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The ability of vertebrates to generate rhythm within their spinal neural networks is

essential for walking, running, and other rhythmic behaviors. The central pattern generator

(CPG) network responsible for these behaviors is well-characterized with experimental and

theoretical studies, and it can be formulated as a nonlinear dynamical system. The

underlying mechanism responsible for locomotor behavior can be expressed as the

process of leaky integration with resetting states generating appropriate phases for

changing body velocity. The low-dimensional input to the CPG model generates the

bilateral pattern of swing and stance modulation for each limb and is consistent with the

desired limb speed as the input command. To test the minimal configuration of required

parameters for this model, we reduced the system of equations representing CPG for a

single limb and provided the analytical solution with two complementary methods. The

analytical and empirical cycle durations were similar (R2=0.99) for the full range of walking

speeds. The structure of solution is consistent with the use of limb speed as the input

domain for the CPG network. Moreover, the reciprocal interaction between two leaky

integration processes representing a CPG for two limbs was sufficient to capture

fundamental experimental dynamics associated with the control of heading direction. This

analysis provides further support for the embedded velocity or limb speed representation

within spinal neural pathways involved in rhythm generation.
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19 Abstract

20 The ability of vertebrates to generate rhythm within their spinal neural networks is essential for 

21 walking, running, and other rhythmic behaviors. The central pattern generator (CPG) network 

22 responsible for these behaviors is well-characterized with experimental and theoretical studies, and 

23 it can be formulated as a nonlinear dynamical system. The underlying mechanism responsible for 

24 locomotor behavior can be expressed as the process of leaky integration with resetting states 

25 generating appropriate phases for changing body velocity. The low-dimensional input to the CPG 

26 model generates the bilateral pattern of swing and stance modulation for each limb and is 

27 consistent with the desired limb speed as the input command. To test the minimal configuration of 

28 required parameters for this model, we reduced the system of equations representing CPG for a 

29 single limb and provided the analytical solution with two complementary methods. The analytical 

30 and empirical cycle durations were similar (R2=0.99) for the full range of walking speeds. The 

31 structure of solution is consistent with the use of limb speed as the input domain for the CPG 

32 network. Moreover, the reciprocal interaction between two leaky integration processes 

33 representing a CPG for two limbs was sufficient to capture fundamental experimental dynamics 

34 associated with the control of heading direction. This analysis provides further support for the 

35 embedded velocity or limb speed representation within spinal neural pathways involved in rhythm 

36 generation.#
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37 Introduction

38 The mechanism of spinal rhythmogenesis is an integral part of the mammalian locomotor system 

39 that fuses descending and sensory feedback signals with body9s dynamics (Dickinson et al., 2000). 

40 The theoretical description of this element, termed the central pattern generator (CPG), has been 

41 the focus of research with diverse aims. Previous computational studies introduced a variety of 

42 models to describe inter- and intra-limb coordination (Yakovenko et al., 2005)(Schöner et al., 

43 1990) and the rhythm generating network dynamics (Daun et al., 2009; Barnett and Cymbalyuk, 

44 2014). Other models tested the organization of spinal interneuronal circuitry (Bashor, 1998; Rybak 

45 et al., 2006) and the dynamic interactions between the mechanical system and the CPG (Taga et 

46 al., 1991). The elusive mechanism of locomotor pattern generation remains to be poorly 

47 understood in the context of its regulation and integration within descending feedforward and 

48 sensory feedback pathways. One of the main obstacles is the definition of CPG9s essential 

49 function. We know that this neural element can compute  control commands for the redundant 

50 musculoskeletal system (Gritsenko et al., 2016) that, in turn, shapes the activity of hierarchal 

51 neural mechanisms (Lillicrap and Scott, 2013) distributed along the neuraxis (Grillner, 1985). 

52 Moreover, the spinal motor circuits are known to accommodate rewiring in healthy operation 

53 (Vahdat et al., 2015) and injured states (Stevenson et al., 2015; Liu et al., 2017). 

54 The computational models of CPG may help to define the role of this element within the 

55 sensorimotor hierarchy. What would be the pertinent CPG model for this task? There are multiple 

56 models, and their implementation varies in complexity mostly due to the nature of addressed 

57 problems. One of the main challenges in computational neuroscience is the choice of appropriate 

58 model complexity and the level of abstraction for the theoretical description of complex neural 

59 mechanisms. The rule of thumb for an appropriate choice of mathematical model is to match the 

60 dexterity of experimental and theoretical descriptions. For example, the experimental data 

61 representing cellular mechanisms are captured with Hodgkin-Huxley (H-H) equations that detail 

62 the observed changes in membrane properties with the nonlinear dynamics of ion channel 

63 conductances. In contrast, the network behavior is assessed most optimally with the relatively 

64 simple phenomenological rate models that approximate the details of neural spiking by their 

65 discharge rate (Sterratt et al., 2011). Recently, the CPG models with H-H formulations were 

66 applied to cross the multiscale and multilevel divide between cellular and network levels at the 
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67 cost of high parametric dimensionality but describing the underlying mechanisms responsible for 

68 neural discharge (Rybak et al., 2015; Danner et al., 2016). 

