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The ability of vertebrates to generate rhythm within their spinal neural networks is

essential for walking, running, and other rhythmic behaviors. The central pattern generator

(CPG) network responsible for these behaviors is well-characterized with experimental and

theoretical studies, and it can be formulated as a nonlinear dynamical system. The

underlying mechanism responsible for locomotor behavior can be expressed as the

process of leaky integration with resetting states generating appropriate phases for

changing body velocity. The low-dimensional input to the CPG model generates the

bilateral pattern of swing and stance modulation for each limb and is consistent with the

desired limb speed as the input command. To test the minimal configuration of required

parameters for this model, we reduced the system of equations representing CPG for a

single limb and provided the analytical solution with two complementary methods. The

analytical and empirical cycle durations were similar (R2=0.99) for the full range of walking

speeds. The structure of solution is consistent with the use of limb speed as the input

domain for the CPG network. Moreover, the reciprocal interaction between two leaky

integration processes was sufficient to capture fundamental experimental dynamics. This

analysis provides further support for the embedded velocity or limb speed representation

within spinal neural pathways involved in rhythm generation.
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17 Abstract

18 The ability of vertebrates to generate rhythm within their spinal neural networks is essential for 

19 walking, running, and other rhythmic behaviors. The central pattern generator (CPG) network 

20 responsible for these behaviors is well-characterized with experimental and theoretical studies, and 

21 it can be formulated as a nonlinear dynamical system. The underlying mechanism responsible for 

22 locomotor behavior can be expressed as the process of leaky integration with resetting states 

23 generating appropriate phases for changing body velocity. The low-dimensional input to the CPG 

24 model generates the bilateral pattern of swing and stance modulation for each limb and is 

25 consistent with the desired limb speed as the input command. To test the minimal configuration of 

26 required parameters for this model, we reduced the system of equations representing CPG for a 

27 single limb and provided the analytical solution with two complementary methods. The analytical 

28 and empirical cycle durations were similar (R2=0.99) for the full range of walking speeds. The 

29 structure of solution is consistent with the use of limb speed as the input domain for the CPG 

30 network. Moreover, the reciprocal interaction between two leaky integration processes was 

31 sufficient to capture fundamental experimental dynamics. This analysis provides further support 

32 for the embedded velocity or limb speed representation within spinal neural pathways involved in 

33 rhythm generation.#
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34 Introduction

35 The mechanism of spinal rhythmogenesis is an integral part of the mammalian locomotor system 

36 that fuses descending and sensory feedback signals with body9s dynamics (Dickinson et al., 2000). 

37 The theoretical description of this element, termed the central pattern generator (CPG), has been 

38 the focus of research with diverse aims. Previous computational studies introduced a variety of 

39 models to describe inter- and intra-limb coordination (Yakovenko et al., 2005; Schöner et al., 

40 1990) and the rhythm generating network dynamics (Daun et al., 2009; Barnett and Cymbalyuk, 

41 2014). Other models tested the organization of spinal interneuronal circuitry (Bashor, 1998; Rybak 

42 et al., 2006) and the dynamic interactions between the mechanical system and the CPG (Taga et 

43 al., 1991). The elusive mechanism of locomotor pattern generation remains to be poorly 

44 understood in the context of its regulation and integration within descending feedforward and 

45 sensory feedback pathways. One of the main obstacles is the definition of CPG9s essential 

46 function. This neural element computes  control commands for the redundant musculoskeletal 

47 system (Gritsenko et al., 2016) that, in turn, shapes the activity of hierarchal neural mechanisms 

48 (Lillicrap and Scott, 2013) distributed along the neuraxis (Grillner, 1985). Moreover, the spinal 

49 motor circuits are known to accommodate rewiring in healthy operation (Vahdat et al., 2015) and 

50 injured states (Stevenson et al., 2015;  Liu et al., 2017). 

51 The computational models of CPG may help to define the role of this element within the 

52 sensorimotor hierarchy. What would be the pertinent CPG model for this task? There are multiple 

53 models, and their implementation varies in complexity mostly due to the nature of addressed 

54 problems. One of the main challenges in computational neuroscience is the choice of appropriate 

55 methods and the level of abstraction for the theoretical description of complex neural mechanisms. 

