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Barley yellow dwarf virus-PAV (BYDV-PAV) is one of the major viruses causing a

widespread and serious viral disease affecting cereal crops. To gain a better understanding

of plant defence mechanisms of BYDV resistance genes (  Bdv2 and  Yd2  ) against BYDV-

PAV infection, the differences in agronomical, biochemical and histological changes

between susceptible and resistant wheat and barley cultivars were investigated. We found

that root growth and total dry matter of susceptible cultivars showed greater reduction

than that of resistant ones after infection. BYDV infected leaves in susceptible wheat and

barley cultivars showed a significant reduction in photosynthetic pigments, an increase in

the concentration of reducing sugar. The protein levels were also low in infected leaves.

There was a significant increase in total phenol contents in resistant cultivars, which might

reflect a protective mechanism of plants against virus infection. In phloem tissue, sieve

elements (SE) and companion cells (CC) were severely damaged in susceptible cultivars

after infection. It is suggested that restriction of viral movement in the phloem tissue and

increased production of phenolic compounds may play a role in the resistance and

defensive mechanisms of both  Bdv2  and  Yd2  against virus infection.
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17 ABSTRACT

18 Barley yellow dwarf virus-PAV (BYDV-PAV) is one of the major viruses causing widespread and 

19 serious damage to cereal crops. To gain a better understanding of plant defence mechanisms of 

20 BYDV resistance genes (Bdv2 and Ryd2) against BYDV-PAV infection, we investigated the 

21 differences in agronomical, biochemical and histological changes between susceptible and 

22 resistant wheat and barley cultivars. We found that root growth and total dry matter of susceptible 

23 cultivars showed greater reduction than that of resistant cultivars after infection. BYDV infected 

24 leaves in susceptible wheat and barley cultivars showed a significant reduction in photosynthetic 

25 pigments and an increase in the concentration of reducing sugar. The protein levels were also low 

26 in infected leaves. There was a significant increase in total phenolic contents in resistant cultivars, 

27 which might reflect a protective mechanism of plants against virus infection. Phloem tissue, sieve 

28 elements (SE) and companion cells (CC) in susceptible cultivars showed severe damage after 

29 infection. We suggest that increased production of phenolic compounds may play a role in the 

30 resistance and defensive mechanisms of both Bdv2 and Ryd2 against virus infection.

31

32
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33 INTRODUCTION

34 Barley yellow dwarf virus-PAV (BYDV-PAV) is transmitted by aphids and has been recognized 

35 as one of the most serious viral pathogens of the Luteovirus genus that systemically infects cereal 

36 crops (Jiménez-Martínez et al. 2004). Infection with BYDV-PAV causes significant economic 

37 losses throughout the world (Huth, 2000; Ramsell et al., 2008). The use of resistant or tolerant 

38 varieties is an effective solution and economical method for controlling BYD disease (Ordon et 

39 al., 2004). Virus tolerance is the capability of a host genotype to survive or recover from the 

40 damaging effects of virus infection and yield, while resistance is the plant9s ability to restrict or 

41 prevent the infection of virus (Cooper & Jones, 1983). Wheat lines containing Bdv2 gene showed 

42 less yellowing and lower viral titer than susceptible wheat lines when infected by BYDV (Kausar 

43 et al., 2015). Similarly, barley cultivars containing Ryd2 also have lower virus titre after BYDV 

44 infection, which leads to less visual symptom and grain yield reduction (Beoni et al., 2016). Visual 

45 scoring of symptoms for BYDV-PAV resistance is not always useful as BYDV-PAV can multiply 

46 and spread in the plant without showing any visual symptoms (Horn, Habekuß &.Stich, 2013). 

47 Whole-plant metabolite profiles can be altered by virus infection (Shalitin & Wolf 2000; Xu et al., 

48 2008). Through virus infection, many plant defence pathways can be activated or suppressed 

49 (Lewsey et al. 2010; Whitham, Yang & Goodin, 2006).

50 BYDV is transmitted in a persistent, circulative and non-propagative manner (Conti et al., 

51 1990, Masterman, Holmes & Foster, 1994) and its transmission occur when an aphid feeds on 

52 infected phloem and phloem cells and then transfers the viruses in its saliva to healthy plants 

53 (Walling, 2008). Virus spread usually starts from cell-to-cell (short distance movement). In the 

54 later phase, the virus enters into the vascular tissue, where it is transported rapidly via phloem 

55 cells. This is referred to as long distance movement (Hipper et al., 2013, Waigmann et al., 2004). 

