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Abstract: We present PromoterPredict, a dynamic multiple regression 

approach to predict the strength of Escherichia coli promoters binding the 

σ70 factor of RNA polymerase. σ70  promoters are ubiquitously used in 

recombinant DNA technology, but characterizing their strength is 

demanding in terms of both time and money. Using a well-characterized set 

of promoters, we trained a multivariate linear regression model and found 

that the log of the promoter strength is signi昀椀cantly linearly associated with

a weighted sum of the –10 and –35 sequence pro昀椀le scores. It was found 

that the two regions contributed almost equally to the promoter strength. 

PromoterPredict accepts –10 and –35 hexamer sequences and returns the 

predicted promoter strength. It is capable of dynamic learning from user-

supplied data to re昀椀ne the model construction and yield more con昀椀dent 

estimates of promoter strength. PromoterPredict is available as both a web 

service (https://promoterpredict.com) and standalone tool 

(https://github.com/PromoterPredict). Our work presents an intuitive 

generalization applicable to modelling the strength of other promoter 

classes. 

Availability: Open source code and a standalone executable with both 

dynamic model-building and prediction are available (under GNU General 

Public License 3.0) at https://github.com/PromoterPredict, and require 

Python 2.7 or greater. PromoterPredict is also available as a web service at 

https://promoterpredict.com. 

Contact: apalania@scbt.sastra.edu
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INTRODUCTION

The primary E. coli promoter-speci昀椀city factor and the one widely used in 

recombinant DNA technology is the σ70 factor. Promoters recognized by σ70-

containing RNA polymerase are called core promoters and share the 

following features: two conserved hexamer sequences, separated by a non-

speci昀椀c spacer of ideally 17 nucleotides. The two hexamers are located ~10 

bp and ~35 bp upstream of the transcription start site, and are called the –

10 and –35 sequences respectively (Paget and Helmann, 2003; Kadonaga, 

2012). Promoters with –10 and –35 sequences matching the consensus motif

of the hexamers are typically stronger, meaning they initiate more 

transcripts per unit time than promoters with less canonical –10 and –35 

regions. It is known that the conserved hexamer regions are vital for 

recognizing and optimizing the interactions between DNA and the RNA 

polymerase (Hook-Barnard et al., 2006; Feklistov and Darst, 2011; Basu et 

al., 2014). 

Theory has yielded a linear relationship between the total promoter score 

and the natural log of promoter strength (Berg and von Hippel, 1987). 

Strength of E. coli σE RNA polymerase promoters  were studied by  Rhodius 

and Mutalik (2010), who suggested that a study of core (i.e., σ70 ) promoters 

of housekeeping genes could be complicated by the additional role of 

transcription activators and limited data on promoter strengths. The 

complexity of E. coli σ70 promoter sequences has been treated from an 

information theoretic standpoint by Shultzaberger et al. (2007). Many 

resources are available to predict the location of promoters in a genomic 

seqeunce mainly by identifying the –10 and –35 regulatory sequences (for 

example, de Jong et al. (2012)), but there is no (freely) available tool to 

predict the strength of such sequences. Here we provide a web based 

platform as well as a standalone tool for the predictive modelling of the 

strength of σ70 core promoters, with the option to dynamically include user 

data into the predictive model.   

MATERIALS AND METHODS 

Generative model of promoter sequences. A generative model of the –10

and –35 promoter sequences is constructed using two Position Weight 

Matrices (PWM–10 and PWM–35) in the following manner. The training set is 

drawn from the well-characterised Anderson collection of 19 activator-

independent promoters maintained at the Registry of standard biological 
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parts (http://parts.igem.org/Promoters/Catalog/Anderson). Nucleotide-wise 

counts at each position of the hexamer motifs were augmented by a pseudo-

count prior to correct for E. coli GC content of 50.8% and the resulting 

frequency matrices were converted into log-odds matrices using Biopython 

(www.biopython.org).

Linear modelling of promoter strength. Following Berg and von Hippel 

(1987), we modelled the relationship between the promoter sequences and 

the ln of the promoter strength using multiple linear regression. Each 

promoter sequence is scored with respect to the generative models of the    

–10 and –35 motifs (i.e., the PWM–10 and PWM–35 matrices) and the two 

scores obtained formed the feature space of the regression modelling. The 

regression coe昀昀icients to be determined represent the weights of the -10 

and -35 regions in the regression analysis.  The Anderson promoter library 

provided promoter strengths normalized in the range 0.00 to 1.00 with 

respect to the strongest promoter. It was noted that the normalisation step 

would not a昀昀ect a linear relationship, altering only the constant of the 

regression. The normalised strength values were log-transformed to obtain 

the required response variable values. Since the ln function rapidly 

descends towards – Inf with decreasing promoter strength, we capped the 

in昀椀mum of promoter strength at 0.01 prior to log-transformation. The least-

squares cost function was minimized using iterative gradient descent. The 

model parameters were assessed using t-statistics, and the overall model 

was assessed using F-statistic and the adjusted multiple coe昀昀icient of 

determination given by:

Adj. R2 =  1 – {(1-R2)*[(n-1)/(n-m-1)]} …(1)

The model was validated using leave-one-out cross-validation (LOOCV) . 