69 The multiscale problem of representing input-output relationships using different physical laws 

70 and mathematical implementations to capture physical phenomena at different scales is not 

71 commonly addressed in the context of CPG models. Yet, there is a long-standing history of varied 

72 techniques for simulating CPG dynamics that span physical simulations of reciprocal integrators 

73 with inhibition (Verzár, 1923), nonlinear oscillators and rate models (Patla et al., 1985; Pribe et 

74 al., 1997), and models based on spiking neurons with varied complexity of computational dynamic 

75 (Selverston et al., 2000; Rybak et al., 2006). The scope of questions addressed with these models 

76 is also surprisingly wide, e.g., quantifying the role of ionic currents shaping the bursting activity 

77 of single neurons (Kueh et al., 2016) or identifying the role of specific network elements  within 

78 the CPG simulated with either the H-H models (Ausborn et al., 2017) or the rate models (Sobinov 

79 and Yakovenko, 2018). 

80 In our previous studies using a rate CPG model, we used data-driven parameter optimization to 

81 describe locomotor phase modulation (Yakovenko et al., 2005) and then applied the inverse 

82 solutions from empirical data to identify limb speeds as the modality of computed CPG inputs 

83 (Yakovenko, 2011). Unlike in classical Marr9s top-down analysis (Marr, 1982), the CPG structure 

84 was used as a <wetware= implementation in the bottom-up analysis to identify the nature of neural 

85 computation in locomotor tasks. Similar results were also found using H-H type CPG models, i.e., 

86 the monotonic relationship between the input strength and the frequency of locomotion (Rybak et 

87 al., 2006) or limb speed (Danner et al., 2016) were identified.

88 Using an analytical CPG model, we have demonstrated previously that the asymmetric gait can be 

89 represented with the strengths of connections between intrinsic elements of a relatively simple 

90 bilateral CPG (Sobinov and Yakovenko, 2018). In contrast, our focus in this study was to test the 

91 prediction that the elements of a single limb CPG are sufficient for the implementation of the 

92 relationship between speed and step cycle duration. For this purpose, we derived the analytical 

93 solution for the single limb model consisting of two coupled integrators. Then, we hypothesized 

94 that the general form of the solution is consistent with the velocity command input that modulates 

95 appropriately the timing of locomotor phases. Since limb-dependent phase modulation was also 

96 implicated in the control of heading direction (Courtine et al., 2006), we used the analytical 
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97 solution to demonstrate, for the first time, that single-limb velocity command signals are capable 

98 of appropriate phase modulation necessary for the control of heading direction. 

99

100 Methods 

101 A. CPG structure and function

102 The observations of neural activity in the absence of descending signals or sensory feedback led 

103 T.G. Brown to formulate the principle of intrinsic rhythmogenesis of spinal networks, the half-

104 center oscillator hypothesis (Brown, 1911). Brown posited that <& the centres are paired, and 

105 that each pair consists of antagonistic opposites.= The intrinsic rhythmogenesis opposed the 

106 established view that the locomotor pattern is generated and shaped only by supraspinal and 

107 sensory feedback pathways. The bilateral CPG model in Fig.1 was developed from a numerical 

108 model of a single-limb oscillator to describe phase dominance in fictive cat locomotion, which is 

109 a type of experimental behavior with diminished sensory contribution (Yakovenko et al., 2005). 

110 This model controlling two limbs consisted of two dedicated oscillators made of two reciprocally 

111 coupled half-center elements (gray area in Fig.1). It can generate bilateral rhythm using the 

112 interactions within and between the half-center elements. Only the rhythm generating mechanism 

113 is captured by this feedforward rate model with time-varying inputs. The pattern formation 

114 mechanism responsible for the generation of motoneuronal input signals can be computationally 

115 decoupled from the temporal dynamics of rhythm generation (McCrea and Rybak, 2008). 

116

117
118 Fig. 1. The schematic of bilateral CPG. Each locomotor phase Ti is generated by the transformation of low-feature 

119 inputs (desired velocity) with the intrinsic interactions between the half-centers (weights rij, see Eq.2). The outputs in 

120 the form of phase durations define the pattern of flexor and extensor motoneurons responsible for the activity of 

121 muscles during swing and stance for each limb.