56 Plants infected by virus undergo strong metabolic and ultrastructural changes, even when no 

57 visible symptoms are apparent (Yan et al., 2008). Disease development in host plants is likely to 

58 induce substantial biochemical changes such as in protein, phenolics, carbohydrates, and these 

59 metabolic changes may favour or inhibit disease development (Ayres, Press & Spencer-Phillips, 

60 1996). In certain plant host-pathogen interactions, these alterations may play a major role in 

61 contributing to disease resistance. In crop breeding, the response of biochemical compounds in 

62 plants has been helpful to select fungal and insect resistant genotypes (Lattanzio et al., 2006).
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63 In chilli plants inoculated with pepper leaf curl virus (PepLCV), total phenolic content 

64 increased in resistant cultivars and decreased in susceptible cultivars (Rai et al., 2010). A positive 

65 correlation was observed in cocoa between cocoa swollen shoot virus disease (CSSVD) resistance 

66 and total phenolic contents at 3 months after inoculation (Ofori et al., 2015). Rapid synthesis of 

67 phenolics and their polymerization in the cell wall has been suggested as a plant defence response 

68 against infection (Sattler & Funnell-Harris, 2013; Matern & Kneusel, 1988), while low levels of 

69 phenolics may be linked to disease susceptibility (Yao, De Luca & Brisson, 1995). However, there 

70 is no report on the relationship between total phenolic contents measured after BYDV infection 

71 and BYDV resistance in cereal crops.

72 Sugar metabolism is a dynamic process with both metabolic fluxes and sugar 

73 concentrations fluctuating strongly throughout plant development and in response to 

74 environmental signals for example circadian changes and biotic stresses (Bläsing et al., 2005; 

75 Borisjuk et al., 2003). In melon plants, cucumber mosaic virus infection causes a significant 

76 increase in the sugar content within the phloem (Shalitin & Wolf 2000). An increase in sugar 

77 concentration in tobacco leaves was caused by potato leafroll virus (PLRV) infection inhibiting 

78 phloem loading; the increased sugar led to the inhibition of photosynthesis (Herbers et al., 1997). 

79 Reduced translocation of sugar and other nutrient molecules to the root system limits root growth 

80 and function and thus affects plant growth and grain yield (Riedell et al., 2003). Biotic stress can 

81 also inhibit chlorophyll synthesis (Funayama-Noguchi & Terashima, 2006; auti� & Sinclair 1991), 

82 resulting in reduced photosynthesis. To date, many studies have been done with BYDV but little 

83 information has been reported regarding changes of biochemical compounds caused by BYDV 

84 infection in wheat and barley.

85 The aim of the study was to assess the response of different agronomical, biochemical and 

86 cell ultrastructural changes after systemic BYDV infection of susceptible and resistant wheat and 

87 barley plant, and to provide a better understanding of resistance mechanisms against BYDV-PAV 

88 infections.

89

90 MATERIALS AND METHODS

91 Plant Material 

92 Two wheat (Triticum aestivum) cultivars (Manning and Revenue) and two barley (Hordeum 

93 vulgare) cultivars (Flagship and Franklin) were used in this study. Manning and Franklin are the 
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94 cultivars with known BYDV resistance, containing Bdv2 (Ayala-Navarrete et al., 2007) and Ryd2 

95 gene (Raman & Read, 1999), respectively. 

96

97 Aphid colonies

98 A colony of bird-cherry aphid, Rhopalosiphum padi, was collected from a Tasmanian barley field 

99 trial in 2014, and reared on barley (cv .TAM407227-a BYDV susceptible genotype) in a cage at 

100 20°C  ± 2°C, 65  ± 5% RH, with a photoperiod of L14:D10  using cool white fluorescent light 

101 under 450µmol-m-2.s-1 photosynthethically active radiation (PAR).

102

103 Virus isolates

104 One isolate of BYDV-PAV was obtained from the University of New England, New South Wales 

105 (NSW), Australia and maintained in barley cv TAM407227 in small cages under the same 

106 conditions as the aphid colonies. The virus isolates were periodically (6-weekly) transferred to 

107 new plants using R. padi in clip cages.

108

109 Plant growth and virus inoculation 

110 Ten seeds of each cultivars were sown in 2 L plastic pots, which filled with pre-fertilized potting 

111 mixture. After germination, seedlings were thinned to five uniform and healthy plants in each pot. 

112 The plants were grown in a glasshouse, between September and November 2016. The average 

113 temperature was 23oC in daytime and 15oC at night with a relative humidity of 65 to 80%. At two-

114 leaf stage, each plant was inoculated with BYDV-PAV using ten viruliferous adult aphids 

115 (Rhopalosiphum padi) in a clip cage. An inoculation access period of 120 H was used to ensure 

116 virus infection of all plants. Aphids were then killed by spraying 1ml/L solution of the insecticide 

117 karate (Syngenta Ltd.). 