RESULTS AND DISCUSSION

The conservation pro昀椀le of the –35 and –10 hexamer sequences of the 

promoters in the Anderson library was visualized using sequence logos and 

shown in Fig. 1.  The site scores of each promoter sequence were regressed

on the ln of the promoter strength. A summary of this process with the 

training data, log-transformation of the promoter strength and predicted 

response values is presented in Table 1. The modelling process converged 

within 105 iterations by tuning the gradient descent  to a learning rate (α) of 

0.015, and the following model was obtained:

ln (promoter strength) = -17.111 + 1.015*(PWM–35) + 0.949*(PWM–10) …(2)
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It is observed that the weight coe昀昀icients of the two PWM features are 

almost equal. We derived an independent solution of the multiple regression

using R (www.r-project.org) and obtained a correlation coe昀昀icient of 0.998 

between the 昀椀tted values of the two models.  The interval estimates of the 

coe昀昀icients of the regression were computed in R using confint(fit, 

level=0.95), and obtained the following 95% con昀椀dence intervals: 

Intercept : (-24.05737951, -9.625336)

–35 : (0.59755850, 1.377074)

–10 :    (0.07977664 , 1.814886)

(a) –35 motif:

(b) –10 motif:

Figure 1. Sequence logos of the –35 and –10 hexamer sequences of the promoters 

in the Anderson library. Figure was made using WebLogo (Crooks et al., 2004).  

The interval estimates did not include zero, and this implied that the 

coe昀昀icients were signi昀椀cant at the 0.05 level. The p-value of the PWM–35 

coe昀昀icient was < 10-4 and that of PWM–10 ≈ 0.03. The intercept was 

signi昀椀cant at a p-value ≈10-4. The F-statistic of the overall regression was 

signi昀椀cant at a p-value < 10-4 and adj. R2 was ≈ 0.65. The plane of best 昀椀t 

corresponding to the above model is visualized in Fig. 2. 
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 Table 1. The promoter activities (strengths) are seen to span the range [0.0, 1.0]. 

* indicates promoter strength capped at 0.01. The promoters follow the naming in 

the Anderson dataset. 

Promoter PWM-35 

score

PWM-10 score Promoter 

Activity

ln(Promoter 

Activity)

Predicted 

ln(promoter 

activity)
BBa_J23100 8.80192196 7.05252226 1 0 -1.4669153
BBa_J23101 8.50436801 8.65655364 0.7 -0.35667494 -0.25855671
BBa_J23102 8.94341939 7.79025811 0.86 -0.15082289 -0.62881141
BBa_J23103 5.76111212 7.60539274 0.01 -4.60517019 -4.0308767
BBa_J23104 8.94341939 8.22340587 0.72 -0.32850407 -0.22100527
BBa_J23105 8.36287058 8.22340587 0.24 -1.42711636 -0.80989265
BBa_J23106 8.36287058 7.48567002 0.47 -0.75502258 -1.50446674
BBa_J23107 8.36287058 8.65655364 0.36 -1.02165125 -0.40208651
BBa_J23108 7.16328158 7.91881778 0.51 -0.67334455 -2.31347961
BBa_J23109 8.50436801 6.73909721 0.04 -3.21887582 -2.06383098
BBa_J23110 8.36287058 7.48567002 0.33 -1.10866262 -1.50446674
BBa_J23111 8.80192196 7.48567002 0.58 -0.54472718 -1.05910916
BBa_J23112 5.76111212 7.60539274 0.00* -4.60517019 -4.0308767
BBa_J23113 5.76111212 7.60539274 0.01 -4.60517019 -4.0308767
BBa_J23114 6.96070112 7.48567002 0.1 -2.30258509 -2.92677594
BBa_J23115 7.10219855 7.48567002 0.15 -1.89711998 -2.78324614
BBa_J23116 8.94341939 7.17224497 0.16 -1.83258146 -1.21066725
BBa_J23117 8.94341939 7.17224497 0.06 -2.81341072 -1.21066725
BBa_J23118 8.80192196 8.22340587 0.56 -0.5798185 -0.36453507

In addition to their independent contributions to promoter strength, we 

were interested in exploring if any interactions between –35 and –10 sites 

could contribute to promoter strength. To this end, we examined the 

following model in R:

lm(logStrength ~ PWM35 * PWM10)

where PWM35 and PWM10 represent the corrresponding site scores. This 

model resulted in a lower adj. R2 value than that without any interactions. 

