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Blue crabs, Callinectes sapidus Rathbun, 1896, are ubiquitous along the Atlantic and Gulf

coasts of the United States. These organisms play an integral role in the ecosystems of the

Gulf of Mexico (GOM), where not only are they a keystone species, but are also

socioeconomically important. The survival of embryonated eggs is necessary to ensure

adequate recruitment into the next generation. Because the 2010 Deepwater Horizon oil

spill (DWH) occurred during the peak of the blue crab spawning season, the incident likely

impacted blue crab embryos. In order to assess the effect of oil on embryonic growth and

development, we collected embryonated eggs from seven different female blue crabs from

the GOM throughout the spawning season and exposed them to an oil concentration of

500 ppb (the approximate concentration of oil at the surface water near the site of the

Deepwater Horizon oil rig). Exposure to oil at this concentration caused a significantly

larger proportion of prezoeae versus zoeae to hatch from embryonated eggs in

experiments lasting longer than 4 days. Exposure to oil did not significantly affect overall

survival or development rate. The prezoeal stage is a little-studied stage of blue crab

development. Though it may or may not be a normal stage of development, this stage has

been found to occur in suboptimal conditions and has lower survival than zoeal stages. The

larger proportion of prezoeae following prolonged exposure to oil thus indicates that crude

oil at concentrations likely to be experienced by crabs after the DWH spill negatively

impacted the development of blue crab embryos. In addition to providing insight into the

effects of the Deepwater Horizon oil spill, this study sheds light on embryonic development

in blue crabs, a critical, but poorly investigated phase of this important species9 life cycle.
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26 Abstract

27 Blue crabs, Callinectes sapidus Rathbun, 1896, are ubiquitous along the Atlantic and 

28 Gulf coasts of the United States. These organisms play an integral role in the ecosystems of the 

29 Gulf of Mexico (GOM), where not only are they a keystone species, but are also 

30 socioeconomically important. The survival of embryonated eggs is necessary to ensure adequate 

31 recruitment into the next generation. Because the 2010 Deepwater Horizon oil spill (DWH) 

32 occurred during the peak of the blue crab spawning season, the incident likely impacted blue 

33 crab embryos. In order to assess the effect of oil on embryonic growth and development, we 

34 collected embryonated eggs from seven different female blue crabs from the GOM throughout 

35 the spawning season and exposed them to an oil concentration of 500 ppb (the approximate 

36 concentration of oil at the surface water near the site of the Deepwater Horizon oil rig). Exposure 

37 to oil at this concentration caused a significantly larger proportion of prezoeae versus zoeae to 

38 hatch from embryonated eggs in experiments lasting longer than 4 days. Exposure to oil did not 

39 significantly affect overall survival or development rate. The prezoeal stage is a little-studied 

40 stage of blue crab development. Though it may or may not be a normal stage of development, 

41 this stage has been found to occur in suboptimal conditions and has lower survival than zoeal 

42 stages. The larger proportion of prezoeae following prolonged exposure to oil thus indicates that 

43 crude oil at concentrations likely to be experienced by crabs after the DWH spill negatively 

44 impacted the development of blue crab embryos. In addition to providing insight into the effects 

45 of the Deepwater Horizon oil spill, this study sheds light on embryonic development in blue 

46 crabs, a critical, but poorly investigated phase of this important species9 life cycle. 

47

48
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49 Introduction 

50 Marine organisms may be most vulnerable to the effects of toxicants at the embryonic 

51 stage due to the intense period of cellular activity that occurs during development (Connor, 1972; 

52 Lee et al., 1999). Studies examining the effects of various pollutants found detrimental effects on 

53 the growth and development of marine organisms (Lee & Oshima, 1998; Klumpp et al., 2002; 

54 Bellas et al., 2008). One pollutant to which marine organisms are likely to be exposed is crude 

55 oil released from natural seeps but also from oil spills, such as the Exxon Valdez spill in 1989 

56 and the more recent Deepwater Horizon spill (DWH) in 2010. The DWH was the largest oil spill 

57 in U.S. history and released approximately 4.1 million barrels of oil into the northern Gulf of 

58 Mexico (NGOM) from 20 April 2010 to 15 July 2010 (McNutt et al., 2012; Allan, Smith & 

59 Anderson, 2012). During the spill, oil concentrations in the surface waters were found to be as 

60 high as 500 ppb (Chiasson & Taylor, 2017; Wade et al., 2011). Previous research has shown that 

61 oil at concentrations as low as 0.4 ppb has significant impacts on the growth and development of 

62 herring embryos (Clupea pallasi (Valenciennes, 1847)) (Carls, Rice & Hose, 1999). Salmon 

63 embryos (Oncorhynchus gorbuscha (Walbaum, 1792)) exposed to oil from the Exxon Valdez 

64 spill incurred genetic damage, which could be passed on to future offspring (Bue, Sharr & Seeb, 

65 1998; Heintz et al., 2000). Sea urchin embryos (Strongylocentrotus purpuratus (Stimpson, 

66 1857)) that were exposed to crude oil experienced developmental delays, slower growth rate, 

67 abnormal cleavage, and increased mortality (Allen, 1971). 