118

119 Leaf samples for biochemical analyses

120 The most recent fully expanded leaves of both controls and inoculated plants were harvested at 

121 different growth stages, i.e. 3 and 6 weeks after inoculation (WAI), for various analysis. All 

122 biochemical parameters were measured using spectrophotometer (Genesys 10S UV-Vis).

123

124 Photosynthetic pigments

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26764v1 | CC BY 4.0 Open Access | rec: 23 Mar 2018, publ: 23 Mar 2018



125 Photosynthetic pigments were measured using the method of (Moran & Porath, 1980). 0.2 g leaf 

126 tissue was ground into powder with liquid nitrogen, then homogenised with 1 ml 100% N, N-

127 dimethylformamide (DMF). Homogenized samples were centrifuged at 10,000 x g for 10 min to 

128 gather the supernatant. Then 1 ml DMF was added again and samples were centrifuged. The 

129 supernatant was removed and another 1 ml DMF was added. The absorbance was recorded at 663 

130 and 645 nm in a spectrophotometer. Calibration was done by using a blank of 100% DMF. 

131 Chlorophyll a, b and total chlorophyll were calculated by following formulas:

132 Chlorophyll a (mg g-1 tissue) =
[12.7( 663) 2.69( 645)]

1000

OD OD V
W

ý ô
ô

133 Chlorophyll b (mg g-1 tissue) =  

134 Total Chlorophyll (mg g-1 tissue) = 

135 Where OD: Optical density at respective nm, V: Final volume of chlorophyll extract, 

136 W: Fresh weight of the tissue extracted

137

138 Measurement of total protein content

139 Total protein was estimated by using Bradford method (Bradford, 1976) and absorbance was 

140 recorded at 595 nm. Bovine serum albumin was used as standard. Protein contents in leaf samples 

141 were recorded as ¿g of protein per gram of leaf tissue.

142

143 Phenolic content

144 Phenol content was measured using the method of Singleton, Orthofer & Lamuela-Raventós 

145 (1999). Fresh leaves (250 mg) were homogenized with 85% methanol. The extract was centrifuged 

146 at 3000 g for 15 min at 10 # and the supernatant was separated. Folin & Ciocalteu9s reagent (2 

147 ml) was added to each 2 ml of the supernatant. A sodium carbonate solution (7.5%, 2 ml) was 

148 added to each test tube and after 30345 min, the absorbance was read at wavelength 725 nm against 

149 a reagent blank. A standard curve using gallic acid was generated to determine the concentration 

150 of total phenols in the unknown sample.

151

152 Reducing sugars content
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153 Reducing sugars were determined based on the method of phenol-sulphuric acid (DuBois et al., 

154 1956). 0.2 g fresh leaf was homogenized with deionized water and the extract was filtered. 2 ml of 

155 the solution was mixed with 0.4 ml of 5% phenol. Subsequently, 2 ml of 98% sulphuric acid was 

156 added rapidly to the mixture. The test tubes were allowed to keep for 10 min at room temperature, 

157 and placed in a water bath at 30ºC for 20 min for colour development. Light absorption at 540 nm 

158 was then recorded with the spectrophotometer. Blank solution (distilled water) was prepared in the 

159 same way as above (Ammar et al., 2009). Contents of reducing sugar was expressed as mg g-1 

160 fresh weight (FW).

161

162 Biomass production

163 Four plants (above ground) were randomly sampled from each treatment and replication at 6 WAI. 

164 After taking the fresh weight plant samples were kept in oven at 65°C for 72 h before recording 

165 the weight of dry matter. 

166

167 Enzyme-linked immunosorbent assay (ELISA)

168 Leaves from four plants of each treatment and replication were collected at 6 WAI for ELISA test. 

169 BYDV-PAV polyclonal antibodies (Sediag, France) were used in DAS-ELISA (Clark & Adams, 

170 1977) to detect the virus in leaf tissues. Samples for ELISA were prepared by grinding 1 g leaf 

171 tissue in phosphate buffered saline, pH 7.4, with 2% polyvinylpyrrolidone and 0.2% egg albumin 

172 in a ratio of 1:20. We used 2 different healthy controls and 2 positive controls. All samples (control 

173 and BYDV-PAV inoculated leaves) and positive and negative controls were tested in duplicate. 

