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Abstract

IRT models are often applied when observed items are used to measure a
unidimensional latent variable. Originally used in educational research, IRT
models are now widely used when focus is on physical functioning or psy-
chological well-being. Modern applications often need more general models,
typically models for multidimensional latent variables or longitudinal models
for repeated measurements. This paper describes a collection of SAS macros
that can be used for fitting data to, simulating from, and visualizing longitu-
dinal IRT models. The macros encompass dichotomous as well as polytomous
item response formats and are sufficiently flexible to accommodate changes in
item parameters across time points and local dependence between responses
at different time points.

Keywords: polytomous IRT model, Rasch model, 1PL model, Birnbaum
model, 2PL model, Partial Credit model, Generalized Partial Credit model,
longitudinal IRT model, marginal maximum likelihood (MML) estimation,
item parameter drift, response dependence, SAS.

1 Introduction

Item response theory (IRT) models were developed to describe probabilistic rela-
tionships between test items and latent traits (van der linden & Hambleton, 1997).
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Originally developed and used in educational testing to describe how the probability
of a correct answer to test item depends on ability, they are applicable whenever
location of persons and items on an underlying latent scale is of interest. Traditional
applications in education often use dichotomous (correct/incorrect) item scoring, but
polytomous items are common in other applications. The use of IRT models in new
research fields increases the need for implementation in standard statistical software
like SAS. Estimation in IRT models using SAS has been the topic of several research
papers (Rijmen et al., 2003; Smits & De Boeck, 2003; Nandakumar & Hotchkiss,
2012). In particular, implementation of polytomous Rasch models in SAS has been
discussed (Christensen, 2006), and SAS macros that used these ideas are available
(Christensen & Bjorner, 2003; Hardouin & Mesbah, 2007; Christensen & Olsbjerg,
2013; Christensen, 2013).

Many applications require more general models. Typically when multidimensional
latent variables are considered or when repeated measurements are used. Longitudi-
nal Rasch models were studied by Pastor and Beretvas (2006), who illustrated how
these models can be seen as hierarchical generalized linear models and implemented
in the software program HLM (Raudenbush et al., 2004) that uses penalized quasi-
likelihood for estimation, but as noted by Pastor and Beretvas, various estimation
procedures and software programs for these kinds of models exist. An example is the
Random Weights Linear Logistic Test Model (Rijmen & De Boeck, 2002), which is
a special case of the multidimensional random coefficients multinomial logit model
(Adams et al., 1997a) implemented in the computer program ConQuest (Wu et al.,
2007). IRT models are increasingly applied in health status measurement and eval-
uation of Patient Reported Outcomes (Reeve et al., 2007). The simplest IRT model,
the Rasch (1960) model, (Fischer & Molenaar, 1995; Christensen et al., 2013), is
increasingly used for validation of measurement instruments (Tennant & Conaghan,
2007) and has been shown to be superior to classical approaches (Blanchin et al.,
2011). This paper describes SAS macros that are available from

https://github.com/KarlBangChristensen/LIRT

and can can be used to fit longitudinal IRT models with the possibility to model
item parameter drift and response dependence across time points. Four macros: (i)
%LIRT MML that estimates item parameters, (ii) %LIRT PPAR that estimates person
parameters and changes in person parameters over time given estimated item pa-
rameters, (iii) %LIRT ICC that plots item characteristic curves, and (iv) %LIRT SIMU

that generates data sets with responses simulated from the model are described in
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detail and illustrated using data from a longitudinal study based on a HRQoL ques-
tionnaire applied to women screened for breast cancer.

2 IRT models for a single time point

IRT models describe responses to items X = (Xi)i∈I measuring a latent variable
θ ∈ R. For dichotomously scored items two IRT models have traditionally been
applied: the Rasch or 1PL model (Rasch, 1960; Fischer & Molenaar, 1995) and the
Birnbaum or 2PL model (Birnbaum, 1968). These, the simplest IRT models, are
given by the probabilities

P (Xi = xi|θ) =
exp(xi(θ + ηi)

1 + exp(θ + ηi)
(xi = 0, 1) (1)

and

P (Xi = xi|θ) =
exp(αi(xi(θ + ηi)))

1 + exp(αi(θ + ηi))
(xi = 0, 1) (2)

for each item i ∈ I. The formula (1) defining the Rasch model and the formula (2)
defining the Birnbaum model reveal that these are logistic regression models. When
αi does not differ across items the IRT models (2) is identical to (1). For ordinal
item response formats (1) can be generalized to

P (Xi = xi|θ) =
exp(xiθ + ηixi

)∑mi

k=0 exp(kθ + ηik)
(xi = 0, 1, . . . ,mi) (3)

and the model (2) can be generalized to

P (Xi = xi|θ) =
exp(αi(xiθ + ηixi

))∑mi

k=0 exp(αi(kθ + ηik))
(xi = 0, 1, . . . ,mi) (4)

where for identification purposes ηi0 = 0 for all i ∈ I. Note that for mi = 1 this
corresponds to setting ηi0 = 0 and ηi1 = ηi in (1) and (2), respectively. The model (3)
is called the partial credit model (PCM; Masters 1982), but was originally proposed
without this name by Andersen (1977)), and the model (4) is called the generalized
partial credit model (GPCM; Muraki 1992). In these models the parameter αi and
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the vector ηi = (ηik)k=1,...,mi
are parameters describing the item while θ is a parameter

describing the person responding. In the psychometric literature αi is referred to as
an item discrimination parameter. Thus, both dichotomous and polytomous Rasch
models appear as the special case where the item discrimination is constant

αi = α for all i ∈ I. (5)

An alternative parametrization of the η’s can be obtained by using the so-called item
thresholds defined by βi0 = 0 and

βik = −(ηik − ηik−1) (k = 1, . . . ,mi) (6)

for each item i ∈ I. These are called thresholds because they correspond to the
values of the latent variable where adjacent categories equally likely: P (Xi = x|θ =
βix) = P (Xi = x− 1|θ = βix).