Further, all the four p-values of the regression parameters (intercept, 

PWM35, PWM10 and interaction) were not signi昀椀cant. The F-statistic was 

also not signi昀椀cant, thus discounting any interaction between the sites in 

the present dataset. On this basis, the null hypothesis of absence of any 
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Figure 2. The regression surface (blue) of the estimated model with the training 

data points(red). X- and y-axes represent PWM scores and the z-axis (vertical) 

represents the predicted ln(promoter strength).  

interaction could not be rejected, and we concluded that there is little 

evidence for interaction between the –35 and –10 sites in determining 

promoter strength.

Our model assumed that both the predictors carried independent 

information about the promoter strength, and together they are able to 

provide su昀昀icient information about the strength. The basis of this 

assumption was probed to determine if both predictors are necessary to the 

model. Could one predictor provide su昀昀icient information about the 

promoter strength in the absence of the other? There are at least three 

angles to address this question, and all of them were considered to interpret

the model better. 

(1) Comparing the raw, unadjusted R2 with the adjusted R2. The 

corresponding values were:

R2 = 0.69

Adj. R2 ≈ 0.65
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Since there is not much di昀昀erence between R2 and adj. R2, we could say that

both predictors contribute substantially to the response variable (promoter 

strength) and account for about 65% of its variance.

(2) Since the p-values of both predictors are signi昀椀cant, it would be 

interesting to observe their e昀昀ect on the response variable in more detail. 

This was performed using the effects package in R:

library(effects)

fit = lm(logStrength~ PWM35+ PWM10, data)

plot(allEffects(fit))

The results are shown in Fig. 3. Con昀椀dence in the e昀昀ect of –35 site 

increases with the –35 score, as evidenced by  decreasing uncertainty in 

logStrength. Such an e昀昀ect is however not observed for –10 hexamer: the 

uncertainty widens at both the ends due to edge e昀昀ects. The e昀昀ect of the –

35 sequence is also steeper than the e昀昀ect of the –10 sequence.

Figure 3. E昀昀ects plot of –35 and –10 promoter sites on promoter strength.
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(3) Another robust method to address the question is to compute the 

correlation coe昀昀icients between all the variables of interest, including a 

variable with the combined e昀昀ects of –35 and –10 sites. This is shown in 

Table 2. Three features were used, namely PWM—10 score, PWM—35 score, 

and the combined score (i.e., PWM—10 + PWM—35). These feature variables 

were correlated with two response variables, namely promoter strength and

its corresponding log transformation. It was 昀椀rst observed that the PWM—10 

and PWM—35 scores were uncorrelated (with a correlation coe昀昀icient of just 

~0.05). It was signi昀椀cant that the highest correlation between the features 

and response variable was observed between the combined score and log of

the promoter strength (~0.83). This validated our modelling process and 

was in keeping with similar observations for the strength of σE promoters 

(Rhodius and Mutalik, 2010). It was further observed that the combined 

score showed a relatively moderate correlation with the promoter strength 

prior to log transformation (about 0.66). This underscored the logarithmic 

dependence between the promoter strength and sequence, and provided 

independent validation of Berg and von Hippel's theoretical model (1987).

Table 2. Correlation matrix of features and response variables.  

Corr. Coef. PWM–10 PWM–35 Combined Strength Log-strength

PWM–10 1 0.05223042 0.44876850 0.31830991 0.36182231

PWM–35 0.05223042 1 0.91586764 0.59734821 0.76551138

Combined 0.4487685 0.9158676 1 0.6625185 0.8304959

Strength 0.3183099 0.5973482 0.6625185 1 0.8744839

Log-strength 0.3618223 0.7655114 0.8304959 0.8744839 1

Finally, the assumptions of linear modelling were investigated with 

reference to our problem. Model diagnostics of four basic assumptions were

plotted (shown in Fig. 4). Speci昀椀cally:

Plot 1: The residuals were plotted against the 昀椀tted values. No trend was 

visible in the plot, indicating the residuals did not increase with the 昀椀tted 

values and followed a random pattern about zero. This validated the 

assumption that the errors were independent.
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Plot 2: The square root of the relative error (standardized residual) was 

plotted against the 昀椀tted value. No distinct trend was observed, indicating 

that the standardized residual was not a function of the 昀椀tted value.  This 

further validated the assumption that the errors were independent. 