174 Microplates were read using a photometer (MR 5000 Dynatech) at wavelength 405 nm. Our 

175 ELISA cut-off value is 2 times of the negative control (healthy control with no virus) in each test. 

176 Samples with absorbance values greater than twice the mean of negative controls were considered 

177 positive (Clark & Adams, 1977).

178

179 Histological examination 

180 Anatomical structure of infected and control wheat and barley leaves was examined with a light 

181 microscopy using Leica DM500 (USA). Three biological replications were performed for each 

182 treatment. For microscopic examination, wheat leaves (2×2 mm²) from both susceptible and 

183 resistant leaves were cassetted (Techno Plas, South Australia) using biopsy pads (Trajan Scientific 
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184 and Medical, Victoria, Australia). Samples were then fixed in 10% neutral buffered formaldehyde 

185 (Confix, ACFC, Australian Biostain, Traralgon, Victoria, Australia) for 24 h and processed 

186 overnight using a standard 15 h overnight procedure in an ASP300S tissue processor (Leica 

187 Microsystems, Wetzlar, Germany). Samples were orientated on the EG1160 (Leica), embedded in 

188 paraffin wax (Surgipath Paraplast, 39601006, Leica) and sectioned at 3 microns using Leica 

189 RM2245 microtome and adhered to microscope slides (Menzel Glaser, Braunschweig, Germany) 

190 for 20 min at 60ºC. Sections were deparaffinised, rehydrated and stained using Jung autostainer 

191 XL (Leica) for haematoxylin (Harris9 Haematoxylin, AHHNA, Australian Biostain) and eosin, 

192 dehydrated cleared and cover-slipped (Leica CV5030) using CV Mount (Leica, 046430011). 

193

194 Determination of root growth 

195 For root length measurement, five seedlings were grown in a 2 L plastic pot filled with pre-

196 fertilized potting mixture. The plants were grown in a glasshouse with the average temperature of 

197 15ºC in daytime and 8ºC at night. Plant was inoculated with 10 viruliferous aphids for 120 h. The 

198 experiment was terminated at 3 WAI and root length was measured. The roots were carefully 

199 washed with tap water to separate substrates. The longest root length (cm plant-1) was measured 

200 as the distance from the base of the plant to the end of the longest root. Five biological replications 

201 were performed for each treatment.

202

203 Data analysis 

204 The experiments used a randomized complete block design (RCBD) with three replications for 

205 each cultivar and five plants in each replicate. Data were analysed using software SPSS 20.0. Two 

206 treatments mean (the values of virus infected and control plants) were subjected to paired t-test. 

207 The value was considered to be statistically significant when P< 0.05. All results were presented 

208 with mean ± SE from the replicates. Graphs were drawn using the Microsoft Excel program. We 

209 also used ANOVA to test the effect of BYDV stress, cultivars and their interaction on biochemical 

210 parameters.

211 RESULTS

212 Symptoms after inoculation

213 Typical symptoms appeared on virus infected plants included leaf discoloration and dwarfism. 

214 Leaf discoloration in both inoculated barley cultivars was visible within 3 WAI (Fig. 1). At 6 WAI 
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215 we did not observe leaf discoloration in either of the wheat cultivars, although the susceptible 

216 cultivar showed evidence of dwarfism at that time (Fig. 2).

217

218 Validation of inoculation 

219 ELISA was used to confirm the virus infection of a plant, when ELISA values above the detection 

220 threshold (A 405>0.32) were assumed to illustrate the presence of virus particles. The virus 

221 extinction value was the highest in BYDV inoculated susceptible barley plant (Flagship) followed 

222 by susceptible wheat (Revenue) and the lowest value was detected in resistant wheat variety 

223 (Manning) (Fig. 3), suggesting that both the Ryd2 gene of barley and the Bdv2 gene of wheat 

224 reduced the viral load.

225

226 The effect of virus infection on root growth

227 At 3 WAI, all inoculated wheat and barley cultivars showed reduced root length compared to the 

228 control (Figs. 4A-4D). Susceptible barley and wheat cultivars showed significantly greater 

229 reduction of root length by 41% and 36% for Revenue and Flagship, respectively. In contrast, 

230 resistant barley (Franklin) and wheat (Manning) only exhibited 7% (p>0.05) and 13 % (p<0.05) 

231 reduction, respectively (Fig. 4E).

232

233 Photosynthetic pigments

234 At 3 WAI, the contents of photosynthetic pigments were significantly reduced in virus infected 

235 plants of both resistant and susceptible cultivars compared to the control. Greater reductions were 

236 found in susceptible ones. The average reductions in chlorophyll a, chlorophyll b and total 

237 chlorophyll were 33%, 50%, and 38%, respectively for Revenue, and 24%, 38 % and 28%, 

238 respectively, for Flagship (Figs. 5A-5C). 