2.1 Interpretation of item parameters

The models all specify the conditional probabilities of each response option given the
value θ of the latent variable. The item parameters can most easily be interpreted
using plots of these conditional probabilities against θ, i.e., plots of the functions

θ 7→ P (Xi = x|θ) (for x = 0, 1, . . . ,mi). (7)

These are called item characteristic curves (ICC’s). Figure 1 shows examples of
ICC’s for items with (α,η) = (1, (1,−1)) and (α,η) = (2.5, (0,−1)), respectively.

Note that the curves are steeper for the item with the highest value of the discrimi-
nation parameter α.

2.2 Joint likelihood and identification

IRT models share the technical assumption that items are locally independent, that
is the vector X of item responses satisfies
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Figure 1: Item characteristic curves for an item with α = 1 and η = (1,−1), i.e.
β) = (−1, 2) (left panel) and for an item with α = 2.5 and η) = (0,−1), i.e.
β = (0, 1) (right panel).

P (X = x| θ) =
∏

i∈I

P (Xi = xi|θ) for all θ ∈ R. (8)

For a sample of persons v = 1, . . . , N , where subject v responds to items in a subset
Iv ⊂ I the joint likelihood implied by (8) is given by

L(α,ηi,θ) =
N∏

v=1

P (Xv = xv|θv) =
N∏

v=1

∏

i∈Iv

P (Xvi = xvi|θv) (9)

where θ = (θv)v=1,...,N , α = (αi)i∈I , and η = (ηik)i∈I,k=1,...,mi
, for i ∈ I. Inserting the

probabilities (4) in (9) yields

L(α,ηi,θ) =
exp

(∑N

v=1

∑
i∈Iv

θvαixvi +
∑N

v=1

∑
i∈Iv

αiηixvi

)

∏N

v=1

∏
i∈Iv

∑mi

k=0 exp(αi(kθv + ηik))]
. (10)

The model is only identified if restrictions are placed on either item or person pa-
rameters, since the reparametrizations

α∗ = γα and θ∗ =
1

γ
θ (11)
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or

η∗ik = ηik − ωk and θ∗ = θ + ω (12)

for arbitrary γ, ω > 0 yield the same probabilities. An often used restriction is

∏

i∈I

αi = 1 (13)

for the discrimination parameters, and

I∑

i=1

ηi,mi
= 0 (14)

or equivalently

I∑

i=1

mi∑

h=0

βih = 0 (15)

for the thresholds, but restrictions on the person parameters can also be imposed. If
the mean of θ is restricted then all η’s can be estimated, and if the variance of θ is
restricted then all α’s can be estimated.

2.3 Item parameter estimation

Estimation based on the likelihood (10) leads to inconsistent estimates (Neyman &
Scott, 1948). In the special case of the Rasch model, conditional maximum likelihood
(CML) estimation (Andersen, 1973) can be used for item parameter estimation, but
in general marginal maximum likelihood (MML) estimation (Bock & Aitkin, 1981;
Thissen, 1982; Zwinderman & van den Wollenberg, 1990) is used. This estimation
method is based on a distributional assumption about the latent variable, typically
that θ1, . . . , θn are iid and normally distributed. If the item parameters are re-
stricted as in (13) and (15) the mean and variance of this normal distribution can
be estimated. Alternatively, assuming that θ ∼ N(0, 1) all item parameters can be
estimated. The marginal likelihood is given as
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LM(α,η) =
N∏

v=1

∫
P (Xv = xv|θ)ϕ(θ)dθ (16)

and random effects models like this are easily implemented in PROC NLMIXED in SAS.
The implementation assumes that θ ∼ N(0, 1) and estimates all α’s and η’s. If the
restriction (13) is imposed on the α′s we can assume that θ ∼ N(0, σ2) and estimate
σ2. From (11) we see that

σ =

(
∏

i∈I

αi

) 1
I

.

If the restriction (15) is imposed on the threshold parameters, we can assume θ ∼
N(µ, 1) and estimate the mean µ. From (12) we see that

µ = −
1∑

i∈I mi

(
∑

i∈I

mi∑

h=1

βih

)
.

2.4 Person parameter estimation

It is usually of interest to estimate individual values of the latent variable. This can
be done by substituting item parameters by their MML estimates resulting in the
likelihood function

LP (·) = L(α̂, (η̂, ·). (17)

Estimates of θv can then be obtained by numerical optimization of this likelihood.

3 Longitudinal IRT models

For time points t = 1, 2 let X t = (Xit)i∈I be a set of items measuring a value
θt ∈ R of the latent variable. In a situation like this it is natural to assume that
Corr(θt1 , θt2) > 0 and thus that item responses from the same person at two time
points t1 and t2 are positively correlated. For simplicity we consider the situation
where T = 2 and where for each person we are interested in baseline measurements
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θ1, follow-up measurements θ2 and measurement of change θ2 − θ1. Note that even
though the total item set I is the same across items administered at only one time
point can still be included since we assume that for each person v ∈ {1, . . . , N} we
observe a response vector Xv1 = (Xvi1)i∈Iv1 at time 1 and Xv2 = (Xvi2)i∈Iv2 at time
2, for Iv1, Iv2 ⊂ I. We will assume all items fit the model (4) for each time point
t = 1, 2

P (Xit = xit|θt) =
exp(αit(xitθt + ηixitt))∑mi

k=0 exp(αit(kθt + ηikt))
(18)

and that the assumption of local independence (8) holds within each time point

P (X t = xt| θt) =
∏

i∈I

P (Xit = xit|θ) for t = 1, 2 and all θ ∈ R. (19)

However, further assumptions about the dependence structure are needed to fully
specify the model.