68 One organism that may have been exposed to oil released from the DWH spill was the 

69 blue crab, Callinectes sapidus Rathbun, 1896. Blue crabs are highly abundant in the NGOM and 

70 are found in their juvenile and adult stages in near-shore estuarine benthic habitats (Guillory et 

71 al., 2001). In the spring and summer, female blue crabs migrate offshore to spawn, often to 
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72 barrier islands or sand shoals (Gelpi et al., 2009). The Deepwater Horizon oil spill overlapped 

73 with blue crab spawning in both timing and location (Gelpi et al., 2009; Grey et al., 2015). 

74 Female blue crabs carry eggs on their abdomen in a mass known as a 8sponge,9 and due to the 

75 primarily benthic lifestyle of blue crabs, prolonged exposure of the sponge to oiled sediments is 

76 likely (Burns & Teal, 1979; Hines et al., 1987).  In addition to exposure occurring in the year of 

77 the spill, exposure could occur for many years afterwards due to the persistence of elevated 

78 concentrations of oil within the sediments for up to ten years (Burns & Teal, 1979). 

79 It is important to understand the effect of oil on blue crabs due to the ecological and 

80 economic significance of this species within the Gulf of Mexico (Darnell et al., 2009; Gelpi et 

81 al., 2009; Alloy et al., 2015; Grey et al., 2015). Studies evaluating the effects of oil on blue crabs 

82 have focused on the larval and especially post-larval stages. Such studies have shown some sub-

83 lethal effects, but have not demonstrated an increase in mortality or any reduction in population 

84 size as a result of exposure (Lee & Neuhauser, 1977; Pearson et al., 1981; Wang & Stickle, 

85 1988; Alloy et al., 2015; Giltz & Taylor, 2017; Chiasson & Taylor, 2017). However, because 

86 eggs may suffer prolonged exposure and because embryonic stages may be particularly 

87 vulnerable, it is necessary that we evaluate the effects of oil at the embryonic stage in order to 

88 investigate the potential damage caused by oil to the Gulf of Mexico blue crab population. 

89 Blue crab embryos undergo nine stages of development before hatching into a free-

90 swimming larva known as a zoea (fig. 1; DeVries, Epifanio & Dittel, 1983). Some researchers 

91 have noted an additional stage that seems to occur between the 9th embryonic stage and the zoeal 

92 stages known as a 8prezoea9 (Robertson, 1938; Churchill, 1942). In the prezoeal stage, setae and 

93 spines are invaginated and the body is covered in a cuticle from which it must break free (Davis, 

94 1965). There is some controversy as to whether the prezoeal stage is a natural, but brief, stage of 
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95 development versus an abnormality caused by poor environmental conditions (Sandoz & Rogers, 

96 1944; Van Engel, 1958; Clark, Calazans & Pohle, 1998). Prezoeae are highly vulnerable due to a 

97 decreased swimming ability and have a reduced rate of survival such that a prolongation of this 

98 stage would have a negative impact on the organism (Clark, Calazans & Pohle, 1998). 

99 In this study we compared the development rates, survival, and the stage upon hatching 

100 of embryonated blue crab eggs exposed to the concentration of oil at the site of the DWH to 

101 unexposed (control) embryonated eggs, in order to assess the effects of the crude oil on 

102 embryonic development.  

103

104 Materials & Methods  

105 We conducted an oil exposure experiment seven times on eggs collected from seven 

106 different female blue crabs. Egg masses were obtained from females, with permission from the 

107 Mississippi Department of Marine Resources, and were assigned an identification number 1-7 

108 based on date caught. The crabs were collected via crab pots from within the Mississippi Sound 

109 (collection dates and locations for the 7 egg masses were #1: 6 June 2015, 30°2094299N 

110 88°3494299W; #2 and #3: 27 June 2015, 30°1791099N 88°3592599W; #4 and #5: 8 July 2015, 

111 30°1894799N 89°1991699W; #6 and #7: 22 July 2015 30°1894799N 89°1796899W). For each 

112 experiment, the egg mass was removed from the female and the female was subsequently 