239 At 6 WAI, the difference in photosynthetic pigments between inoculated and control plants of the 

240 two resistant wheat and barley cultivars were insignificant. In contrast, further reductions in 

241 photosynthetic pigments were found in the two susceptible cultivars (Fig. 5D-5F). 

242

243 Total protein

244 In wheat, virus infection caused a significant reduction in foliar protein contents only of susceptible 

245 wheat cultivar (Revenue) but not the other cultivars at 3WAI (P<0.05) (Fig. 6A). At 6 WAI, both 
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246 susceptible and resistant barley and wheat cultivars showed significant reduction in protein content 

247 in virus infected plants. The reduction was observed more in susceptible cultivars Flagship (28%) 

248 and Revenue (27%) whereas the reductions in Manning and Franklin were only 9% and 11%, 

249 respectively (Fig. 6B). 

250

251 Total phenol

252 At early stage (3 WAI) of virus infection, total phenol contents were not significantly different 

253 between virus infected and control plants of all cultivars (Fig. 7A). However, at 6 WAI, significant 

254 increases in total phenol contents were found in virus infected plants of all cultivars. The increase 

255 in total phenol contents was more pronounced in the resistant cultivars (19-25%) than susceptible 

256 ones (5-6%) (Fig. 7B).

257

258 Reducing sugar

259 Figures 8A-8B show that virus infection caused an increase in leaf sugar content of both 

260 susceptible and resistant cultivars. Wheat cultivars had lower sugar contents than barley cultivars 

261 earlier at 3 WAI but they were similar to the barley cultivars at later stage (6 WAI). Susceptible 

262 cultivars showed a greater increase in reducing sugar contents in virus infected plants than resistant 

263 ones, being 9%, 26%, 13% and 35% at 6 WAI for Manning, Revenue, Franklin and Flagship, 

264 respectively (Fig. 8B). 

265

266 Biomass production

267 Significant differences in biomass were found in BYDV inoculated and non-inoculated control 

268 plants for all cultivars. The reduction of fresh weight varied with cultivar, with the lowest reduction 

269 occurring in the resistant wheat cultivar Manning (4%) and the highest in the susceptible wheat 

270 cultivar Revenue (41%) (Fig. 9A). Similar trend was found for the dry matter production. Greater 

271 reductions in dry matter were observed in Flagship (25%) and Revenue (22%) whereas the 

272 reductions in the resistant cultivars Manning and Franklin were only 6% and 9%, respectively (Fig. 

273 9B).

274

275 Alteration of leaf ultrastructure 
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276 Ultrastructural examinations of the phloem tissue of leaves from all cultivars were conducted at 6 

277 WAI. The sections of leaf venial regions of non-inoculated plants showed a typical structure of 

278 vascular bundles in both wheat and barley. The sieve elements (SE) and the companion cell (CC) 

279 are well organised in the phloem tissue with each SE being adjoined by CC (Fig. 10A, C & 11A, 

280 C).

281 In virus infected barley plants, the phloem tissue of leaf veins consisted of smaller, denser and 

282 disorganised SE, with no adjacent CC. In addition, in the susceptible barley cultivar Flagship the 

283 SE became necrotic, covered with dark stain and the CCs were degenerated (Fig. 10B). Different 

284 results were observed in the resistant cultivar Franklin, which had normal SE with adjacent CC. 

285 Although these were looking almost the same as non-inoculated leaves, the CC seems to have 

286 reduced size compared with control. Necrotic regions were also observed in some vascular bundles 

287 in Flagship (Fig. 10B). In the susceptible wheat, BYDV-PAV inoculated leaf showed compact SE 

288 with reduced number of CC and substantially damaged SE and CC, in Figure 11B, IPP and ISE 

289 are shown. The resistant wheat plant had similar cellular structures of SE and CC in virus infected 

290 and control leaves, thus vascular bundle was not affected in virus infected resistant wheat cv. 

291 Manning (Fig. 11D).

292

293 Biochemical parameters

294 Four Wheat and barley cultivars differed significantly for all the biochemical parameters 

295 measured at 6WAI (Table 1). The treatments had no significant effect on protein content. 