122

123 The process of controlling locomotor phase durations is based on the ability of the network to 

124 integrate inputs until reaching a critical threshold causing a phase resetting within CPG network, 

125 Fig. 2. We have previously developed the bilateral model (Yakovenko, 2011; Sobinov and 

126 Yakovenko, 2018) and describe it in brief here. The model was expressed as the system of 

127 differential equations consisting of two parts in Eq.1: i) the largely extrinsic signals (right side) 

128 and ii) the intrinsic interactions (left side). The offset term (x0) could combine both intrinsic and 
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129 extrinsic influences on the background excitability of spinal cord. The bilateral CPG model 

130 consists of a system of differential equations for four intrinsic states ( ) that ý= (ý1,ý2,ý3,ý4)ÿ
131 represent flexor and extensor locomotor phases for each limb. The single limb CPG would consist 

132 only of two reciprocal states: 

133 øñùý 2 ÿýÿý ý= ý0 + ÿÿÿ
134 where Gu matrix represents gains of input signals u, x0 are constant offset values, matrix ÿýÿý
135 represents the strength of unilateral connections between the CPG half-centers (shown as arrows 

136 with weights rij in Fig.1, the connections across the midline were removed). matrix has the ÿýÿý
137 following form:

138 (2)ÿýÿý = ý 7 ÿýÿÿý
139 where I is the identity matrix, rleak is the constant that determines intrinsic state-dependent 

140 feedback. 

141 The internal states are limited to positive values with the switching threshold set to 1. Only one 

142 state from a pair, 1-2 (Fig.2), is set to be active  to impose the reciprocal relationship ý * (0 1]

143 between half-centers. This implementation assumes robust reciprocity between antagonistic states 

144 and enforces zero overlap between them. The single limb CPG would consist only of two 

145 reciprocal states ( ).ý= (ý1,ý2)ÿ
146 Even this simple model had many parameters that were largely undefined. Using an error-driven 

147 search algorithm in our previous study (Yakovenko, 2011) we found a set of optimal parameters 

148 (Table 1 in Appendix). These parameters were resolved by the minimization of the objective 

149 function with terms related to the errors in simulating swing and stance phases and the rate of their 

150 modulation for different overground speeds (Goslow et al., 1973; Halbertsma, 1983).

151 Results

152 The relationship between step cycle duration and the input <drive= to the analytical model was 

153 investigated in two complimentary solutions that rely on different assumptions: i) the assumption 

154 of constant integration rate in a single limb model of CPG, and ii) the expansion of function with 

155 the common Taylor series method.

156
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157 Figure 2. The temporal schematic of two reciprocal states with integration and resetting. The integration process 

158 in flexor half-center (blue) described by Eq.3 and 7 is reset to 0 (minimal value) after reaching 1 (maximal value) and 

159 the reciprocal extensor state (red) is initiated with the same state-switching constraints.

160

161 A. Solution using constant rate assumption

162 First, let us express explicitly all the term in Eq.1 to describe only flexor and extensor states 

163 controlling a single limb. Here, x1 and x2 are the reciprocal state variables as shown in Fig. 1. The 

164 system of equations can then be stated as: 

165 þ øóù{ý1 = ý01 + ýÿ1ÿ+ ÿýÿÿýý1ý2 = ý02 + ýÿ2ÿ+ ÿýÿÿýý2
�

166 Since rleak is a small negative number (Table 1) the rate of state ( ) can be further approximated ý
167 without this term using phase duration quantities as the difference of states for a given phase 

168 duration, i.e., the inverse of phase duration. Even for the time-variable input (u), the rate of state 

169 for a full phase duration can be simplified as:

170 øôùý=  
ÿÿý 2 ÿÿÿÿ =

1ÿ
171 Figure 2 shows an example for this formulation based on Eq.1 for a single limb with the assumption 

172 of the constant rate of integration (gu1 and gu2 are scalars, as in our previous studies). Each state 

173 (x1 and x2) integrates an input (u) only when active. The integration rate per step cycle can then be 

174 stated as in Eq.4. This formulation is possible due to the removal of midline crossing connections 

175 (green in Fig.1) between CPG states that complicate the relationship. Then the expression for cycle 

176 duration can be described as a sum of the antagonistic phases in the simplified system, Eq.5:

177 øõùÿý = ÿ1 + ÿ2 =
1ý1 

+
1ý2

=
ý1 + ý2ý1ý2

178 Since the cycle duration, Tc, is a constant for a given constant input (u), the only time-varying 

179 variables are the states of the system, x1 and x2. In phase transition points, at  or , x1 ý= ÿ1 ý= ÿ1 + ÿ2

180 and x2 are zero or a small value close to zero. We can further expand this equation with Eq.3 and 

181 simplify it to all the known terms: 

182 øöùÿý =
ý01 + ý02 + (ýÿ1 + ýÿ2)ÿ
(ý01 + ýÿ1ÿ)(ý02 + ýÿ2ÿ) =

ÿ+ ÿÿ
~ÿ+

~ÿÿ+
~ýÿ2
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183 where the step cycle duration is expressed as a function of input (u) and all parameters a, b, , ,  
~ÿ ~ÿ ~ý

184 are constants determined by the coefficients in the system of equations Eq.3.

