-54, Germany). 287 

 288 

DATA ANALYSIS 289 

Nitrogen mineralization percentage was compared between treatments with repeated measures 290 

ANOVA, with the endophyte infection status being the independent variable for each species. The 291 

final percentages of nitrogen mineralization as well as the final total biomass were compared 292 

between inoculated and non-inoculated individuals with a t-test for independent samples, as 293 

implemented in the R language software (R-Core Team, 2015). All analyses were performed 294 

independently for each species after testing for normality and homogeneity of variances using the 295 

Shapiro-Wilks and Bartlett tests, respectively (Zar 1999). 296 

 297 

RESULTS 298 

 299 

Isolation and identification of fungal endophytes 300 

Different fungal endophytes were isolated from roots of symptomless individuals of D. antarctica 301 

and C. quitensis host plants (Table 1). Seven different fungal morphotypes were independently 302 

isolated with different relative isolation frequencies (RIFs) from both Antarctic plants; 303 

corresponding to fungi from the genus Penicillium sp.- I (78%), Alternaria sp (13.2%), and 304 

Phaeosphaeria sp (8.8%) were isolated from D. antarctica, and Penicillium sp - II (65%), 305 

Geomyces sp (19%) and Microdochium sp (16%) were isolated from C. quitensis. Single-spore 306 
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derived fungal isolates Penicillium sp - I and Penicillium sp – II were independently recovered 307 

from 133 individuals of D. antarctica (73.8%) and from 96 individuals of C. quitensis (64%), 308 

respectively (Table 1). On the base of the values of relative isolation frequencies (RIFs), the most 309 

frequent fungal endophytes from each species was isolated from a single spore, purified and used 310 

in later experiments. According to Molina-Montenegro et al. (2016), the two most-abundant fungal 311 

morphotypes corresponded to two isolates of Antarctic fungal endophyte, hereafter, AFE (AFE001 312 

and AFE002), which represented more than 65% and 78% of the total fungal morphotypes 313 

recorded in C. quitensis (AFE001) and D. antarctica (AFE002), respectively. Isolates, AFE001 314 

(Genebank accession number: KJ881371) and AFE002 (GeneBank accession number KJ881370) 315 

were identified as P. chrysogenum and P. brevicompactum, respectively.  316 

 317 

Extracellular enzymes activities 318 

The most dominant single-spore derived fungal endophyte P. chrysogenum and P. 319 

brevicompactum, isolated from C. quitensis and D. antarctica, respectively, were able to exhibit 320 

hydrolytic and oxidative enzymatic activities involved in nutrient conversion and assimilation such 321 

as carbon, nitrogen and phosphorus (Table 2). The maximum intensities of enzymatic reactions 322 

under controlled conditions were obtained within the first two weeks at 15ºC and at four weeks at 323 

4ºC while in 25°C the intensities decreased in all enzymes in both fungal endophytes. P. 324 

chrysogenum and P. brevicompactum isolates displayed positive reaction for amylase, cellulase, 325 

laccase, gelatinase and urease. P. chrysogenum was able to use most of the carbon, nitrogen and 326 

phosphate substrates (Table 2). Proteins and urea were both hydrolyzed by P. chrysogenum and P. 327 

brevicompactum isolates. The fatty acid ester, Tween 40, was hydrolyzed by both dominant 328 

isolates. The intensities of some enzymatic hydrolysis and oxidations were different between the 329 
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isolates and also under different temperatures of incubation. The intensity of cellulase at 4°C was 330 

higher in P. chrysogenum than in P. brevicompactum. However, the intensity of hemicellulase 331 

displayed by P. chrysogenum was higher at 15°C rather than 4°C. The intensity esterease was 332 

higher P. chrysogenum than P. brevicompactum in both temperatures. P. chrysogenum and P. 333 

brevicompactum showed no lignolytic activities when Poly R-478 and RBB were used as substrate 334 