296 However, significant cultivar x treatment interaction was found for all the parameters measured.

297

298 DISCUSSION

299 BYDV-PAV is one of the most destructive diseases of wheat and barley, which often causing 

300 significant yield losses when susceptible cultivars are grown (Jaroaová et al., 2013). To reduce 

301 BYD disease damage, the use of resistant cultivars is the most cost-effective and environmentally 

302 sound approach. For a better understanding of the mechanism of plant resistance to BYD disease, 

303 we investigated the changes of biochemical and ultrastructural characteristics in susceptible and 

304 resistant wheat and barley cultivars.
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305 Reduction in chlorophyll content has been reported in many host plants infected with different 

306 viruses. The virus infection reduces chlorophyll contents of leaves producing chlorosis (Pineda et 

307 al., 2008; Vimla & Shukla, 2009). In our experiment, at 6 WAI susceptible cultivars showed a 

308 significant decrease in the rate of photosynthetic pigments. The reduced chlorophyll contents in 

309 susceptible cultivars are mainly due to a loss of leaf photosynthetic area and chloroplast disorders 

310 as observed in bean mosaic virus infected vicia faba leaves (Radwan et al., 2008) while resistant 

311 gene can prevent the loss of chlorophyll in virus-infected leaves as shown in resistant tomato 

312 genotype after TMV infection (Fraser and Loughlin, 1980). Yellow vein mosaic virus (YVMV) 

313 infection can cause enhanced activity of the chlorophyllase that attack chlorophyll and inhibit 

314 chloroplast development and chlorophyll synthesis in okra leaves (Ahmed, Thakur & Bajaj, 1986). 

315 The reduced photosynthesis capacity caused by reduced content of photosynthetic pigments 

316 contributes to the decrease in biomass production, which is shown in our studies as well as previous 

317 reports on BYDV infected cereals (Bukvayová et al., 2006). Resistant cultivars infected with 

318 BYDV showed little effect on plant biomass, indicated resistant genotypes were able to maintain 

319 plant growth upon virus infection.

320 At early stages of plant development, screening of root traits can be used as a proxy for 

321 mature stages (Comas et al., 2013). Greater root length contributed to enhanced grain yield of 

322 wheat by permitting more water extraction at grain filling stage (Manschadi et al., 2006). Barley 

323 yellow dwarf virus (BYDV) affected the root elongation in wheat and barley cultivars differing in 

324 their response to BYDV, the reduction of total root length was less severe in the resistant cultivars 

325 than susceptible cultivars, which is shown in our results as well as previous reports on BYDV 

326 infected oat cultivars (Kolb et al., 1991). Root length is associated with plant height (Steele et al., 

327 2006). Reduction in root length severely restricted water and nutrient absorption process, which 

328 may lead to the decreased of shoot growth (Riedell et al., 2003).

329 Long-distance movement of virus particles is known to occur via the phloem, following 

330 the stream of sugar transport (Gilbertson & Lucas, 1996; Maule & Palukaitis, 1991). In sugarcane 

331 leaves infected by sugarcane mosaic virus (SCMV), sugar concentration is increased as a result of 

332 inhibited phloem transport (Addy et al., 2017). Fiebig et al. (2004) measured sugar content in 

333 phloem sap of BYDV infected and non-infected wheat plants and observed that there was no 

334 significant differences between control and infected plants. It is possibly BYDV blocked sugar 
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335 movement into the phloem and consequently the rate of sugar movement was reduced, thus its 

336 concentration within the cells was higher. In this study, leaves infected with BYDV had 

337 significantly increased content of reducing sugar in susceptible cultivars. Likewise, Jensen (1969, 

338 1968) showed that BYDV infected plants had greater accumulation of carbohydrate in leaves, and 

339 a corresponding reduced chlorophyll content and rate of photosynthesis. The results of our study 

340 were similar to those found in a study of sunflower chlorotic mottle virus (SuCMoV) on sunflower 

341 in which infected leaves showed higher sugar accumulation and lower shoot biomass (Arias et al., 

342 2003). Misra & Jha, (1971) observed an increase in reducing sugar in chilli leaves affected by 

343 mosaic virus, as did Gonçalves et al. (2005) in sugarcane leaves affected by sugarcane yellow leaf 

344 virus (ScYLV), possibly as a result of disruption of normal phloem transport or phloem loading. 

345 Shalitin & Wolf (2000) found that increased foliar sugar levels in melon plants following infection 

346 by cucumber mosaic virus were accompanied by increased respiration, which may lead to biomass 

347 reduction. 

348 Protein components has been reported to be involved in plant pathogenic interactions 

349 (Carvalho et al., 2006; Tornero et al., 2002) with BYDV susceptible wheat cultivars showing 

350 significant reductions in protein content (Xu et al., 2016). In the current experiment, significant 

351 reduction in protein content at 6 WAI was also found in resistant cultivars, which is different from 

352 the report of Sahhafi et al. (2012) that resistant wheat maintained higher protein content under 

353 Wheat streak mosaic virus infection. 

354 Phenolic compounds are often associated with plant responses to different stresses 

355 (Freeman & Beattie, 2008), with higher accumulation of phenols in resistant genotypes compared 

356 to susceptible ones in other virus/plant interactions (Siddique et al., 2014; Singh et al., 2010). 