3.1 Simple model

The simplest specification of the longitudinal model is obtained by extending the
independence assumption (8) to hold for all pairs of items (i, i′) and all time points
t and t′

P (Xi1 = xi1, Xi′2 = xi′2| θ1, θ2) = P (Xi1 = xi1| θt1)P (Xi′2 = xi′2| θ2) (20)

and assuming that the item parameters are constant over time, i.e., that for all i ∈ I

αi1 = αi2 and ηi1 = ηi2. (21)

For the special case of the dichotomous Rasch model the longitudinal model imposed
by the assumptions (20) and (21) was discussed by Andersen (1985) and Embretson
(1991). Using these assumptions the contribution to the joint likelihood for person
v becomes
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L(η,θv) =
2∏

t=1

P (Xvt = xvt|θvt)

=
2∏

t=1

∏

i∈Ivt

exp(αi(xvitθvt + ηixvit
))∑mi

k=0 exp(αi(kθvt + ηik))
(22)

where θv = (θ1, θ2). Assuming that the vectors θv) are iid from a 2-dimensional
normal distribution N (µ,Σ) item and population parameters can be estimated using
MML estimation. Several papers have considered this specification of the model in
the special case of the Rasch model Andersen (1977); Embretson (1991); Adams et al.
(1997a,b).

3.2 Allowing for local dependence across time points

When an item is used both time points the extended assumption of local indepen-
dence (20) might not be justified. In that case we should stick to what we know,
namely that

P (Xi1 = xi1, Xi2 = xi2| θ1, θ2) = P (Xi1 = xi1| θ1)P (Xi2 = xi2|Xi1 = xi1; θ2) (23)

Taking account of local dependence is then a matter of choosing a suitable model
for the conditional probabilities in (23). One option is stick to the GPCM assuming
that

P (Xi2 = xi2|Xi1 = xi1; θ2) =
exp[xi2α

∗
i2(xi1)(θ2 + η∗ixi22

(xi1))]∑mi

k=0 exp[α
∗
i2(xi1)(kθ2 + η∗ik2(xi1))]

(24)

where α∗
i2(xi1) and η∗i2(xi1) are item parameters depending on the response observed

at time 1. If item i meets the extended assumption of local independence (20) then
α∗
i2(x) and η∗

i2(x) are constant across x ∈ {0, 1, ...,mi}. Henceforth, we assume that
this is the case for some items forming the subset I0 ⊆ I.
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3.3 Allowing for item parameter drift

Another way of adding flexibility to (22) is by allowing item parameters to change
over time. Clearly change in a person is easiest to evaluate when the measurement
instrument does not change over time. However, it is feasible to evaluate changes in
the person parameters θ as long as a subset J0 ⊂ I0 of the items satisfy (21).

3.4 General model

A flexible model that extends (22) to a model with local dependence and change in
tem parameters across time points, for some items, can be formulated by specifying
the item subsets I0 and J0. The contribution to the joint likelihood for person v with
response vector Xvt = (Xvit)i∈Ivt becomes

L(alpha,η,θv) =
∏

i∈I
⋂

Iv1

P (Xvi1 = xvi1|θv1)

∏

i∈I0

⋂
Iv2

P (Xvi2 = xvi2|θv2)

∏

i∈(I\I0)
⋂

Iv2

P (Xvi2 = xvi2|Xvi1 = xvi1; θv2)

=
∏

i∈I
⋂

Iv1

exp(αi1(xvi1θv1 + ηixvi11))∑mi

k=0 exp(αi1(kθv1 + ηik1))

∏

i∈J0

⋂
Iv2

exp(αi1(xvi2θv2 + ηixvi21))∑mi

k=0 exp(αi1(kθv2 + ηik1))

∏

i∈(I0\J0)
⋂

Iv2

exp(αi2(xvi2θv2 + ηixvi22))∑mi

k=0 exp(αi2(kθv2 + ηik2))

∏

i∈(I\I0)
⋂

Iv2

exp[α∗
i2(xvi1)(xvi2θv2 + η∗

ixvi22
(xvi1))]

∑mi

k=0 exp[α
∗
i2(xvi1)(kθv2 + η∗

ik2(xvi1))]
. (25)

Parameter restrictions are needed in order for the model to be identified.
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3.5 Item parameter estimation

Joint estimation based on (25) leads to inconsistent estimates. Instead we can turn
to MML estimation assuming that

[
θ1
θ2

]
∼ N2

([
µ1

µ2

]
,

[
σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

])
(26)

where ρ = Corr(θ1, θ2) is the latent correlation. An alternative parametrization
obtained by restricting the latent distribution at time 1 leads to a parametrization
of the longitudinal IRT model in terms of change in the mean and variance, which
is often the main interest. This can be expressed

[
θ1
θ2

]
∼ N2

([
0
µ

]
,

[
1 σρ

σρ σ2

])
(27)

For either of the choices (26) or (27) the item parameters and the parameters of the
latent distribution can be estimated by numerical optimization of an approximation
to the marginal likelihood

L(alpha,η) =

∫

R2

L(α,η,θ)ϕµ,Σ(θ)dθ (28)

obtained by integrating out the random effects.