185 B. Solution using Taylor series

186 The same solution Eq.6 was found by integrating the differential equations (3) between 0 and t. 

187 For this, Eq.3 can be rewritten with the assumption of independent limb control:

188 ø÷ùý 2 ÿý= ý0 + ÿÿÿ
189 where variables are as defined for Eq.1, and .. Note that the right-hand side can be assumed ÿ= ÿýÿÿý
190 to be time-independent for constant input (u) and this type of equations has a general solution of 

191 the form ekx. The left side of the above equation can be expressed as

192 øøù(ýÿ 2 ÿý)'
= ýÿ 2 ÿý 2 ÿýÿ 2 ÿý = (ý 2 ÿý)ÿ 2 ÿý

193 Hence, Eq.7 can be integrated and evaluated between 0 and t using

194 øùù�(ýÿ 2 ÿý)|ý0 = +ý
0
(ý0 + ÿÿÿ)ÿ 2 ÿýýý

195 øñðùý(ý)ÿ 2 ÿý 2 0 =
ý0 + ÿÿÿ2 ÿ (ÿ 2 ÿý 2 1)

196 øññùý(ý) =
ý0 + ÿÿÿÿ (ÿÿý 2 1)

197 The exponential function can be further expanded with Taylor series and some components can be 

198 dropped since r is a number close to zero, so that  in the expansion:ÿý j 0

199 øñòùý(ý)j ý0 + ÿÿÿÿ (1 + ÿý+ & 2 1)j (ý0 + ÿÿÿ)ý
200 Then, the full phase of each integrated state is 

201 øñóùý=
1ý0 + ÿÿÿ

202 Finally, the full cycle duration consisting of two reciprocal phases ( ) has the same form as ý1 + ý2
203 Eq.6

204 øñôùÿý = ý1 + ý2 =
ÿ+ ÿÿ

~ÿ+
~ÿÿ+

~ýÿ2

205 where a, b, , ,  are constants defined by the examination of algebraic terms from Eq. 13.
~ÿ ~ÿ ~ý
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206 C. Validation

207 Both methods converged on the same form, Eq. 6 and 14, supporting the consistency of solutions 

208 with different assumptions. The relationship between step cycle duration and CPG input (Tc and 

209 u) is of the form Tc=a*u-b. This simple analytical solution has a similar form to the 

210 phenomenological relationship between cycle duration and the velocity of overground forward 

211 progression Tc=0.5445*V-0.5925 (Goslow et al., 1973). Figure 3 shows the comparison of solutions 

212 with our analytical and the previous phenomenological model for the step cycle duration and 

213 velocity values. The simulated Tc data values were calculated with Eq.7 using optimal parameters 

214 and u values selected with the regression equation u=(V+0.1272)/0.2357 (from Fig.4 in our 

215 previous work (Yakovenko, 2011)) and plotted in Fig.3C. The analytical solution (red) for leg 

216 speed was closely related to the empirical curve (black) calculated with the phenomenological 

217 functions that were calculated as the best-fit expressions for the experimental measurements 

218 (Goslow et al., 1973; Halbertsma, 1983) (Fig. 3A). Since the swing duration remains nearly 

219 constant as a function of either step cycle duration or the velocity of forward progression in cats 

220 (Halbertsma, 1983; Frigon et al., 2014), it can be approximated as a constant (~ 0.25s). Then, the 

221 stance duration is the same as in Eq. 6 and 14 with the negative constant. This relationship may 

222 not be preserved for gaits with the large differences in limb speeds as those used in split-belt 

223 experiments (D'Angelo et al., 2014) and may require the consideration of bilateral inputs as in our 

224 previous study (Sobinov and Yakovenko, 2018). The analytical and empirical step cycle durations 

225 were highly correlated (Fig.3B) for the linear relationship between CPG inputs (u) representing 

226 scaled forward velocity values (Fig.3C).