357 Deposition of phenolics in plant cell walls might be a possible mechanism of virus resistance by 

358 playing key roles in increasing mechanical strength of host cell (Boudet, Lapierre & 

359 Grima0Pettenati, 1995) and inducing cell wall lignification as lignin precursors (Lyon et al., 1992). 

360 In the present study, at 3 WAI phenolic content was increased only in virus infected resistant 

361 genotypes. In addition, the total phenolic content was significantly increased in all infected 

362 resistant genotypes at 6 WAI but not in susceptible ones, suggesting that both increased rate and 

363 quantity of phenolics might be components of the defence mechanism of Bdv2 and Ryd2 resistance 

364 genes.
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365 In a vascular bundle, SE and CC participate in metabolic activities, and are responsible for 

366 long distance transport of minerals and assimilates. Viruses have been shown to affect both the 

367 structural and functional activities of the SE and CC (Lalonde, Camera & Frommer, 2001). BYDV 

368 is a systemic virus and its replication is almost entirely restricted within the plant phloem tissue 

369 (Irwin & Thresh,1990). BYDV particles are found exclusively in vasculature samples (Gill & 

370 Chong, 1975). Any restriction to phloem tissues will impact virus dispersal. However, there is also 

371 evidence of cell-to-cell movement of luteoviruses between nucleate cells of the phloem tissues 

372 (Mutterer et al., 1999). 

373

374 Conclusion

375 Although the damage to vasculature in BYDV infected plants remains to be quantified, we might 

376 speculate that accumulating viral load in the phloem leads to more widespread damage to the 

377 vasculature, and inhibition of sugar transport, which in turn inhibits root and biomass growth. The 

378 increased sugar content of leaves may also inhibit photosynthesis resulting in a further cycle of 

379 growth constraint. We hypothesise that the capacity to respond to virus with inhibitory phenolic 

380 compounds may be the basis of Bdv2 and Ryd2 resistance, limiting viral load and the cascade of 

381 pathological events described above. 
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598 Legends of Figures

599 Figure 1 BYDV-PAV inoculated and control plants of susceptible barley cultivar Flagship at 3 

600 WAI.

601 Figure 2 BYDV-PAV inoculated and control plants of susceptible wheat cultivar Revenue 6 WAI.

602 Figure 3 Mean virus extinction (A 405 nm) assessed in leaf extracts of BYDV-PAV inoculated 

603 and control plants of wheat (W) and barley (B) cultivars at 6 WAI. Mean ± SE (n = 9). 

604 Figure 4: Root appearance (A,B,C,D) and average root length (E) of BYDV-PAV inoculated and 

605 control plants of wheat (W) and barley (B) cultivars at 3 WAI. Mean ± SE (n=5).

606 Figure 5 Average content (mg/g) of chlorophyll a, chlorophyll b, and total chlorophyll of BYDV-

607 PAV inoculated and control plants of wheat (W) and barley (B) cultivars at 3 WAI (A,B,C) 

608 and 6 WAI (D,E,F). Mean ± SE (n=6).

609 Figure 6 Average content (mg/g leaf fresh weight) of total protein of BYDV-PAV inoculated and 

610 control plants of wheat (W) and barley (B) cultivars at 3 WAI (A) and 6 WAI (B). Mean ± 

611 SE (n=6).

612 Figure 7 Average content (mg/g leaf fresh weight) of total phenol of BYDV-PAV inoculated and 

613 control plants of wheat (W) and barley (B) cultivars at 3 WAI (A) and 6 WAI (B). Mean ± 

614 SE (n=6).

615 Figure 8 Average content of (mg/g leaf fresh weight) reducing sugar of BYDV-PAV inoculated 

616 and control plants of wheat (W) and barley (B) cultivars at 3 WAI (A) and 6 WAI (B). 

617 Mean ± SE (n=6).

618 Figure 9 Average shoot fresh weight (g) (A) and relative dry matter (B) of BYDV-PAV inoculated 

619 and control plants of wheat (W) and barley (B) cultivars at 6 WAI. Mean ± SE (n=9).