113 released. The egg mass was transported approximately one and a half hours away to Tulane 

114 University, New Orleans. As described by Lee et al. (1999), pieces of the egg mass were then 

115 placed in a container of seawater and shaken gently in order to dislodge the individual eggs from 

116 the egg mass. Eggs were taken up with a pipette and transferred individually into 48 wells of a 

117 96-well plate with 99 ¿L of seawater with a salinity of 28 ppt (Lee, O9Malley & Oshima, 1996; 
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118 Lee & Oshima, 1998; Lee et al., 1999). The eggs were then incubated at 28°C for approximately 

119 12 hours and experimental trials commenced the following day. For each experiment, all eggs 

120 were derived from the egg mass of a single female. The majority of embryonated eggs in each 

121 egg mass were at the same initial developmental stage and all eggs selected were at the same 

122 (majority) stage. However, this initial stage varied among experiments. Water accommodated 

123 fractions (WAF) of South Louisiana Crude oil (MC252 surrogate) were prepared daily as 

124 described by Singer et al. (2000) for both oil-exposed and non-oil-exposed (control) eggs. The 

125 WAF was made with 28 ppt artificial seawater. 150 mg of crude oil was added to 1.5 L water 

126 making the nominal crude oil concentration 100 ppm. The WAF was stirred for 24 hours, after 

127 which it was diluted such that the ultimate concentration of oil within each oil-exposed well was 

128 500 ppb (Chiasson & Taylor, 2017). Clean sea water was used in the control wells. Due to the 

129 limited information on the concentration of oil within the sediment at the site of the DWH, we 

130 used 500 ppb, the approximation for the highest oil concentration found at the surface water near 

131 the DWH after the spill (Chiasson & Taylor, 2017; Wade et al., 2011). This concentration 

132 provides a conservative estimate of the potential effects of the oil spill on the development of 

133 blue crab embryos. Full water changes were performed daily for both treatments with WAF re-

134 added to oil-exposed wells, so that the oil exposure was continuous for the duration of the 

135 experiment. Eggs were incubated at 28°C in the dark until they hatched (Lee & Oshima, 1998; 

136 Lee et al., 1999). One 96-well plate from both the control and oil-exposed group was removed 

137 from the incubator daily, each egg in the plate was observed under a microscope, and then the 

138 removed plate was discarded from the experiment, because the changes in temperature and 

139 handling of eggs could interfere with development and alter results. Every egg in each daily 

140 removed plate was visually examined to determine its stage and whether it was alive (n=48 per 
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141 treatment per day). Once hatched, larvae were examined to see whether they were 

142 developmentally normal zoeae or prezoeae. Because the initial developmental stage (and 

143 therefore the time to hatch) varied among egg masses from different females, each experiment 

144 lasted a different number of days (fig. 2). 

145 Aliveness was determined by the color and clarity of embryonated eggs. Living embryos 

146 were observed to have clear eggs with yellow yolk. Embryos in cloudy eggs with dark yolk that 

147 ranged in color from dark yellow to orange were considered deceased. The stage of the embryo 

148 in each egg was determined by visually assessing distinct characteristics and morphological 

149 features (DeVries, Epifanio & Dittel, 1983; fig 1). 

150 Once hatched, an individual was classified as either a developmentally normal zoea or a 

151 prezoea. A developmentally normal zoea had a heartbeat, lateral spines, a dorsal spine that was 

152 characteristically long and erect with a backwards arch, a telson, a rostrum, large eyes that were 

153 bilaterally symmetrical and fully pigmented, and was observed to swim freely and rapidly (fig. 

154 1i). 

155 Prezoeae remained enveloped within a cuticle. While most prezoeae did have a heartbeat 

156 as well as large, fully pigmented, and bilaterally symmetrical eyes, they did not display a visible 

157 rostrum or lateral spines. Prezoeae also had an impaired swimming ability. The dorsal spine of 

158 prezoeae was either not visible due to persistent invagination or it was noticeably shorter than the 

159 dorsal spine of a normal zoea (fig. 1h). When visible, the shorter dorsal spine of some prezoeae 

160 presented a forward arch rather than the backward arch of the developmentally normal zoeae.

161 For each day of an experiment, we calculated the average stage of all embryonated eggs 

162 within the control and the oil-exposed groups and survival, which was the proportion that were 

163 alive in the removed well-plate. Each experiment was considered complete when greater than 
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164 90% of the eggs had either hatched or died in both treatment groups. For every plate within each 

165 experiment, we calculated the proportion of eggs that hatched and whether they hatched into 

166 zoeae versus prezoeae. 