but reacted positively with O-dianisidine. 335 

 336 

Assisted plant growth and nitrogen mineralization 337 

At the initial stage of the experiment (t = 0), as expected, there was no evidence of endophytic root 338 

infection in non-inoculated C. quitensis and D. antarctica individuals. However, after inoculation 339 

with dominant root endophytes, root systems of all inoculated individuals were colonized by the 340 

mycelium superficial or intercellularly. An encroachment of fungal endophytes into the root tissue 341 

was detectable. Morever, an infection pattern characterized by black microsclerotia and pigmented 342 

hypha distributed irregularly along the roots was observed. The fungal infection progressed during 343 

the experimental period. By the end of nitrogen mineralization experiment (t = 60 days), the 344 

percentage of infested root length in C. quitensis inoculated with P. chrysogenum reached 88.5 ± 345 

1.6 % and 91.2 ± 0.9 % in D. antarctica inoculated with P. brevicompactum. 346 

The total biomass accumulation at the end of the experiment was significantly higher in C. 347 

quitensis (27%) and D. antarctica (22%) individuals infected with root endophytes (E+) compared 348 

to endophyte-free (E-) plans (t-test = 9.11; p < 0.0001 and t-test = 6.13; p < 0.0001, respectively 349 

(Fig. 1). The final percentage and rate of mineralization in C. quitensis infected with P. 350 

chrysogenum (E+) was significantly higher (t-test = 10.19; p < 0.0001) than in individuals without 351 

endophytes (E-) (Fig. 2). The repeated measures ANOVA revealed that the percentage of 352 
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mineralization increased significantly with time (F4, 112 = 503.03; p < 0.001) in both treatments. 353 

Furthermore, the percentage of nitrogen mineralization increase in the presence of endophytes was 354 

more pronounced than in their absence, as shown by the significant interaction between treatment 355 

(E+ and E-) and time (F4, 112 = 9.04; p < 0.01; Fig. 2). Similarly, D. antarctica individuals 356 

inoculated with P. brevicompactum showed a significantly higher final percentage of 357 

mineralization (t-test = 2.84; p = 0.016) compared to those without the inoculums (Fig. 2). In the 358 

same way, final percentage of mineralization significantly increased with presence of endophyte 359 

(F4, 112 = 7.01; p = 0.031) and time (F4, 112 = 206.97; p < 0.001, respectively; Fig. 2A).  360 

 361 

DISCUSSION 362 

In the present work, the dominant fungal endophytes Penicillium chrysogenum and Penicillium 363 

brevicompactum were found to inhabit roots of antarctic plants improving its growth through of 364 

accelerated mineralization and exolytic enzymes production. A previous report documented the 365 

occurrence of dark septate endophytes (most of them members of Heliotales) associated to 366 

Antarctic plants (Upson et al. 2009) which are different to those fungal endophytes reported in the 367 

present study. The Penicillium group is a large and polyphyletic group, which comprises the most 368 

catabolically and anabolically diverse microorganisms described to date (Houbraken et al 2011). 369 

Being part of this cosmopolitan genus several species of Penicillium species has been previously 370 

reported in alpine and tundra soils (Gunde-Cimerman et al. 2003). Accordingly, Zucconi and 371 

coworkers (1996) pointed out that the majority of Antarctic fungi are ecotypes of cosmopolitan 372 

species that show mesophilic-psychrotolerant behavior as an adaptation to the cold Antarctic 373 

climate. Particularly in Antarctica, various Penicillium species has been documented to be part of 374 

the endophytic community of the native plants, appearing in rhizoids of the non-vascular leafy 375 
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liverwort Cephaloziella varians (Newsham 2010) and the moss Bryum argenteum (Bradner et al. 376 

2000).  377 

Several studies indicate that fitness benefits conferred by mutualistic fungi contribute to -378 

or are- responsible for plant adaptation to abiotic stress (Stone et al 2000; Bacon and White 2016). 379 