3.5.1 Estimation of person parameters

It is usually of interest to estimate change at the individual level. In the previous
section we described how the item parameters can be estimated by assuming a certain
distribution for the latent vector and then maximizing an approximation to the
marginal likelihood. Estimation of the person parameters can be done in a similar
by assuming a one point distribution for the item parameters. More specifically,
we substitute the item parameters in (25) by their MML estimates resulting in the
likelihood function

LP (·) = L(α̂, (η̂i)i∈I , ·) (29)
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yielding

LP (θ) =
∏

i∈I
⋂

Iv1

exp(α̂i1(xvi1θv1 + η̂ixvi11))∑mi

k=0 exp(α̂i1(kθv1 + η̂ik1))

∏

i∈J0

⋂
Iv2

exp(α̂i1(xvi2θv2 + η̂ixvi21))∑mi

k=0 exp(α̂i1(kθv2 + η̂ik1))

∏

i∈(I0\J0)
⋂

Iv2

exp(α̂i2(xvi2θv2 + η̂ixvi22))∑mi

k=0 exp(α̂i2(kθv2 + η̂ik2))

∏

i∈(I\I0)
⋂

Iv2

exp[α̂∗
i2(xvi1)(xvi2θv2 + η̂∗

ixvi22
(xvi1))]

∑mi

k=0 exp[α̂
∗
i2(xvi1)(kθv2 + η̂∗

ik2(xvi1))]
. (30)

Estimates of thetav can then be obtained by numerical optimization of (30).

4 Implementation in SAS

Our implementation consists of four SAS macros that provides a framework for fitting
and comparing different IRT models. The general specification longitudinal GPCM
represented by (25) can be fitted, and using different choices of the item subsets I0
and J0 different models can be specified. The macros handle the longitudinal case
with two time points as described, and also the special case where only a single time
point is considered. The macro %LIRT MML estimates parameters using PROC NLMIXED

that fits nonlinear mixed models (Rijmen et al., 2003; Smits & De Boeck, 2003) and
is very flexible because the conditional distribution given the random effects can
be specified to be a general distribution using SAS programming statements. The
procedure maximizes an approximation to the likelihood integrated over the random
effects. Different integral approximations are available, the principal one being adap-
tive Gaussian quadrature. The macro %LIRT PPAR estimates the latent variable(s)
for each person, while %LIRT ICC, plots item characteristic curves (ICC’s) for given
item parameters. Finally, the macro %LIRT SIMU simulates responses from a given
model within the framework. The macros use different input data sets and options
listed below. One important input data set is similar for all macros, the data set
names, that determines whether there is item parameter drift and local dependence
across time points for any of the items. For %LIRT MML it also specifies which items
are to be modeled according to the 1PL model and the 2PL model respectively. For
%LIRT ICC and %LIRT SIMU additional variables holding the item parameter values

12

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26740v1 | CC BY 4.0 Open Access | rec: 20 Mar 2018, publ: 20 Mar 2018



are required. Furthermore, a couple more variables with information about the local
dependence structure are needed for %LIRT SIMU. Input data sets and options for the
macros are listed below.

Input data sets and options for %LIRT MML

• data: data set with item responses. Each person should be represented by one
record and each item by one variable.

• names: a model-specifying data set with information about the items.

• dim: dimension of the latent variable (1 or 2).

• out: prefix for output data sets.

• delete: indicating whether temporary data sets created by the macro should
be deleted (Y) or not (N).

Input data sets and options for %LIRT PPAR

• data: data set with item responses. Each person should be represented by one
record and each item by one variable.

• names: a model-specifying data set with information about the items and esti-
mates of the item parameters.

• dim: dimension of the latent variable (1 or 2).

• id: variable in data with unique person ID’s.

• out: prefix for output data sets.

• delete: indicating whether temporary data sets created by the macro should
be deleted (Y) or not (N).

Input data sets and options for %LIRT ICC

13
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• names: a model-specifying data set with information about the items and esti-
mates of the item parameters.

• dim: dimension of the latent variable (1 or 2).

• out: prefix for output data sets.

• delete: indicating whether temporary data sets created by the macro should
be deleted (Y) or not (N).

Input data sets and options for %LIRT SIMU

• names: a model-specifying data set with information about the items and esti-
mates of the item parameters.

• dim: dimension of the latent variable (1 or 2).

• ndata: number of data sets.

• npersons: number of persons.

• pdata: data set specifying the normal distribution of the latent variable.

• out: prefix for output data sets.

• delete: indicating whether temporary data sets created by the macro should
be deleted (Y) or not (N).

The variables required in the data set names differ depending on whether one or two
time points are considered. It should become clear from the data example below
what they should be. All of the data sets created by the macros are given names
starting with an underscore. Such data sets are the only ones deleted with the option
delete=Y.
As for the output data sets an important one of %LIRT MML is OUT names which is in
essence a copy of the input data set names, but with scores, item parameter estimates
and their standard errors added. This data set can be used directly as the input
data set names for the macro %LIRT ICC. Another output data set from %LIRT MML
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is OUT logl containing the likelihood value for the fitted model. This makes it
straightforward to compare various models with likelihood ratio tests. Goodness
of fit can be further evaluated (graphically) by comparing observed data to data
simulated under the model using %LIRT simu. The outputs are listed below. For
%LIRT ICC the main output is of course plots of the ICC’s.

Output data sets of %LIRT MML:

• OUT names: a model-specifying data set holding information about the items,
including the estimated item parameters.

• OUT disc: data set with estimated item discriminations.

• OUT disc std: data set with standardized estimates of item discriminations.

• OUT ipar: data set with estimated item parameters (η′s).

• OUT thres: data set with estimated item thresholds (β′s).

• OUT poppar: data set with estimated parameters of the 2-dimensional normal
distribution of the latent variable (only available when dim=2).

• OUT logl: the value of the loglikelihood for the fitted model.

• OUT conv: data set with the convergence status of the numerical estimation.