227
228 Figure 3. The comparison of analytical and empirical values. A. The solution of cycle durations is shown for both 

229 the analytical (red) and empirical (black) values. B. The analytical cycle durations (Tc) are plotted as a function of 

230 empirical Tc (R2=0.9946, p<0.001). C. The relationship between input signals and empirical forward velocity. 

231

232 The implementation of CPG with the limb speed inputs is expected to generate spatiotemporal step 

233 modulation appropriate for the locomotion on a curved path. We used the following equation to 

234 compute the relationship between the heading direction (³) and limb speeds (VR, VL): ³ = Tc (VR-

235 VL)/W, where W is the interlimb step width (j0.15m in cat) and Tc is the step duration from Eq. 6. 

236 This equation was previously derived for the experimental and theoretical kinematics of 

237 locomotion along a curved path (Courtine et al., 2006; Sobinov and Yakovenko, 2018). Fig. 4A 
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238 shows the monotonic relationship with extremes occurring for large interlimb speed difference 

239 ("V) at slow speeds. This range may be consistent with the <spin turning= when body spins around 

240 a supporting limb (Hase and Stein, 1999). Examples of simulated kinematics for three speeds (a, 

241 b, c = 0.5, 1, 2 m/s) with increasing interlimb speed differences in each consecutive step are shown 

242 in Fig. 4B. The green vector indicating the heading direction demonstrates the dependency not 

243 only on the interlimb speed difference ("V), but also the overall magnitude of body9s velocity (V). 

244 The parsimonious analytical CPG model that includes computations for two limbs can generate 

245 steering. 

246
247 Figure 4. The simulated relationship between CPG inputs (limb speeds) and the heading direction. A. The change 

248 in the heading direction is shown as a function of two parameters 4 mean speed and limb speed differential. B. 

249 Examples of asymmetrical walking trajectories simulated for the ranges marked (a-c) in A. The heading direction 

250 (green) was scaled with the mean stride length in 5 simulated steps. C. Schematic summarizing the heading direction 

251 control based on the velocity command hypothesis. The desired heading direction (³*) can automatically generate the 

252 CPG speed commands appropriate for steering body (³).

253 Discussion

254 Here, we have investigated an extreme example of the structural feedforward rate model with time-

255 varying inputs and its ability to capture general CPG function. We have developed an analytical 

256 solution for a reduced CPG model to test if the basic structure of reciprocal interactions between 

257 integrating and leaky network elements can generate appropriate input-output relationship between 

258 limb speed and locomotor cycle duration. The analytical solution of the reduced CPG model 

259 recreated the empirical data very closely, despite model simplicity and assumptions in deriving the 

260 solution. This was not clear a priori. 

261 The minimalistic implementation of CPG required significant assumptions about morphology and 

262 function in the model. Both, flexor and extensor half-centers were assumed to be capable of 

263 generating rhythm based on the reciprocity of two integrating circuits. The ability for 

264 rhythmogenesis of each half-center is the current consensus among multiple groups (see reviewed 

265 in (Frigon, 2017)), but it has been under some scrutiny, see discussion of <swing-phase= CPG 

266 below. In the model, the switching to the antagonistic phase is triggered by the state signal crossing 

267 the threshold (xi=1). The process responsible for maintaining activity in one phase is similar to the 

268 dynamics arising from the slowly inactivating persistent sodium current in CPG models using H-

269 H dynamics.
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270 The dynamical rate models describing the single-limb CPG are sufficient for the description of the 

271 relationship between the desired speed and the locomotor phases. The main advantage of simple 

272 models is that their parameters can be accurately scaled using empirical data on the timing of 

273 locomotor phase transitions. While we have used data from observations of cat locomotion, the 

274 general functional homology of the CPG mechanism has been demonstrated in other mammals, 

275 including humans (Lam and Yang, 2000; Musselman and Yang, 2007; Dominici et al., 2011). As 

276 further anatomical studies detailing the organization and wiring of neurons become available for 

277 mammalian CPG (Kiehn, 2016), the inclusion of these details in models is generally left to the 

278 intuition. H-H spike-generating models of CPG require multiple estimated parameter values that 

279 are often difficult to validate in numerical simulations. These models provide insight into the 

280 realistic control challenges and reveal tentative explanations of experimental discrepancies. For 

281 example, the discrepancy between the observation of both extensor and flexor phase dominance 

282 in locomotor patterns generated by adaptable flexor- and extensor- driven CPG as opposed to only 

283 the flexor-driven CPG (see review Duysens et al., 2013) can be reconciled with the consideration 

284 of available functionality within underlying single-cell and network dynamic elements (Ausborn 

285 et al., 2017). A subset of plausible mechanisms selected from the plethora of unexplored 

286 parametric relationships can explains multiple observed states, and other alternative mechanisms 

287 generating similar outcomes may exist within the same models. 