56 The rule of thumb for an appropriate choice of mathematical model is to match the dexterity of 

57 experimental and theoretical descriptions. For example, the experimental data representing cellular 

58 mechanisms are captured with Hodgkin-Huxley (H-H) equations that detail the observed changes 

59 in membrane properties with the nonlinear dynamics of ion channel conductances. In contrast, the 

60 network behavior is assessed most optimally with the relatively simple phenomenological rate 

61 models that approximate the details of neural spiking by their discharge rate (Sterratt et al., 2011). 

62 Recently, the CPG models with H-H formulations were applied to cross the multiscale and 

63 multilevel divide between cellular and network levels at the cost of high parametric dimensionality 

64 but describing the underlying mechanisms responsible for neural discharge activity. 
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65 We have recently demonstrated that a bilateral CPG can represent the transformation from the 

66 desired velocity command signals to the appropriate mediation of locomotor phases in each limb 

67 (Sobinov and Yakovenko, 2017). Moreover, we have demonstrated how the asymmetric gait could 

68 be represented within the configuration of essential elements of a bilateral CPG. In contrast, our 

69 focus in this study was to test the prediction that the basic agonist-antagonist dynamical property 

70 of two coupled integrators is sufficient for the implementation of the relationship between speed 

71 and step cycle duration. For this purpose, we derived and analyzed the analytical solution of 

72 reduced single limb CPG rate model. Moreover, the general form of solution was hypothesized to 

73 be consistent with the velocity command input. 

74 Methods 

75 A. CPG structure and function

76 The observations of neural activity in the absence of descending signals or sensory feedback led 

77 T.G. Brown to formulate the principle of intrinsic rhythmogenesis of spinal networks, the half-

78 center oscillator hypothesis (Brown, 1911). Brown posited that <& the centres are paired, and 

79 that each pair consists of antagonistic opposites.= The intrinsic rhythmogenesis opposed the 

80 established view that the locomotor pattern is generated and shaped only by supraspinal and 

81 sensory feedback pathways. The bilateral CPG model in Fig.1 was developed from a single 

82 oscillator model to describe phase dominance in fictive cat locomotion, which is a type of 

83 experimental behavior with diminished sensory contribution (Yakovenko et al., 2005). This model 

84 controlling two limbs consisted of two dedicated oscillators made of two reciprocally coupled half-

85 center elements (gray area in Fig.1). It can generate bilateral rhythm using the interactions within 

86 and between the half-center elements. Only the rhythm generating mechanism is captured by this 

87 feedforward rate model with time-varying inputs. The pattern formation mechanism responsible 

88 for the generation of motoneuronal input signals can be computationally decoupled from the 

89 temporal dynamics (McCrea and Rybak, 2008). 

90

91
92 Figure 1. The schematic of bilateral CPG. Each locomotor phase (T1-4) is generated by the transformation of low-

93 feature inputs (desired velocity) with the intrinsic interactions between the half-centers (weights rij, see Eq.2). The 

94 outputs in the form of phase durations define the pattern of flexor and extensor motoneurons responsible for the 

95 activity of muscles during swing and stance for each limb.

96
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97 The process of controlling phase durations is based on the ability of the network to integrate inputs 

98 until reaching a critical threshold causing a phase resetting, Fig. 2. We have previously developed 

99 the bilateral model (Yakovenko, 2011; Sobinov and Yakovenko, 2017) and describe it in brief 

100 here. The model was expressed as the system of differential equations consisting of two parts in 

101 Eq.1: i) the largely extrinsic signals (right side) and ii) the intrinsic interactions (left side). The 

102 offset term (x0) could combine both intrinsic and extrinsic influences on the background 

103 excitability of spinal cord. The bilateral CPG model consists of a system of differential equations 

104 for four intrinsic states (x) that represent locomotor phases: 

105 øñùý 2 ÿýÿý ý 2 ÿýÿý (1 2 ý)ý > 0 = ý0 + ÿÿÿ
106 where Gu matrix represents gains of input signals u, x0 are constant offset values, Gx matrices 

107 represent the strength of unilateral and bilateral connections between the CPG half-centers (shown 