620 Figure 10 Transverse sections of foliar vascular bundles of susceptible (Flagship) and resistant 

621 (Franklin) barley cultivars, A, C from control plants and B, D from BYDV-PAV inoculated 

622 plants. Details are SE=sieve elements, CC=companion cell, NSE= necrotic sieve elements, 

623 LISE= little infected sieve elements. Mean ± SE (n=3).
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624 Figure 11 Transverse sections of foliar vascular bundles of susceptible (Revenue) and resistant 

625 (Manning) wheat cultivars; A, C from control plants and B, D from BYDV-PAV inoculated 

626 plants. Details are SE=sieve elements, CC=companion cell, ISE= infected sieve elements, 

627 IPP= infected phloem parenchyma. Mean ± SE (n=3).

628
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Table 1(on next page)

Analysis of variance (F-value) for different biochemical parameters of wheat and barley

cultivars as affected by main factors (cultivars and treatment) and their interaction
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1

2 Table 1 Analysis of variance (F-value) for different biochemical parameters of wheat and barley 

3 cultivars as affected by main factors (cultivars and treatment) and their interaction 

4

At 3 weeks after inoculation At 6 weeks after inoculation

Source of variance Chl a Chl b Total Chl Chl a Chl b Total Chl

Cultivar 4.9* 3.140 4.015* 37.540** 11.921** 34.393**

Treatment 58.345** 25.976** 49.047** 60.517** 49.590** 83.648**

Cultivar*Treatment 3.344 1.042 1.750 11.408** 7.137** 12.519**

Source of variance Protein Phenol Sugar Protein Phenol Sugar

Cultivar 0.974 15.316** 102.724** 2.371 14.313** 4.196*

Treatment 8.165* 0.063 7.603* 86.462** 46.182** 70.585**

Cultivar*Treatment 0.798 0.321 0.251 6.013** 7.020** 7.170**

5           *P<0.05, **P<0.01

6

7

8
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Figure 1

BYDV-PAV inoculated and control plants of susceptible barley cultivar Flagship at 3 WAI.

(A) Control. (B) Virus infected.
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Figure 2

BYDV-PAV inoculated and control plants of susceptible wheat cultivar Revenue 6 WAI.

(A) Control. (B) Virus infected.
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Figure 3

Mean virus extinction (A 405 nm) assessed in leaf extracts of BYDV-PAV inoculated and

control plants of wheat (W) and barley (B) cultivars at 6 WAI.

Mean ± SE (n = 9).
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Figure 4

Root appearance (A,B,C,D) and average root length (E) of BYDV-PAV inoculated and

control plants of wheat (W) and barley (B) cultivars at 3 WAI.

Mean ± SE (n=5).
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Figure 5

Average content (mg/g) of chlorophyll a, chlorophyll b, and total chlorophyll of BYDV-

PAV inoculated and control plants of wheat (W) and barley (B) cultivars at 3 WAI (A,B,C)

and 6 WAI (D,E,F).

Mean ± SE (n=6).

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26764v1 | CC BY 4.0 Open Access | rec: 23 Mar 2018, publ: 23 Mar 2018



Figure 6

Average content (mg/g leaf fresh weight) of total protein of BYDV-PAV inoculated and

control plants of wheat (W) and barley (B) cultivars at 3 WAI (A) and 6 WAI (B).

Mean ± SE (n=6).
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Figure 7

Average content (mg/g leaf fresh weight) of total phenol of BYDV-PAV inoculated and

control plants of wheat (W) and barley (B) cultivars at 3 WAI (A) and 6 WAI (B).

Mean ± SE (n=6).
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Figure 8

Average content of (mg/g leaf fresh weight) reducing sugar of BYDV-PAV inoculated and

control plants of wheat (W) and barley (B) cultivars at 3 WAI (A) and 6 WAI (B).

Mean ± SE (n=6).
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Figure 9

Average shoot fresh weight (g) (A) and relative dry matter (B) of BYDV-PAV inoculated

and control plants of wheat (W) and barley (B) cultivars at 6 WAI.

Mean ± SE (n=9).
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Figure 10

Transverse sections of foliar vascular bundles of susceptible (Flagship) and resistant

(Franklin) barley cultivars

A, C from control plants and B, D from BYDV-PAV inoculated plants. Details are SE=sieve

elements, CC=companion cell, NSE= necrotic sieve elements, LISE= little infected sieve

elements. Mean ± SE (n=3).
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Figure 11

Transverse sections of foliar vascular bundles of susceptible (Revenue) and resistant

(Manning) wheat cultivars

A, C from control plants and B, D from BYDV-PAV inoculated plants. Details are SE=sieve

elements, CC=companion cell, ISE= infected sieve elements, IPP= infected phloem

parenchyma. Mean ± SE (n=3).
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