288 The evidence of underfitting of experimental data by simple models should be the main motivation 

289 for the inclusion of additional terms within theoretical representations. As we have observed in a 

290 relatively complex dynamical rate model simulating asymmetric bilateral locomotion (Sobinov 

291 and Yakovenko, 2018), the same low-dimensional output can be produced by several alternative 

292 parameter configurations. What region of the parameter space, which is nine-dimensional for a 

293 bilateral rate model, is physiological remains to be established. The potential of dynamical rate 

294 models to simulate brain functions also remains an open question. Their utility was demonstrated 

295 in a series of studies of motor cortical processing spanning reaching movements and motor 

296 learning (Churchland et al., 2012; Gilja et al., 2012; Kao et al., 2015; Sussillo et al., 2015). Our 

297 finding suggests that dynamical rate models solve the problem of transforming high-level 

298 commands by capturing empirical observations of temporal phase relationships. 

299 All parameters in the parsimonious single limb CPG model can be robustly constrained by the 

300 corresponding empirical observations. In this model, the inputs are isolated and identified as 
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301 velocity-dependent based on the observed outputs. For example, it is sufficient to measure the 

302 phase and cycle relationship to identify the scalar gain and the offset for each half-center integrator. 

303 The excluded connectivity within the CPG model representing propriospinal commissural 

304 pathways in the lumbosacral enlargement removes the network rhythmogenic flexibility that may 

305 represent different behavioral states intrinsically (Ausborn et al., 2017; Sobinov and Yakovenko, 

306 2018). For example, a modeling study using a high-dimensional parameter space model developed 

307 with H-H formalism has demonstrated that the interneurons crossing the midline may provide left-

308 right limb coordination (Shevtsova et al., 2015). The reduction of the high-dimensional parametric 

309 space reduces inevitably the behavioral repertoire but increases the model robustness and gains the 

310 simple expression of the underlying system characteristics. While the utility of simple models can 

311 be challenged for problems that require the examination of intricate structural or functional details, 

312 the use of simple models conforms to George Box9s truism that <all models are wrong but some 

313 are useful= (Box, 1979). The dimensionality of both inputs and outputs in this model9s dynamical 

314 transformation is equivalent, and all parameters are readily definable by the statistics of 

315 observations.

316 The presented solution is based on the analysis of a single limb controller. How does this apply to 

317 the behaviors with the interlimb contributions? In a quadruped, the CPG is a network of all four 

318 limb controllers that generate patterns with the inputs of all its elements. The analyses of locomotor 

319 patterns in split-belt locomotion, when fore- and hind- limbs or left and right limbs were decoupled 

320 and allowed to move at different speeds, support the idea that forelimb and hindlimb CPGs are 

321 similarly organized without midline asymmetries (D'Angelo et al., 2014). The upper and lower 

322 limb CPG networks have been proposed to monitor and to integrate sensory inputs with the 

323 ongoing rhythmic activity both in cats and also in humans (Duysens and Van de Crommert, 1998). 

324 For example, the cutaneous inputs are similarly modulated in lower limbs during locomotion and 

325 in upper limbs during rhythmic, cyclical arm tasks (Zehr and Kido, 2001). The similarity in the 

326 structure of the upper and lower limb controllers and their symmetricity across the midline 

327 corroborates the idea that the understanding of single limb CPG dynamics is central to the 

328 description of inter limb coordination and sensorimotor integration. Thus, this model may be 

329 adapted in the future studies to capture, at least partially, upper-limb dynamics in rhythmic 

330 movements.
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331 Our results have shown that a simple CPG model driven by limb velocities captures the behavior 

332 of steering during gait. In studies where subjects were asked to walk on curvilinear paths (Hase 

333 and Stein, 1999; Courtine et al., 2006), both amplitude and timing in leg and trunk muscles were 

334 modulated. This supports the idea that the descending command interacts directly with the CPG 

335 circuitry to change the heading direction and to allow the locomotion along the curvilinear path. 

336 The control of turning during locomotion has been described in the context of controlling subject9s 

337 center of mass (Patla et al., 1999). The dynamics of this problem is typically defined by the model 

338 of inverted pendulum (Hof, 2008), which is traditionally used as the basis of neural transformation 

339 responsible for the locomotor rhythmogenesis and mechanical stability (Full and Koditschek, 

340 1999; Full et al., 2002). The neural circuitry of CPG mechanism coupled to the mechanical 

341 dynamics of limbs is thought to anticipate mechanical requirements, a phenomenon termed 

342 neuromechanical tuning (Taga et al., 1991; Prochazka and Yakovenko, 2007). Thus, it is logical 

343 to hypothesize that the anticipated heading direction signal is processed by the CPG network. 