108 as arrows with weights rij in Fig.1). The internal states are limited to positive values with the 

109 switching threshold set to 1. Only one state from a pair, 1-2 (Fig.2) and 3-4, is set to be active 

110  to impose the reciprocal relationship between half-centers. The unilateral (UL) and ý * (01]

111 bilateral (BL) Gx matrices have the following form  andÿýÿý = ý 7 ÿýÿÿý
112 (2)ÿýÿý = [

0 0 ÿ13 ÿ14

0 0 r23 ÿ24ÿ13 r14 0 0ÿ23 ÿ24 0 0
]

113 where I is the identity matrix, rleak is the constant that determines intrinsic state-dependent 

114 feedback, rij are coupling terms that represent the effect between i and j elements in the model. 

115 The ascending and descending propriospinal connections crossing the midline were uncoupled in 

116 this model (r14, r24, r23, r32 in Fig.1).

117 Even this simple model had many parameters that were largely undefined. Using an error-driven 

118 search algorithm in our previous study we found a set of optimal parameters (Table 1 in Appendix). 

119 These parameters were resolved by the minimization of the objective function with terms related 

120 to the errors in simulating swing and stance phases and the rate of their modulation for different 

121 overground speeds (Goslow et al., 1973; Halbertsma, 1983).
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122 Results

123 The relationship between cycle duration and the input <drive= to the model was investigated in 

124 two complimentary solutions: i) the assumption of constant integration rate in a single limb model 

125 of CPG, and ii) the expansion of function with a Taylor series method.

126

127 Figure 2. The temporal schematic of two reciprocal states with integration and resetting. The integration process 

128 in flexor half-center (blue) described by Eq.3 and 7 is reset to 0 (minimal value) after reaching 1 (maximal value) and 

129 the reciprocal extensor state (red) is initiated with the same state-switching constraints.

130

131 A. Solution using constant rate assumption

132 First, let us simplify the equations by reducing the description only to two states controlling a 

133 single limb. Here, x1 and x2 are the reciprocal state variables as shown in Fig. 1. The system of 

134 equations can then be stated as: 

135 þ øóù{ý1 = ý01 + ýÿ1ÿ + ÿýÿÿýý1ý2 = ý02 + ýÿ2ÿ + ÿýÿÿýý2
�

136 Since rleak is a small negative number (Table 1) the rate of state ( ) can be further approximated ý
137 using phase duration quantities as the difference of states for a given phase duration, i.e., the 

138 inverse of phase duration. Even for the time-variable input (u), the rate of state for a full phase 

139 duration can be simplified as:

140 øôùý =  
ÿÿý 2 ÿÿÿÿ =

1ÿ
141 Then the expression for cycle durations can be described as a sum of the antagonistic phases in the 

142 simplified system, eq.5:

143 øõùÿý = ÿ1 + ÿ2 =
1ý1 

+
1ý2

=
ý1 + ý2ý1ý2

144 Since the cycle duration, Tc, is a constant for a given constant input (u), the only time-varying 

145 variables are the states of the system, x1 and x2. In phase transition points, at  or , x1 ý = ÿ1 ý = ÿ1 + ÿ2

146 and x2 are zero or a small value close to zero. We can further expand this equation with eq.3 and 

147 simplify it to all the known terms: 

148 øöùÿý =
ý01 + ý02 + (ýÿ1 + ýÿ2)ÿ
(ý01 + ýÿ1ÿ)(ý02 + ýÿ2ÿ) =

ÿ + ÿÿ
~ÿ +

~ÿÿ +
~ýÿ2
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149 where the cycle period is expressed as a function of input (u)  all parameters on the left of eq.6 are 

150 constants.

151 B. Solution using Taylor series

152 The same solution Eq.6 was found by integrating the differential equations (3) between 0 and t. 

153 For this, Eq.3 can be rewritten with the assumption of independent limb control:

154 ø÷ùý 2 ÿý = ý0 + ÿÿÿ
155 where variables are as defined for Eq.1. Note that the right-hand side can be assumed to be time-

156 independent for constant input (u) and this type of equations has a general solution of the form ekx. 