Output data sets of %LIRT PPAR:

• OUT ppar: data with estimated person parameters.

• OUT logl: the value of the loglikelihood for the fitted model.

• OUT conv: data set with the convergence status of the numerical estimation.

Output data sets of %LIRT ICC:
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• OUT plot: a data set relevant information on the ICC’s.

Output data sets of %LIRT SIMU:

• OUT simu1, OUT simu2,... : simulated data sets with item responses. As many
as the specified with the option ndata.

• OUT names: a model-specifying data set holding information about the items.

4.1 Additional SAS macros

Some additional SAS macros facilitating the use of the implementation are available.
The SAS macro %lirt split can be used for splitting locally dependent items. More
generally it can be used to split any variable in a given input data set according to
another. This means that it can be used for recoding items in analyses of differen-
tial item functioning (DIF). Two SAS macros %LIRT SIMU names and %lirt pdata,
generate input data sets for %LIRT SIMU. The first one creates the input data set
names and is particularly convenient when local dependence across time points is to
be specified for some items. The second one create the input data set pdata specify-
ing the distribution of the latent variable. Finally the SAS macro %LIRT MML names

generates the input data set names for the SAS macro %LIRT MML.

5 Example: longitudinal data from the COS-BC

Many women participating in screening mammography experience a false positive
result. Most of these women will experience negative psychosocial consequences.
The Psychological Consequences Questionnaire (PCQ) Cockburn et al. (1992) is a
questionnaire designed to measure psychological consequences of screening mam-
mography. The Consequences Of Screening in Breast Cancer (COS-BC) Brodersen
& Thorsen (2008) is an adaptation and translation of this instrument to a Danish
setting with subscales measuring among others anxiety, sense of dejection and sleep.
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We consider responses to four polytomous items intended to measure sleep problems
collected at two time points in women who underwent screening for breast cancer.
The data set SLEEP contains responses to the four sleep items at two time points.
The first 10 records look as follows

idnr sleepba1 fallasl1 wokenup1 awake1 sleepba2 fallasl2 wokenup2 awake2

110001 0 0 0 0 1 1 1 1

110002 0 0 0 0 0 0 0 0

110003 0 0 0 0 0 0 0 0

110004 1 1 1 2 2 1 1 1

110005 0 0 0 0 0 0 0 0

110006 0 1 2 0 . . . .

110007 0 0 0 0 0 0 0 0

110008 2 2 2 0 . . . .

110009 2 1 0 0 1 0 0 0

110010 3 3 0 3 3 3 3 2

Note that not everyone participates at time 2. The ID variable idnr illustrates that
each person is represented by one record only, but the variable itself is not required
in any of the input data sets of the SAS macros. The response options are 0, 1, 2 and
3 (where 0 is ’Not at all’ and 3 is ’A lot’). The item wording and the marginal item
frequencies at the two time points are shown in Table 1.

Item wording Response options
(SAS variable name) Time not at all a bit quite a bit a lot Total Missing
I have been awake 1 1096 (85.0%) 112 (8.7%) 57 (4.4%) 24 (1.9%) 1289 29
most of the night 2 932 (86.5%) 90 (8.4%) 36 (3.3%) 19 (1.8%) 241
(awake)
It has take me a 1 938 (72.9%) 180 (14.0%) 90 (7.0%) 78 (6.1%) 1286 32
long time to fall 2 852 (81.1%) 114 (10.9%) 52 (5.0%) 32 (3.1%) 268
asleep (fallasl)
I have slept 1 918 (71.2%) 196 (15.2%) 106 (8.2%) 69 (5.4%) 1289 29
badly 2 825 (78.6%) 135 (12.9%) 59 (5.6%) 31 (3.0%) 268
(sleepba)
I have woken up far too 1 1005 (77.7%) 152 (11.8%) 76 (5.9%) 61 (4.7%) 1294 24
early in the morning 2 876 (81.5%) 117 (10.9%) 41 (3.8%) 41 (3.8%) 243
(wokenup)

Table 1: Item wording and marginal distribution at the two time points for the four
sleep items.

We start by carrying out one-dimensional analyses of each time point separately,
investigating whether the PCM (3 or the GPCM (4) is more appropriate, and as an
initial evaluation if item parameters are stable across the two time points. Subse-
quently, a longitudinal model is considered.
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5.1 Separate analyses for each time point

The data set names specifying the one-dimensional 2PL model should contain the
variables name, max and disc yn. It can be created using the SAS code

data names1;

input name $ max disc_yn $;

datalines;

awake1 3 Y

fallasl1 3 Y

sleepba1 3 Y

wokenup1 3 Y

;

run;

here disc yn=Y for all items meaning that they are modeled as GPCM items. The
model is fitted using the macro call

%LIRT_MML( DATA=SLEEP,

NAMES=names1,

DIM=1,

OUT=gpcm1);

The maximum likelihood value attained is stored in the data set gpcm1 logl. The
item parameters estimates are also stored in data sets, the discrimination parameters
are in data sets gpcm1 disc and model1 disc std and the threshold parameters in
the data set model1 thres. These data sets are printed in Appendix A1. Letting
disc yn=N for all items specifies the Rasch model, and a comparison of the estimated
likelihood values yields a likelihood ratio test of the Rasch model against the more
general GPCM model. Thus we adjust the names data set

data names1_rm;

set names1;

disc_yn=’N’;

run;

and fit the PCM
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%LIRT_MML( DATA=SLEEP,

NAMES=names1_rm1,

DIM=1,

OUT=rm1);

and we can test whether this simpler model is justified for the items using a likelihood
ratio test

proc sql;

select Value into :_llrm from rm1_logl;

select Value into :_ll from gpcm1_logl;

quit;

data _lrt;

lrt=-(&_ll-&_llrm);

df=3;

p=1-cdf(’chisquared’,lrt,df);

run;

proc print data=_lrt round noobs;

run;