Mutualistic fungi may confer tolerance to drought, metals, disease, heat and herbivory, and/or 380 

promote growth and nutrient acquisition. According to previous reports, there is a consensus that 381 

plants without fungal endophytes apparently are unable to tolerate habitat-imposed abiotic and 382 

biotic stresses (Malinowski et al. 2005; Rodriguez et al. 2008; Gond et al. 2015).  383 

In Maritime Antarctic soils the release of nitrogen slowly as decomposition is limited by 384 

low temperatures that impose several restrictions for plant life. Then the ability to acquire N at an 385 

early stage of availability during a short growth season is key to the success of vascular plants. 386 

Previous works have addressed two nitrogen assimilation pathways available for plants in 387 

Antarctic environments: those of the plant itself (Hill et al. 2011) and those derived from the 388 

mutualistic symbiosis between plant and fungal endophytes (Upson et al. 2009). However, the 389 

mechanisms involving nitrogen uptake and transfer to the host mediated by fungal endophytes 390 

remain unknown. Regarding the later, our work shows that, in addition of being root endophytes, 391 

P. chrysogenum and P. brevicompactum, are able to exudate a wide range of hydrolytic and 392 

oxidative enzymes such as amylase, cellulase, lipase, protease, urease and xylanase under suitable 393 

conditions. In our study, we found no evidence for lignolytic enzymes using complex polymeric 394 

dyes (Remazol Brilliant Blue and Poly R-478), however, a weak lignolytic activity was found only 395 

when O-dianisidine was used as a substrate. These differential lignolytic activities suggest that the 396 

exolytic enzymes of these fungi are capable of degrading just some types of simple lignin 397 
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structures, but not more complex lignin molecules that require high oxidation potentials for 398 

degradation (Oses et al 2006).  399 

The root endophytes P. chrysogenum and P. brevicompactum could behave in a facultative 400 

biotrophic way (Fesel and Zuccaro 2016) and be involved in the metabolizing of complex 401 

substances accumulated in organic matter pools as in Antarctic rhizospheric soil (Yergeau and 402 

Kawalchuk 2008, Krishnam et al. 2016). These facultative biotrophic behaviors have been 403 

proposed as a competitive advantage over other saprotrophs (Fesel and Zuccaro 2016). But 404 

moreover, this endophytic lifestyle (i.e. facultative-biotrophic) has been recognized as an ancestral 405 

feature and an important part of the model of plant-fungal endophyte interactions known as 406 

“mutualism-parasitism continuum paradigm” (Mandyam and Jumpponen 2015; Fesel and Zuccaro 407 

2016).  408 

Considering the short growing season in Antarctica and its narrow window of opportunities 409 

for plants, the ability to quickly produce and activate complex enzymatic machinery may represent 410 

a key ecological advantage to symbiotic plants in accelerating of recycling and assimilation of 411 

limiting nutrients. In this context, it has been proposed that a balanced symbiosis mechanism (or 412 

“fine-tuning”) regulating these enzymatic activities under environmental, physiological and 413 

genetic control within the host plant tissues could provide huge ecological advantages resulting in 414 

fitness benefits for both partners (Kogel et al. 2006). The higher nitrogen mineralization rates from 415 

urea to NH4
+ and increase in total plant biomass found in inoculated (E+) individuals of both C. 416 

quitensis and D. antarctica, when symbiotic are consistent with the presence of extracellular 417 

hydrolytic enzymatic activities (proteinase and urease) observed in fungal cultures, strongly 418 

suggesting not only an efficient uptake and nutrient transfer mechanisms, at least for the scarce 419 

nitrogen sources, but also, that fungal endophytes are not detrimental to the host plant (Jumpponen 420 
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et al. 1998; Upson et al. 2009; Behie and Bidochka 2014). Indeed, the positive symbiotic status 421 