157 The left side of the above equation can be expressed as

158 øøù(ýÿ 2 ÿý)'
= ýÿ 2 ÿý 2 ÿýÿ 2 ÿý

= (ý 2 ÿý)ÿ 2 ÿý
159 Hence, Eq.7 can be integrated and evaluated between 0 and t using

160 øùù�(ýÿ 2 ÿý)|ý0 = +ý
0
(ý0 + ÿÿÿ)ÿ 2 ÿýýý

161 øñðùý(ý)ÿ 2 ÿý 2 0 =
ý0 + ÿÿÿ2 ÿ (ÿ 2 ÿý 2 1)

162 øññùý(ý) =
ý0 + ÿÿÿÿ (ÿÿý 2 1)

163 The exponential function can be further expanded with Taylor series and some components can be 

164 dropped since r is a number close to zero:

165 øñòùý(ý) j ý0 + ÿÿÿÿ (1 + ÿý + & 2 1) j (ý0 + ÿÿÿ)ý
166 Then, the full phase of each integrated state is 

167 øñóùý =
1ý0 + ÿÿÿ

168 Finally, the full cycle duration consisting of two reciprocal phases has the same form as Eq.6

169 øñôùÿý = ý1 + ý2 =
ÿ + ÿÿ

~ÿ +
~ÿÿ +

~ýÿ2

170 where a, b, , ,  are constants.
~ÿ ~ÿ ~ý
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171 C. Validation

172 Both methods converged on the same form, Eq. 6 and 14, supporting the consistency of solutions 

173 with different assumptions. The relationship between  cycled duration and CPG input (Tc and u) 

174 is of the form Tc=a*u-b. This simple analytical solution has a similar form to the phenomenological 

175 relationship between cycle duration and the velocity of overground forward progression 

176 Tc=0.5445*V-0.5925 (Goslow et al., 1973). Figure 3 shows the comparison of solutions with our 

177 analytical and the previous phenomenological model for the step cycle duration and velocity 

178 values. The simulated Tc data values were calculated with Eq.7 using optimal parameters and u 

179 values selected with the regression equation u=(V+0.1272)/0.2357 (from Fig.4 in our previous 

180 work (Yakovenko, 2011)) and plotted in Fig.3C. The analytical solution (red) for leg speed was 

181 closely related to the empirical curve (black) calculated with the phenomenological functions that 

182 were calculated as the best-fit expressions for the experimental measurements (Goslow et al., 1973; 

183 Halbertsma, 1983) (Fig. 3A). The analytical and empirical cycle durations were highly correlated 

184 (Fig.3B) for the linear relationship between CPG inputs (u) representing scaled forward velocity 

185 values  (Fig.3C).

186
187 Figure 3. The comparison of analytical and empirical values. A. The solution of cycle durations is shown for both 

188 the analytical (red) and empirical (black) values. B.The analytical cycle durations (Tc) are plotted as a function of 

189 empirical Tc (R2=0.9946, p<0.001). C. The relationship between input signals and empirical forward velocity. 

190 Discussion

191 Here, we have investigated the extreme example of the structural feedforward rate model with 

192 time-varying inputs to capture general CPG function. We have developed an analytical solution 

193 for a reduced CPG model to test if the basic structure of reciprocal interactions between integrating 

194 and leaky network elements can generate appropriate input-output relationship between limb speed 

195 and locomotor cycle duration. The analytical solution of the reduced CPG model recreated the 

196 empirical data very closely, despite model simplicity and assumptions in deriving the solution. 

197 This was not clear a priori. Multiple studies rely on H-H formalism and complex network with 

198 additional neurons and spinal segmental pathways to represent the relatively low-dimensional 

199 nonlinear output, which is responsible for the locomotor phase regulation. 

200 The minimalistic implementation of CPG required significant assumptions about morphology and 

201 function in the model. Both, flexor and extensor half-centers were assumed to be capable of 

202 generating rhythm. The ability for rhythmogenesis of each half-center is the current consensus 
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203 among multiple gropus {see review/ ref}, but it has been under some scrutiny, see discussion of 

204 <swing-phase= CPG below. In the model, the switching to the antagonistic phase is triggered by 

205 the state signal crossing the threshold (xi=1). The process responsible for maintaining activity in 

206 one phase is similar to the dynamics arising from the slowly inactivating persistent sodium current 

207 in CPG models using H-H dynamics.