167 The development rate for each experiment was calculated at the slope of the best fit 

168 regression line through average stage on each day. We assumed that development was linear and 

169 not affected by starting stage. A paired t-test was used to test whether the development rate was 

170 different in control versus oil exposed groups. An ANOVA was conducted to test whether the 

171 variation in daily survival was affected by female (ID number 1-7), treatment (oil-exposed versus 

172 control), exposure time (number of days of exposure within experiment), or any interactions 

173 between them. We used ANOVA to test whether female, treatment, duration of experiment, or 

174 any interaction explained the variation in the proportion of eggs that hatched as zoeae (versus 

175 prezoeae).   

176

177 Results  

178 Embryonated eggs developed at an average rate of 1.54 stages/day (fig. 2). There was no 

179 significant difference in development rate between control (1.51 stages/day SD = 0.20) and oil-

180 exposed groups (1.58 stages/day SD = 0.47; t(6) = -0.67, p = 0.53; table 1; fig. 2). The proportion 

181 that survived day to day decreased significantly with exposure time, but was not significantly 

182 affected by treatment or female ID (fig 2; table 2a). 

183 Prezoeae were observed in both the control and the oil-exposed treatment (table 1). Of all 

184 the oil-exposed eggs, 35% hatched into prezoeae while only 12% of non-exposed eggs hatched 

185 into prezoea. In five out of the seven experiments, a higher proportion of eggs hatched into 

186 prezoea in the oil-exposed group compared to the control treatment (table 1).
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187 Treatment and the interaction between treatment and duration were significant predictors 

188 of the proportion of zoeae versus prezoeae hatched (table 2b). In the shorter duration (3 and 4 

189 day) experiments, there was no difference in proportion of eggs that hatched into zoeae between 

190 the oil-exposed and control eggs. However, in longer duration (5 and 6 day) experiments a 

191 significantly lower proportion of eggs hatched into zoeae versus prezoeae in the oil-exposure 

192 treatments than in the controls (fig. 3). 

193

194 Discussion 

195 This study suggests that prolonged exposure to oil, even at low concentrations, can be 

196 detrimental to embryo development in blue crabs. Although no differences in survival or 

197 development rate were detected, we did see a significantly higher proportion of prezoeae in the 

198 oil-exposed eggs that hatched in experiments lasting longer than 4 days. Even if prezoeae were to 

199 be regarded as a normal stage of development, crabs only exist in this stage briefly and the 

200 increased number observed at this stage in the oil-exposed group when viewed once every 24 

201 hours indicates an increased duration of the prezoeal stage. Given the high mortality rate of 

202 decapod larvae during this stage, longer time spent as a prezoea would likely be detrimental 

203 (Clark, Calazans & Pohle, 1998). If prezoeae are an abnormality, an increase in prevalence is 

204 akin to an increase in mortality. Due to the restrictions of our experimental design, we were 

205 unable to establish whether the larger proportion of prezoea in longer oil-exposure experiments 

206 was due to the duration of the experiment or due to the exposure of embryos at an earlier stage. 

207 Future studies should focus on exposing embryonated eggs at earlier stages versus later stages 

208 over varying amounts of time to distinguish between these potential causes.
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209 Marine embryos are known to be effective biotic indicators and can be used to evaluate 

210 the overall health of an ecosystem (Klumpp & Von Westernhagen, 1995). Our study found a 

211 negative impact of oil on the life stage of one species, yet this could be indicative of a larger 

212 negative effect oil has had, and is having, on the ecological communities within the Gulf of 

213 Mexico. We suggest that our finding of a significantly higher proportion of prezoeae in oil-

214 exposed treatments lasting longer than 4 days is evidence of a detrimental effect of oil, but 

215 further study is needed to better assess how this higher proportion of prezoeae might affect the 

216 population within the Gulf of Mexico. 

217 Furthermore, because embryonated eggs were reared in an unnatural setting, our study 

218 does not allow us to tell whether or not prezoeae are a normal stage and would have molted into 

219 zoeae. Prezoeae as a normal developmental state of the blue crab would be consistent with the 

220 natural occurrence of prezoeae in other brachyuran crabs such as Chasmagnathus granulatus 

221 Dana, 1851 and Chionoecetes bairdi Rathbun, 1924, as well as in the more closely related 

222 species Necora puber Linnaeus, 1767 (Stone & Johnson, 1998; Lopez et al., 2002; Lebour, 

223 1928). Furthermore, Churchill (1942) and Robertson (1938) observed prezoeae during each of 

224 their individual assessments of the developmental stages of blue crabs. 