(E+) was consistent with the presence of extracellular hydrolytic enzymatic activities (proteinase 422 

and urease) observed in fungal cultures. Therefore, our results suggest that being symbiotic with a 423 

target Antarctic fungal endophyte partner could be a critical advantage in terms of plant survival 424 

and development, particularly, when competing for limiting nitrogen resources with soil microbes 425 

and other non-vascular plants (Upson et al. 2009; Hill et al 2011). Our results support the 426 

hypothesized mechanisms to explain microbe-mediated enhanced plant growth that include 427 

increase the absorption of nutrients by plants from the rhizosphere due to activities of microbes on 428 

roots (Bacon and White 2016) 429 

Our work is consistent with previous report, in which have identified dark septate 430 

endophytes have been identified out as relevant agents during inorganic nitrogen uptake, 431 

increasing the plant biomass in D. antarctica (Upson et al. 2009). Also, our findings are similar to 432 

those found by Jumpponen et al. (1998), who found that inoculation with fungal endophytes 433 

significantly, increased the biomass of the host plant species using urea as a main nitrogen source. 434 

This finding suggests that mutualistic association between plant-root fungal endophytes, could 435 

facilitate and increment the rate of acquisition of organic nitrogen in both Antarctic vascular plants. 436 

In a recent work, Molina-Montenegro and workers (2016) found that cross-inoculation of antarctic 437 

root endophyte described in this work also improve the ecophysiological performance and yield in 438 

lettuce (Latuca sativa) under drought condition showing potential for biotechnological 439 

approaches.  440 

 441 

 442 

 443 
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CONCLUSIONS 444 

 445 

Our study demonstrates how root fungal endophytes improve the growth of Antarctic vascular 446 

plants D. antarctica and C. quitensis through an enhanced nitrogen acquisition. Firstly, it was 447 

demonstrated that fungal endophytes Penicillium chrysogenum and Penicillium brevicompactum 448 

dominant root endophytes isolated from C. quitensis and D. antarctica, respectively; exhibited 449 

enzymatic activities involved in carbohydrate or protein breakdown and phosphorus solubilization. 450 

Secondly, the rates and percentages of nitrogen mineralization, as well as the final total biomass, 451 

were significantly higher in C. quitensis and D. antarctica individuals with root endophytes 452 

relative to those without endophytes. This work contributes to understand how the higher 453 

mineralization rate of organic nitrogen performed by plant-endophyte association and the exolytic 454 

enzymes produced by fungal endophytes (proteases and ureases) may drive an efficient nitrogen 455 

conversion, access and recycling, increasing plant growth in Antarctic environments. Our results 456 

showed that endophyte-assisted nitrogen mineralization is an advantageous mechanism to compete 457 

for organic nitrogen resources with soil microbes and other plants, preferentially for NH4
+, as 458 

suggested in previous works (Hill et al. 2011; Behie and Bidochka 2014; Bacon and White 2016). 459 

Therefore, this symbiotic mechanism of nitrogen uptake could explain, at least in part, the survival 460 

and establishment of vascular plants in Antarctic environments (Smith-Lewis, 2003; Upson et al. 461 

2009, Hill et al. 2011). We are far from a clear understanding of mechanisms underlying nutrient 462 

uptake by plants in the poor soils of Antarctic environment, this study has identified a promising 463 

aspect in endophyte-assisted nitrogen mineralization as part of nitrogen uptake and transfer 464 

mechanisms for plants and the relevance of mutualistic symbiosis in extreme environments. 465 

Finally, we suggest that the future researches should be addressed to explore the molecular and 466 
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functional dissection the plant-fungal endophytes relationship, identifying mechanisms underlying 467 

to this symbiosis to help explain the colonization, performance and spread of plants inhabiting 468 

stressful environments as those found in Antarctica (Fesel and Zuccaro 2016). 469 
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Figure 1(on next page)

Total biomass accumulation in individuals of Colobanthus quitensis and Deschampsia

antarctica with (E+) and without (E-) root fungal endophytes after mineralization assay

Penicillium chrysosgenum and Penicillium brevicompactum were used as root fungal

endophytes for C. quitensis and D. antarctica, respectively. The mean and quartile

distribution of individual plants (n = 7) are indicated. Asterisks denote significant differences

between treatments (p < 0.05) as determined by a t-test
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Figure 1. 
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Figure 2(on next page)

Kinetic of nitrogen mineralization in soils in contact with axenic individuals of

Colobanthus quitensis and Deschampsia antarctica inoculated (E+) or not inoculated (E-

) with root fungal endophytes

Individual plants (n = 7) emerging from benomyl-treated cultures were cultured in 300 ml

pots containing autoclaved antarctic soil supplemented with urea as unique nitrogen source.