344 However, the operation of this pathway may be limited to the <step turning=, which has no abrupt 

345 trunk rotation, as opposed to <spin turning=, which may require stopping the axial leg on the inside 

346 of a turn (Hase and Stein, 1999). The step turning is generally stable with wider step width and 

347 does not disrupt the gait rhythm. Thus, the limb speed driven CPG may mediate turning through a 

348 step turning strategy (Fig. 4). In the task where a subject walks on the same curved path with 

349 different limb speeds, the simulations predict an increase in interlimb speed with the increasing 

350 velocity 3 moving along the same heading direction line in Fig.4. Similar increase in the limb 

351 stride length asymmetry can be seen in the kinematics of human curved locomotion (see Fig. 4 in 

352 (Orendurff et al., 2006)).

353 The desired heading direction may be expressed within limb speed commands that descend to the 

354 CPG. Similar to our previous study (Yakovenko, 2011), the simple analytical formulation of the 

355 relationship between the heading direction and the CPG inputs can be analyzed bottom-up, where 

356 a system producing body reorientation during locomotion is also driven by the desired heading 

357 direction originating from the higher levels of the visuomotor pathway. The support for the 

358 expression of desired heading direction comes from the observations of anticipatory head 

359 orientation in humans walking on curved paths and the existence of dedicated visuomotor cells 

360 tuned to the head orientation. The orientation of head relative to the desired locomotor direction 

361 (similar to ³* term in Fig. 4C) may enable the repositioning of body relative to its frame of 
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362 reference associated with the ongoing forward progression (Hollands et al., 2001). Neurons 

363 encoding selectively the head orientation, termed <head direction cells=, have been found in the 

364 visuomotor and navigation-related pathways of several mammals (Taube et al., 1990a; 1990b; 

365 Knierim et al., 1995; Robertson et al., 1999; Sargolini et al., 2006) and simulated in models (Zhang, 

366 1996; McNaughton et al., 2006). The head direction has been shown to influence selection of limb 

367 movements (Dancause and Schieber, 2010) and to anticipate the turning in walking on straight and 

368 curved paths (Hicheur et al., 2005). In the system with the desired heading direction control, the 

369 left-right limb coordination would be automatically generated within the pathways converging on 

370 the CPG network.

371 The current model implementation has both temporal and spatial limitations. It has been validated 

372 for the temporal modulation of step cycle duration within the range of walking speeds. However, 

373 it may not extend to other locomotion types where stance is shorter than swing, i.e., running. In 

374 addition, since the dynamics of single limb CPG model is largely dominated by the modulation of 

375 stance phase, the phase modulation has been simplified to the examination of only step cycle 

376 duration, where Tcycle=Tstance + const. This is supported by the observations that swing phase 

377 remains nearly constant over a wide range of walking speeds (Halbertsma, 1983; Frigon et al., 

378 2015). The speed-related increase in the exerted muscle force is expected to be matched with the 

379 increase in the order and size of recruited muscle motor units in accordance with Hennemann9s 

380 size principle (reviewed in Taylor, 1978). This quadratically increasing signal has not been 

381 represented in the current model because this implementation captures whole limb behavior and 

382 not the patterning of individual muscles, which can be achieved with the method of Patla et al. 

383 (Patla et al., 1985). In neuromechanical simulations using the single-limb analytical 

384 implementation, the velocity-dependent recruitment can be added as the direct command from the 

385 descending pathways (velocity signal) to muscle activation (Prochazka and Ellaway, 2012) or as 

386 a transformation from the inverse of the corresponding speed-dependent phase duration within the 

387 CPG model. The speed-dependent increase in the recruitment of muscles can also be compensated 

388 by muscle properties and proprioceptive feedback dependent on muscle dynamics (Yakovenko et 

389 al., 2004). For example, the lack of sufficient ankle extensor forces at high speeds would alter gait 

390 kinematics forcing ankle extensors to operate at longer lengths, which, in turn, increases both force 

391 generation and increases the stretch reflex contribution from Ia and Ib primary afferent pathways. 
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392 The description of mechanisms responsible for the coordination of phasic activity during 

393 locomotion may be necessary for the development of stroke and spinal cord injury repair and 

394 rehabilitation strategies (Thompson, 2012). The basic mechanistic description of CPG is critical 

395 for the development of robotic and clinical applications that take advantage of this element, and it 

396 is essential for the functional understanding of hierarchical descending and sensory feedback 

397 pathways projecting to it. The fundamental dynamical form of CPG mechanism and its validation 

398 in locomotion with different velocities opens a robust alternative to computationally intensive 

399 models.