225 While the findings in this experiment demonstrate a previously unknown impact of crude 

226 oil exposure on a novel system, they remain consistent with the conclusions of similar studies 

227 demonstrating the negative influence of oil on marine embryos (Fisher & Foss, 1993; Klumpp & 

228 Von Westernhagen, 1995; Hose & Brown, 1998). At best, prolonged oil exposure for lengthens 

229 the time spent in the vulnerable prezoeal stage and, at worst, triggers abnormal and fatal 

230 development. 

231
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Figure 1

Developmental stages of embryonated eggs in Callinectes sapidus Embryonic stages of

Callinectes sapidus Rathbun, 1896.

a, Stage 3 embryonated eggs are approximately ¾ yolk; b, Stage 4 embryonated eggs are

approximately ½ yolk; c, Stage 5 embryonated eggs are approximately ¼ yolk; d, Stage 6

embryonated eggs display faint eye spots; e, Stage 7 embryonated eggs display faint

abdominal lines; f, Stage 8 embryonated eggs display darker and more defined abdominal

lines, mouth parts are visible, and eyes are teardrop shaped; g, Stage 9 embryonated eggs

have distinct chromatophores, eyes are elliptical and dark, and heart beat is apparent in

living specimens; h, Larval prezoea; i, Larval zoea. Average diameter for embryonated eggs

is approximately 267µm and average larval carapace width is approximately 278 µm (Darnell

et al., 2009). Photographs by Kelsie Kelly.
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Figure 2(on next page)

Developmental rate and survival of embryonated eggs and larvae

Developmental rate and survival of embryonated eggs and larvae over time exposed for each of the 7

experiments.
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Figure 3(on next page)

Proportion of developmentally normal zoeae out of total number of hatched larvae

Total proportion of embryonated eggs, which hatched into developmentally normal zoeae by treatment and

time exposed.
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Table 1(on next page)

Summary of Experiments
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Experiment # 

(female id)

Initial stage 

(duration of 

experiment in 

days)

Development 

rate 

(stages/day): 

Control

Development 

rate 

(stages/day): 

Oil

Proportion of 

Zoeae: Control

Proportion 

of Zoeae: 

Oil

1 6 (3) 1.70 1.81 1.0   0.79

2 5 (3) 1.84 2.53 0.80 0.82

3 5 (4) 1.23 1.26 0.58 0.88

4 4 (5) 1.45 1.40 0.97 0.73

5 3 (6) 1.51 1.55 0.93 0.64

6 4 (4) 1.40 1.22 0.93 0.35

7 2 (6) 1.42 1.30 0.93 0.31

Mean (SD) 4.29 

(1.38)

1.51 

(0.20)

1.58

(0.47)

0.88

(0.14)

0.65

(0.23)
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Table 2(on next page)

ANOVA Results

(a) Results of ANOVA testing how much the variation in proportion of embryos surviving in each well-plate

on each day of each experiment was explained by female ID, treatment (oil-exposed versus control), and

exposure time within the experiment. Asterix indicates statistical significance at the ³ = 0.05 level.

(b) Results of ANOVA testing how much the variation in proportion of embryos that hatched into zoeae was

explained by female id, treatment (oil-exposed versus control), and duration of experiment. Asterix

indicates statistical significance at the ³ = 0.05 level.
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1

2

3

(a) DF Sum Sq Mean Sq F Value Pr(>F)

Exposure Time 1 0.2965 0.29648 6.084 0.0167 *

Treatment 1 0.0113 0.01133 0.232 0.6316

Female id 1 0.1694 0.16943 3.477 0.0675

Exposure Time:Treatment 1 0.0019 0.00192 0.039 0.8434

Exposure Time:Female id 1 0.0258 0.02583 0.530 0.4696

Treatment:Female id 1 0.0053 0.00533 0.109 0.7420

Exposure 

Time:Treatment:Female id

1 0.0213 0.02131 0.437 0.5112

Residuals 56 2.7292 0.04873

4

5

(b) DF Sum Sq Mean Sq F Value Pr(>F)

Duration of Experiment 1 0.04041 0.04041 2.138 0.1940

Treatment 1 0.18784 0.18784 9.939 0.0197 *

Female id 1 0.07116 0.07116 3.765 0.1004

Duration:Treatment 1 0.11603 0.11603 6.139 0.0480 *

Duration:Female id 1 0.00004 0.00004 0.002 0.9631

Treatment:Female id 1 0.04576 0.04576 2.421 0.1707

Duration:Treatment:Female id 1 0.04399 0.04399 2.327 0.1780

Residuals 6 0.11340 0.01890

6
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