208 The dynamical rate models are appropriate for the description of the relationship between the 

209 desired speed and the locomotor phases (Fig.1). As further anatomical studies detailing the 

210 organization and wiring of neurons become available for mammalian CPG (Kiehn, 2016), the 

211 inclusion of these details in models is generally left to the intuition. H-H spike-generating models 

212 of CPG require multiple estimated parameter values that are often difficult to validate in numerical 

213 simulations. These models provide insight into the realistic control challenges and reveal tentative 

214 explanations of experimental discrepancies. For example, the discrepancy between the observation 

215 of both extensor and flexor phase dominance in locomotor patterns generated by adaptable flexor- 

216 and extensor- driven CPG as opposed to only the flexor-driven CPG (see review/ Duysens et al., 

217 2013) can be reconciled with the consideration of available functionality within underlying single-

218 cell and network dynamic elements (Ausborn et al., 2017). A subset of plausible mechanisms 

219 selected from the plethora of unexplored parametric relationships can explains multiple observed 

220 states, and other alternative mechanisms generating similar outcomes may exist within the same 

221 models. 

222 The evidence of underfitting of experimental data by simple models should be the main motivation 

223 for the inclusion of additional terms within theoretical representations. As we have observed in a 

224 relatively complex dynamical rate model simulating asymmetric bilateral locomotion (Sobinov 

225 and Yakovenko, 2017), the same low-dimensional output can be produced by several alternative 

226 parameter configurations. What region of the parameter space, which is nine-dimensional for a 

227 bilateral rate model, is physiological remains to be established. The potential of dynamical rate 

228 models to simulate brain functions also remains an open question. Their utility was demonstrated 

229 in a series of studies of motor cortical processing spanning reaching movements and motor 

230 learning (Churchland et al., 2012; Gilja et al., 2012; Kao et al., 2015; Sussillo et al., 2015). Our 

231 finding suggests that dynamical rate models solve the problem of transforming high-level 

232 commands by capturing empirical observations of temporal phase relationships. 
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233 The presented solution is based on the analysis of a single limb controller. How does this apply to 

234 the behaviors with the interlimb contributions? In a quadruped, the CPG is a network of all four 

235 limb controllers that generate patterns with the inputs of all its elements. The analyses of locomotor 

236 patterns in split-belt locomotion, when fore- and hind- limbs or left and right limbs were decoupled 

237 and allowed to move at different speeds, support the idea that forelimb and hindlimb CPGs are 

238 similarly organized without midline asymmetries (D'Angelo et al., 2014). The upper and lower 

239 limb CPG networks have been proposed to monitor and to integrate sensory inputs with the 

240 ongoing rhythmic activity both in cats and also in humans (Duysens and Van de Crommert HW, 

241 1998). For example, the cutaneous inputs are similarly modulated in lower limbs during 

242 locomotion and in upper limbs during rhythmic, cyclical arm tasks (Zehr and Kido, 2001). The 

243 similarity in the structure of the upper and lower limb controllers and their symmetricity across 

244 the midline corroborates the idea that the understanding of single limb CPG dynamics is central to 

245 the description of inter limb coordination and sensorimotor integration. Thus, this model may be 

246 adapted in the future studies to capture, at least partially, upper-limb dynamics in rhythmic 

247 movements.

248 The computational complexity of motor control can be reduced by generating commands through 

249 a selection of independent control units, synergies, that combine muscles to produce desired 

250 mechanical actions (Saltiel et al., 2001). This Bernsteinian problem could be solved by the basic 

251 CPG structure capturing the temporal features of bilateral muscle activity during locomotion. By 

252 definition, CPG function constitutes a locomotor synergy; yet, the current methods for studying 

253 motor synergies are generally linear statistical tools (Tresch and Jarc, 2009). The typical 

254 factorization methods, i.e., the nonnegative matrix factorization, would not identify CPG as a 

255 single synergy and, moreover, would require an additional mechanism to modulate locomotor 

256 phases with speed. The CPG model described here is a compact and robust alternative, which is 

257 supported by the recent use of dynamical systems in the description of control pathways. The 

258 dynamical systems can characterize the transformation from neural activity in the primary motor 

259 cortex to the muscle activations controlling reaching movements (Sussillo et al., 2015) or in the 

260 preparatory activity of premotor areas planning these commands (Kaufman et al., 2014). 