Mineralization was estimated as the percentage of N-urea transformed to N-NH4
+. Asterisks

denote significant mean differences between treatments
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Figure 2. 
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Table 1(on next page)

Relative isolation frequencies (RIF) from root fragments of the Antarctic vascular plants

Colobanthus quitensis and Deschampsia antarctica growing in coastal area in King

George Island, South Shetland Islands

(a) The relative isolation frequencies (RIF) for each fungus are calculated as percentage

between the number of roots colonized with single isolate divided by number of colonized

root
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1 Table 1. Relative isolation frequencies (RIF) from root fragments of the Antarctic vascular plants Colobanthus quitensis and Deschampsia antarctica 

2 growing in coastal area in King George Island, South Shetland Islands.
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27

28 (a) The relative isolation frequencies (RIF) for each isolated fungus are calculated as a percentage between the number of roots colonized with single isolate divided 

29 by the number of colonized root.

Host plant N° of plants 

analyzed 

N° of plants 

with isolated 

endophyte

[n° (%)] 

N° of roots 

analyzed

N° of 

colonized 

roots 

[n° (%)] 

N° of root 

with single 

isolate

[n° (%)] 

Relative 

isolation 

frequency

RIF (%)(a)

Isolated 

fungal 

endophyte

D. antarctica 180 133 (73.8) 1160 963 (83) 752 (64.8) 78.0 Penicillium sp.- I

15 (8.3) 92 (7.9) 9.6 Alternaria sp I

12 (6.6) 74 (6.4) 7.7 Alternaria sp II

8 (4.4) 45 (3.9) 4.7 Phaeosphaeria sp 

C. quitensis 150 96 (64) 1250 839 (67) 562 (45) 65.0 Penicillium sp - II

31 (20.6) 164 (13) 21.9 Geomyces sp

Total 330

18 (12)

2410 1802

113 (9.0) 13.1 Microdochium sp 
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Table 2(on next page)

Hydrolytic and oxidative enzymes present in the fungal endophyte Penicillium

chrysogenum and Penicillium brevicompactum isolated from vascular plants

Colobanthus quitensis and Deschampsia antarctica growing in the King George Island,

South She

a) Cellullose azure assay: (-) no color release under or around mycellium; (+) blue color < 2 cm diam; (++)

blue color about 2 cm diam; (+++) blue color > 2 cm diam

b) Amylase / hemicellulose assay: (-) absence of clearing halo around mycellium, negative for amylase; (+)

clearing 1-3 cm diam; (++) clearing 3-6 cm diam; (+++) opaque halo 6 cm diam.

c) Esterase assay: (-) absence of opaque halo around mycellium, negative for esterase; (+) opaque halo 1-3

cm diam; (++) opaque halo 3-6 cm diam; (+++) opaque halo 6 cm diam.

d) Phenoloxidase assay: (-) remaining blue color (Remazol Brilliant Blue) or red color (Poly R-478) or

absence of pink color (O-dianisidine) under or around mycellium, means negative for phenoloxidase; (+)

discoloration of blue or red color or formation of pink color under mycellium at the center, visible only on the

underside of the plate; (++) discoloration of blue or red color or formation of a pink color under most of

mycellium but not extending to margin seen from under side of the plate; (+++) discoloration of blue or red

color or formation of pink color extending beyond margin of fungal colony and visible from the topside of the

plate. Wood decay fungi Trametes versicolor was used as positive control.