The PMC is clearly rejected, with a χ2 value of 72.9 on 3 degrees of freedom and
we stick to the GPCM specified by names1. Similar analyses for time point two also
rejected the PCM (results not shown). The estimated item parameters are shown in
Tables 2 and 3 together with item parameters from a separate analysis of the time 2
data.

for all thresholds we see a very small difference (of the magnitude 0.1 to 0.2) across
the two time points, whereas the discrimination parameters appear to change for
two of the four items. This is confirmed by a visual comparison of ICC’s. When
item parameters have been estimated these can be plotted using the SAS macro
%LIRT ICC and for this purpose we use the data set gpcm1 names in which the
item names and estimated parameters are stored and plot the ICC’s with the macro
call

%LIRT_icc( NAMES=gpcm1_names,

DIM=1,

OUT=icc1);
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Time 1 Time 2
Std. Std.

Item Est. 95% CI est. Est. 95% CI est.
awake β1 1.19 (1.08, 1.30) -0.11 1.22 (1.12, 1.32) -0.23

β2 1.51 (1.38, 1.64) 0.21 1.62 (1.48, 1.76) 0.17
β3 2.06 (1.86, 2.26) 0.76 2.02 (1.82, 2.23) 0.57

fallas β1 0.71 (0.63, 0.80) -0.59 0.98 (0.89, 1.06) -0.48
β2 1.19 (1.09, 1.29) -0.11 1.43 (1.32, 1.54) -0.03
β3 1.49 (1.37, 1.61) 0.19 1.78 (1.63, 1.93) 0.33

sleepba β1 0.62 (0.55, 0.70) -0.67 0.85 (0.78, 0.93) -0.60
β2 1.15 (1.06, 1.24) -0.15 1.37 (1.27, 1.47) -0.08
β3 1.57 (1.45, 1.69) 0.27 1.76 (1.62, 1.90) 0.30

wokenup β1 1.13 (0.99, 1.28) -0.16 1.23 (1.08, 1.38) -0.22
β2 1.35 (1.19, 1.50) 0.05 1.60 (1.42, 1.78) 0.14
β3 1.60 (1.41, 1.79) 0.30 1.59 (1.38, 1.81) 0.14
µ 0 -1.30 0 -1.46

Table 2: Standardized and unstandardized threshold parameter estimates estimated
separately at the two time points.

time 1 time 2
Std. Std.

Item Est. 95% CI est. Est. 95% CI est.
awake α 4.03 (3.23, 4.84) 0.98 5.06 (3.86, 6.26) 0.97
fallas α 4.68 (3.74, 5.62) 1.14 6.38 (4.77, 7.99) 1.55
sleepba α 6.73 (4.92, 8.54) 1.64 9.18 (5.87,12.48) 2.23
wokenup α 2.25 (1.88, 2.61) 0.55 2.47 (2.01, 2.94) 0.60

σ 1 4.11 1 5.20

Table 3: Standardized and unstandardized item discrimination parameter estimates
estimated separately at the two time points.
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using a data set gpcm1 names created by the macro %LIRT MML. This yields ICC’s
that are shown in Figure 2 together with ICC’s from time two obtained by a similar
macro call for time 2

We can estimate the person locations for the ten first records using the macro call

%LIRT_ppar( DATA=SLEEP(where=(idnr<110011)),

NAMES=gpcm1_names,

DIM=1,

OUT=pp1,

QPOINTS=30);

the estimated person locations are saved in a data set pp1 latent. Edited output
looks like this

TIME 1 TIME 2

Standard Standard

Parameter Estimate Error Lower Upper Estimate Error Lower Upper

theta1 1.2328 0.1480 0.9312 1.5343

theta2

theta3

theta4 1.1398 0.1619 0.8125 1.4671 1.4062 0.1314 1.1385 1.6740

theta5

theta6 0.7253 0.2005 0.3202 1.1305

theta7

theta8 1.2802 0.1564 0.9641 1.5963

theta9 1.0407 0.1716 0.6940 1.3874 0.8760 0.1627 0.5445 1.2075

theta10 1.8475 0.2300 1.3828 2.3123 2.0641 0.2163 1.6235 2.5047

5.1.1 Tests of fit

Beyond the test likelihood ratio of the GPCM against the PCM further tests of fit
can be done.

Tests of Differential item Functioning (DIF) ) by splitting an item.

Christensen and Olsbjerg (2013) proposed a visual evaluation of item fit based on
comparison of observed and expected item means across values of the sum of all items.
An example of the rsultaing GOF plot is illustrated fir the longitudinal model.
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awake1 awake2

fallas1 fallas2

sleepba1 sleepba2

wokenup1 wokenup2

Figure 2: Item characteristic curves, thresholds and discrimination parameters are
estimated separately at the two time points.
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5.2 Longitudinal analysis

We now take into account the longitudinal nature of the data and specify the longi-
tudinal GPCM (18) for the four sleep items

data names3;

input name1 $ name2 $ max disc_yn $;

datalines;

awake1 awake2 3 Y

fallasl1 fallasl2 3 Y

sleepba1 sleepba2 3 Y

wokenup1 wokenup2 3 Y

;

run;

Note that for longitudinal data the columns representing items at time point 1 and 2
are called name1 and name2, respectively. The SAS macro identifies items by their
order in this names data set. This is a model without any item parameter drift or
local dependence across time points, i.e., I0 = I and J0 = I. Models allowing for
local dependence across time points and/or item parameter drift can be specified by
changing the names data set. We fit the simple longitudinal model with no drift or
dependence with the macro call