Plot 3: To test the assumption that the errors were normally distributed, the

standardized residuals were plotted against the theoretical quantiles of a 

normal distribution. The residual distribution did not signi昀椀cantly deviate 

from the theoretical quantiles. 

Figure 4. Model diagnostics plots for investigating the assumptions underlying  

linear modelling. Please see text for discussion. 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26759v2 | CC BY 4.0 Open Access | rec: 1 Apr 2018, publ: 1 Apr 2018



Plot 4: Since the least-squares cost function is sensitive to outliers, the 

number of outliers should be kept to a minimum. This was investigated by 

plotting the standardized residual against the corresponding instance's 

model leverage. This plot showed that there were no signi昀椀cant outliers in 

the dataset that could exert an undue in昀氀uence on the regression 

parameters. 

Table 3.  Cross-validation results. In each trial, a random observation was chosen 

as a test instance for prediction based on a model built with the rest of the dataset. 

This process was repeated 19 times, once for each test instance and the cross-

validation (CV) residuals were obtained.  

Fold Observation Log(strength) Predicted CV Pred CV Residual

1 3 -4.600 -3.995 -3.771 -0.729

2 15 -1.897 -2.745 -2.829 0.932

3 1 -0.357 -0.255 -0.220 -0.136

4 10 -1.109 -1.501 -1.530 0.422

5 12 -4.600 -3.955 -3.771 -0.729

6 2 -0.151 -0.635 -0.686 0.535

7 4 -0.329 -0.228 -0.210 -0.118

8 00  0.00 -1.47 -1.78 1.780

9 14 -2.303 -2.884 -2.948 0.646

10 5 -1.427 -0.800 -0.717 0.710

11 13 -4.600 -3.955 -3.771 -0.729

12 7 -1.022 -0.393 -0.185 -0.837

13 17 -2.813 -1.222 -0.936 -1.877

14 8 -0.673 -2.279 -2.440 1.766

15 9 -3.22 -2.07 -1.68 -1.540

16 11 -0.545 -1.067 -1.120 0.576

17 16 -1.83 -1.22 -1.11 -0.720

18 6 -0.755 -1.501 -1.557 0.802

19 18 -0.580 -0.366 -0.332 -0.248
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The assumptions of linear modelling were found to be valid, and the model 

was then cross-validated using a 19-fold LOOCV (similar to jack-knife). 

Cross-validation yielded a correlation coe昀昀icient of 0.75 (Table 3). 

An alternative univariate regression model using only the combined score of

the PWMs found the coe昀昀icient of regression signi昀椀cant (p-value < 10-4). 

However, the weights of the PWMs were slightly di昀昀erent in the model 

equation  (eq. (2)), further the uncertainty in their e昀昀ects was di昀昀erent. The

original multiple linear regression model was retained for the estimation of 

the promoter strength. 

We implemented our model in Python (www.python.org). Since the 

modelling results are dependent on the dataset, our implementation 

provides a facility to augment the learning based on user-provided inputs. A

web service for the same has been initiated. The web interface is based on 

Python web module (web.py) and nginx server. The computational layer is 

based on numpy, Biopython and matplotlib. The user is provided with an 

option to add any number of promoter instances with –10 and –35 

sequences and the corresponding strengths to augment the training data of 

the supervised model. The goodness of 昀椀t of the updated model is re-

computed, along with a 3D plot of the regression surface. Based on the 

trained model, the user could predict the strength of any uncharacterised 

promoter given its –10 and –35 hexamers. 

CONCLUSION

The following important conclusions were drawn from our study. (1) 

Sequence-based modelling yielded a logarithmic dependence between 

promoter strength and sequence. (2) The –10 and –35 sites were equally 

important in determining promoter strength. (3) The combined sum of the 

scores (PWM–35 + PWM–10) emerged as the single most important predictor 

of the promoter strength. It is straighforward to extend our methodology to 

the study of new promoter classes of other sigma factors. Our 

implementation and web service could be useful in characterizing unknown 

promoters of newly sequenced genomes as well in the selection of 

promoters for synthetic biology experiments. The dynamic feature of our 

implementation would enable users with own data to obtain more reliable 

estimates of promoter strength. The service will be periodically updated 

based on the availability of new training instances, user input data and/or 

models for promoters of other sigma factors. 
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