261 The description of mechanisms responsible for the coordination of phasic activity during 

262 locomotion may be necessary for the development of stroke and spinal cord injury repair and 

263 rehabilitation strategies (Thompson, 2012). The basic mechanistic description of CPG is critical 
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264 for the development of robotic and clinical applications that take advantage of this element, and it 

265 is essential for the functional understanding of hierarchical descending and sensory feedback 

266 pathways projecting to it. The fundamental dynamical form of CPG mechanism and its validation 

267 in locomotion with different velocities opens a robust alternative to computationally intensive 

268 models.

269 Conclusion

270 The analytical solution demonstrates that the linear relationship between forward velocity or limb 

271 speed is the essential property of reciprocal organization between two half-center oscillators in this 

272 CPG model. Moreover, there is a good correspondence between the form of analytical solution 

273 and the previous empirical description of this relationship. The existence of rhythmogenic neural 

274 networks with the reciprocal inhibition makes it possible to use gross signals, i.e. limb velocity, to 

275 specify the nonlinear regulation of locomotor phases. Further theoretical description of CPG may 

276 provide tools for intelligent prosthetics and the quantitative metrics of locomotor disabilities.

277 Appendix

278 Table 1. Optimal CPG parameters from Yakovenko (2011).

Parameter x
01 x

02
g

1
g

2
r
leak

r
13 

r
14 

r
23 

r
24 

Value -0.0007 2.4256 0.6203 0.4882 -0.0094 0.1339 -0.0485 -0.0823 0.0981
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286 Figure Legends

287 Fig. 1. The schematic of bilateral CPG. Each locomotor phase Ti is generated by the 

288 transformation of low-feature inputs (desired velocity) with the intrinsic interactions between the 
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289 half-centers (weights rij, see Eq.2). The outputs in the form of phase durations define the pattern 

290 of flexor and extensor motoneurons responsible for the activity of muscles during swing and stance 

291 for each limb.

292 Fig. 2. The temporal schematic of two reciprocal states with integration and resetting. The 

293 integration process in flexor half-center (blue) described by Eq.3 and 7 is reset to 0 and the 

294 reciprocal extensor state (red) is initiated.

295 Fig. 3. The comparison of analytical and empirical values. A. The solution of cycle durations 

296 is shown for both the analytical (red) and empirical (black) values. B. The analytical cycle 

297 durations (Tc) are plotted as a function of empirical Tc (R2=0.9946, p<0.001). C. The relationship 

298 between input signals and empirical forward velocity. 
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Figure 1(on next page)

The schematic of bilateral CPG.

Each locomotor phase Ti is generated by the transformation of low-feature inputs (desired

velocity) with the intrinsic interactions between the half-centers (weights rij, see Eq.2). The

outputs in the form of phase durations define the pattern of flexor and extensor motoneurons

responsible for the activity of muscles during swing and stance for each limb.
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Figure 2(on next page)

The temporal schematic of two reciprocal states with integration and resetting.

The integration process in flexor half-center (blue) described by Eq.3 and 7 is reset to 0 and

the reciprocal extensor state (red) is initiated.
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Figure 3(on next page)

The comparison of analytical and empirical values.

A. The solution of cycle durations is shown for both the analytical (red) and empirical (black)

values. B. The analytical cycle durations (Tc) are plotted as a function of empirical Tc

(R2=0.9946, p<0.001). C. The relationship between input signals and empirical forward

velocity.
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Table 1(on next page)

Optimal CPG parameters

The parameter values were selected from Yakovenko (2011).
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1 Table 1. Optimal CPG parameters from Yakovenko (2011).

Parameter x
01 x

02
g

1
g

2
r
leak

r
13 

r
14 

r
23 

r
24 

Value -0.0007 2.4256 0.6203 0.4882 -0.0094 0.1339 -0.0485 -0.0823 0.0981

2
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