%LIRT_MML( DATA=SLEEP,

NAMES=names5,

DIM=2,

OUT=LGPCM);

Estimates of the item parameters (the η’s) stored in the data set LGPCM ipar
(printed in Appendix A) and the item thresholds (the β’s) stored in the data set
LPGPCM thres. The item discriminations (the α’s) stored in model3 disc

Parameter Estimate Standard Error Lower Upper

awake1 4.2444 0.3468 3.5641 4.9246

awake2 4.2444 0.3468 3.5641 4.9246

fallasl1 4.9996 0.4089 4.1973 5.8018

fallasl2 4.9996 0.4089 4.1973 5.8018
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sleepba1 6.3798 0.6002 5.2024 7.5572

sleepba2 6.3798 0.6002 5.2024 7.5572

wokenup1 2.3170 0.1569 2.0093 2.6247

wokenup2 2.3170 0.1569 2.0093 2.6247

and finally the parameters of the latent distribution stored in LGPCM poppar

Parameter Estimate Standard Error Lower Upper

mu -0.3428 0.07291 -0.4858 -0.1998

rho 0.8279 0.01896 0.7907 0.8651

sigma2 1.1219 0.06464 0.9950 1.2487

telling us that the mean decreases and that the latent correlation ρ = Corr(θ1, θ2) =
0.83 is substantial.

5.2.1 Model allowing for local dependence across time points

A model allowing for local dependence between the items awake1 and awake2 across
time points (i.e., I0 = {sleepba, fallas, wokenup} can be fitted using by split-
ting the item fallasl2 for dependence. This can be done using the ’help’ macro
%LIRT SPLIT that requires the simple data set names3 as input. The macro call

%LIRT_SPLIT(DATA=SLEEP,

NAMES=names_2pl,

INDEP=awake1,

DEP=awake2)

splits the item(s) in DEP according to the item(s) in INDEP in the order they
appear. The macro call creates a data set called SLEEP split that is a copy of the
original data with the addition of the items resulting from the item split. The first
ten records in this data set that includes the new items cat0 awake2, cat1 awake2,
cat2 awake2 and cat3 awake2 looks as follows

cat0_ cat1_ cat2_ cat3_

idnr sleepba1 fallasl1 wokenup1 awake1 sleepba2 fallasl2 wokenup2 awake2 awake2 awake2 awake2 awake2

110001 0 0 0 0 1 1 1 1 1 . . .

110002 0 0 0 0 0 0 0 0 0 . . .

110003 0 0 0 0 0 0 0 0 0 . . .
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110004 1 1 1 2 2 1 1 1 . . 1 .

110005 0 0 0 0 0 0 0 0 0 . . .

110006 0 1 2 0 . . . . . . . .

110007 0 0 0 0 0 0 0 0 0 . . .

110008 2 2 2 0 . . . . . . . .

110009 2 1 0 0 1 0 0 0 0 . . .

110010 3 3 0 3 3 3 3 2 . . . 2

using the data set SLEEP split we can specify the model using

data names4;

input name1 $ name2 $ max disc_yn $;

datalines;

awake1 . 3 Y

. cat0_awake2 3 Y

. cat1_awake2 3 Y

. cat2_awake2 3 Y

. cat3_awake2 3 Y

fallasl1 fallasl2 3 Y

sleepba1 sleepba2 3 Y

wokenup1 wokenup2 3 Y

;

run;

Note that the original item awake2 is not included. With the dependence assumption
built into names4 we simply fit the model with the macro call

%LIRT_MML( DATA=SLEEP,

NAMES=names4,

DIM=2,

OUT=split);

and as before the maximum likelihood value, the discrimination parameters, and the
threshold parameters are stored in data sets. We can test for local dependence across
time points by comparing the likelihood values in the two data sets split logl and
lgpcm logl.
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5.3 Model allowing for item parameter drift

Another alternative to the simple longitudinal GPCM model specified using names3
is a model allowing for item parameter drift for the item awake, i.e.,

J0 = {fallas, sleepba, wokenup}

can be specified using

data names5;

input name1 $ name2 $ max disc_yn $;

datalines;

awake1 . 3 Y

. awake2 3 Y

fallasl1 fallasl2 3 Y

sleepba1 sleepba2 3 Y

wokenup1 wokenup2 3 Y

;

run;

We fit this model with the macro call

%LIRT_MML( DATA=SLEEP,

NAMES=names5,

DIM=2,

OUT=drift);

using the original data set and we can test for local dependence across time points
by comparing the likelihood values in the two data sets drift logl and lgpcm logl

As for the unidimensional ICC curves are plotted for all items with the call

%LIRT_MML( NAMES=model3_names,

DIM=2,

OUT=model3);

For items with no drift the ICC is only printed once. For the item fallasl the ICC’s
are shown in Figure 3

As before a data set, model3 plot, with the corresponding data points is available.
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Figure 3: ICC’s for an anchored item in the longitudinal model.