e) Gelatine assay: (-) absence of liquefaction at 4° C, negative for gelatinase; (+) liquefaction < 25%

medium; (++) liquefaction 26-50% medium; (+++) liquefaction 51-75% medium; (++++) liquefaction 76-

100% medium.

f) Phosphate-solubilising assay: (-) strong discoloration of magenta color under or around mycellium; (+)

magenta color < 2 cm diam; (++) magenta color about 2 cm diam; (+++) magenta color > 2 cm diam.

g) Urease-assay: (-) pink color remains under or around mycellium plug; (+) discoloration of pink color < 2

cm diam; (++) discoloration about 2 cm diam; (+++) discoloration about > 2 cm diam.
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1 Table 2 Hydrolytic and oxidative enzymes present in the fungal endophyte Penicillium chrysogenum and Penicillium brevicompactum isolated from 

2 the Antarctic vascular plants Colobanthus quitensis and Deschampsia antarctica growing in the King George Island, South Shetland Islands.

3

4

5

6

7

Hydrolytic and oxidative enzymes produced by fungal endophytes isolated from Antarctic vascular plants

                    Assay                                              Substrate

P. chrysogenum P. brevicompactum

4º C 15 ºC 25° C 4º C 15 ºC 25° C

Cellulase a Cellulose-azure ++ +++ + + +++ -

Amylase b Starch ++ +++ + ++ +++ -

Hemicellulase b Xylan + ++ + + + -

Esterease c Fatty acid ester (Tween 40) +++ ++++ + ++ +++ +

Phenoloxidase d Remazol Brilliant Blue - - - - - -

Poly R-478 - - - - - -

O-dianisidine + + - + + -

Proteinase e Gelatin ++ +++ + ++ +++ +

Phosphate-solubilizingf Tricalcium phosphate ++ ++ + + + +

Urease g Urea ++ +++ + ++ +++ +
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8

9

10

11

12

13

14

15

16

17 a Cellulose Azure assay: (-) no color release under or around mycelium; (+) blue color, ˂2 cm diam; (++) blue color about 2 cm diam; (+++) blue color  2 cm diam. 

18 b Amylase / hemicellulase assay: (-) absence of clearing halo around mycelium, negative for amylase; (+) clearing 1–3 cm diam; (++) clearing 3–6 cm diam; (+++) clearing .6 cm diam.

19 c Esterase assay: (-) absence of opaque halo around mycelium, negative for esterase; (+) opaque halo 1–3 cm diam; (++) opaque halo 3–6 cm diam; (+++) opaque halo 6 cm diam. 

20 d Phenoloxidase assay: (-) remaining blue color (Remazol Brilliant Blue) or red color (Poly R-478) or absence of pink color (O-dianisidine ) under or around mycelium, means negative for phenoloxidase; 

21 (+) discoloration of blue or red color or formation of pink color under mycelium at the center, visible only on the underside of the plate; (++) discoloration of blue or red color or formation of pink color 

22 under most of mycelium but not extending to margin, seen from under side of the plate; (+++) discoloration of blue or red color or formation of pink color extending beyond margin of fungal colony and 

23 visible from the topside of the plate. Wood decay fungi Trametes versicolor was used as positive control.

24 e Gelatinase assay: (-) absence of liquefaction at 4º C, negative for gelatinase; (+) liquefaction, ˂25% medium; (++) liquefaction 26–50% medium; (+++) liquefaction 51–75% medium; (++++) liquefaction 

25 76–100% medium. 

26 f Phosphate-solubilizing assay: (-) strong discoloration of magenta color under or around mycelium; (+) magenta color, ˂2 cm diam; (++) magenta color about 2 cm diam; (+++) magenta color >2 cm 

27 diam

28 g Urease-assay: (-) pink color remains under or around mycelium plug; (+) discoloration of pink color, ˂2 cm diam; (++) discoloration about 2 cm diam; (+++) discoloration about >2 cm diam
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