5.4 Models allowing for local dependence across time points

and item parameter drift

More general models can be specified and fitted in order to assess possible item
drift and local dependence across time points by adjusting the data set names, by
changing the structure of the variables name1 and name2. For instance a model with
local dependence across time points for the item awake and item drift for the item
sleepba can be specified in the names data set

data names;

input name1 $ name2 $ max disc_yn $;

datalines;

awake1 . 3 Y

. cat0_awake2 3 Y

. cat1_awake2 3 Y

. cat2_awake2 3 Y

. cat3_awake2 3 Y

fallasl1 fallasl2 3 Y

sleepba1 . 3 Y

. sleepba2 3 Y

wokenup1 wokenup2 3 Y

;

run;

followed by the macro call
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%LIRT_MML( DATA=SLEEP,

NAMES=names,

DIM=2,

OUT=model4)

5.5 Tests of fit

Beyond the likelihood ratio tests testing local dependence over time points and item
parameter drift further tests of individual fit can be done by comparing observed
and expected mean scores

The mean of the item awake1 across values of the sum score can be computed using
the statements

%let it1=awake1 fallasl1 sleepba1 wokenup1;

data SLEEP;

set SLEEP;

score1=sum(of awake1 fallasl1 sleepba1 wokenup1);

run;

proc means data=SLEEP;

var awake1;

class score1;

output out=means mean=mean;

run;

and the a plot of the observed item mean across the values of the sum of all items
can be created using the SAS code

axis1 order=0 to 12 by 1 value=(H=2) minor=NONE label=(H=2);

axis2 value=(H=2) minor=NONE label=(H=2 A=90);

proc gplot data=means;

plot mean*score1 / haxis=axis1 vaxis=axis2;

symbol v=none i=join w=3 l=1 color=black;

run;

this plot is shown in Figure 4. In order to simulate expected values under the simple
longitudinal model with the assumptions (20) and (21) we specify

28

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26740v1 | CC BY 4.0 Open Access | rec: 20 Mar 2018, publ: 20 Mar 2018



data pd;

set lgpcm_names3;

LD_GROUP=.;

LD_ITEM=’’;

run;

data pdata;

input PARAMETER $ ESTIMATE;

datalines;

mu1 0

mu2 -0.3094

sigma1 1

sigma2 1.0830

rho 0.8133

;

run;

and simulate four data sets using the SAS macro %LIRT SIMU

%LIRT_SIMU( NAMES=PD,

DIM=2,

NDATA=4,

NPERSONS=1289,

PDATA=PDATA,

OUT=s);

this macro call creates four data sets s simu1, s simu2, s simu3 and s simu4. An item
mean plot in first simulated data set can be obtained using

data gof1;

set s_simu1;

score1=sum(of &it1);

run;

proc means data=gof1;

var awake1;

class score1;

output out=means mean=mean;

run;
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Figure 4: The observed item mean plot and a single simulated simulated curve.

axis1 order=0 to 12 by 1 value=(H=2) minor=NONE label=(H=2);

axis2 value=(H=2) minor=NONE label=(H=2 A=90);

proc gplot data=means;

plot mean*score1 / haxis=axis1 vaxis=axis2;

symbol v=none i=join w=3 l=33 color=grey;

run;

This plot is shown in Figure 4.

A GOF plot can be obtained using

data s0; set SLEEP; dataset=0; run;

data s1; set s_simu1; dataset=1; score1=sum(of &it1); run;

data s2; set s_simu2; dataset=2; score1=sum(of &it1); run;

data s3; set s_simu3; dataset=3; score1=sum(of &it1); run;

data s4; set s_simu4; dataset=4; score1=sum(of &it1); run;

data gof; set s0-s4; run;

proc means data=gof;

var awake1;

class score1 dataset;

output out=means mean=mean;

run;

axis1 order=0 to 12 by 1 value=(H=2) minor=NONE label=(H=2);

axis2 value=(H=2) minor=NONE label=(H=2 A=90);

proc gplot data=means(where=(dataset ne .));

plot mean*score1 = dataset / haxis=axis1 vaxis=axis2;

symbol1 v=none i=join w=3 l=1 color=black;
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Figure 5: The GOF plot comparing the observed item means with four curves based
on data sets simulated under the model.

symbol2 v=none i=join w=3 l=33 color=grey r=4;

run;

This plot is shown in Figure 5.

6 Additional SAS macros

Some additional SAS macros for facilitating the use the implementation are available:
(i) the SAS macro %lirt pdata that generates the input data set pdata for the SAS
macro %LIRT SIMU; (ii) the SAS macro %lirt names mml that generates a NAMES
data set that can be used as input data set for the SAS macro %LIRT MML.

Discussion

The proprietary software packages RUMM (Andrich et al., 2010) and WINSTEPS
(Linacre, 2011) for fitting Rasch models are widely used. These fit unidimensional
models only, even though many applications deal with multidimensional or longitu-
dinal data.
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The twodimensional Rasch model as originally dicussed by Andersen (1985) and
Embretson (1991) was formulated for longitudinal data.

To obtain consistent item parameter estimates marginal maximum likelihood esti-
mation (Bock & Aitkin, 1981; Thissen, 1982; Zwinderman & van den Wollenberg,
1990) is used. This approach to item parameter estimation assumes that the latent
variables are sampled from a population and introduces an assumption about the
distribution of the latent variable.

The implementation allows the user to specify the model structure in a separate
statements using the NAMES data sets.

The general implementation allows the user to specify models where the item pa-
rameters do change over time. The SAS macros can be used to test the assumption
of item parameter invariance using likelihood ratio tests, thus adding to existing
methods for detection of item parameter drift (Donoghue & Isham, 1998; DeMars,
2004; Galdin & Laurencelle, 2010).

The SAS macros also make it possible to study local dependence across time points,
by splitting of the item at follow-up into new items according to the responses given at
baseline (Olsbjerg & Christensen, 2013b). The macro %lrasch mml makes it possible
include splitted items and to test the assumption local independence across time
points using likelihood ratio tests, thus adding to existing tests of this assumption
(Olsbjerg & Christensen, 2013a).

For the PCM Christensen and Olsbjerg (2013) proposed a visual evaluation of item
fit based on comparison of observed and expected item means across values of the
sum of all items. Using the proposed SAS macros this idea is generalized in from
the PCM to the GPCM and from unidimensional models for a single time point to
longitudinal models.
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