400 Conclusion

401 The analytical solution demonstrates that the linear relationship between forward velocity or limb 

402 speed and the CPG model input is an intrinsic property of reciprocal organization between two 

403 half-center oscillators. Moreover, there is a good correspondence between the form of analytical 

404 solution and the previous empirical description of this relationship. The existence of rhythmogenic 

405 neural networks with the reciprocal inhibition makes it possible to use gross signals, i.e. limb 

406 velocity, to specify the nonlinear regulation of locomotor phases In addition, this model can 

407 describe steering control as the CPG-mediated transformation from the internal representation of 

408 desired heading direction in terms of limb speeds to the executed change in the step cycle of each 

409 limb. Further theoretical description of CPG may provide tools for intelligent prosthetics and the 

410 quantitative metrics of locomotor disabilities.

411 Appendix

412 Table 1. Optimal CPG parameters from Yakovenko (2011).

Parameter x
01 x

02
g

1
g

2
r
leak

Value -0.0007 2.4256 0.6203 0.4882 -0.0094
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420 Figure Legends

421 Fig. 1. The schematic of bilateral CPG. Each locomotor phase Ti is generated by the 

422 transformation of low-feature inputs (desired velocity) with the intrinsic interactions between the 

423 half-centers (weights rij, see Eq.2). The outputs in the form of phase durations define the pattern 

424 of flexor and extensor motoneurons responsible for the activity of muscles during swing and stance 

425 for each limb.

426 Fig. 2. The temporal schematic of two reciprocal states with integration and resetting. The 

427 integration process in flexor half-center (blue) described by Eq.3 and 7 is reset to 0 and the 

428 reciprocal extensor state (red) is initiated.

429 Fig. 3. The comparison of analytical and empirical values. A. The solution of cycle durations 

430 is shown for both the analytical (red) and empirical (black) values. B. The analytical cycle 

431 durations (Tc) are plotted as a function of empirical Tc (R2=0.9946, p<0.001). C. The relationship 

432 between input signals and empirical forward velocity. 

433 Fig. 4. The simulated relationship between CPG inputs (limb speeds) and the heading 

434 direction. A. The change in the heading direction is shown as a function of two parameters 4 

435 mean speed and limb speed differential. B. Examples of asymmetrical walking trajectories 

436 simulated for the ranges marked (a-c) in A. The heading direction (green) was scaled with the 

437 mean stride length in 5 simulated steps. C. Schematic summarizing the heading direction control 

438 based on the velocity command hypothesis. The desired heading direction (³*) can automatically 

439 generate the CPG speed commands appropriate for steering body (³).
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Figure 1(on next page)

The schematic of bilateral CPG.

Each locomotor phase Ti is generated by the transformation of low-feature inputs (desired

velocity) with the intrinsic interactions between the half-centers (weights rij, see Eq.2). The

outputs in the form of phase durations define the pattern of flexor and extensor motoneurons

responsible for the activity of muscles during swing and stance for each limb.
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Figure 2(on next page)

The temporal schematic of two reciprocal states with integration and resetting.

The integration process in flexor half-center (blue) described by Eq.3 and 7 is reset to 0 and

the reciprocal extensor state (red) is initiated.
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Figure 3(on next page)

The comparison of analytical and empirical values.

A. The solution of cycle durations is shown for both the analytical (red) and empirical (black)

values. B. The analytical cycle durations (Tc) are plotted as a function of empirical Tc

(R2=0.9946, p<0.001). C. The relationship between input signals and empirical forward

velocity.
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Figure 4(on next page)

The simulated relationship between CPG inputs (limb speeds) and the heading direction.

A. The change in the heading direction is shown as a function of two parameters 4 mean

speed and limb speed differential. B. Examples of asymmetrical walking trajectories

simulated for the ranges marked (a-c) in A. The heading direction (green) was scaled with the

mean stride length in 5 simulated steps. C. Schematic summarizing the heading direction

control based on the velocity command hypothesis. The desired heading direction (³*) can

automatically generate the CPG speed commands appropriate for steering body (³).

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26734v2 | CC BY 4.0 Open Access | rec: 7 Aug 2018, publ: 7 Aug 2018



-0.2 -0.1 0 0.1 0.2

"V (m/s)

0

0.5

1

1.5

2

2.5

V
 (m

/s
)

H
eading D

irection, ³ (deg)

-180

-135

-90

-45

0

45

90

135

180

60º

40º20º0º

-60º

-40º -20º

1 (m)

1 (m) R

L

2.0 1.0 0.5

(m/s)

"V=.05

"V=.1

"V=.15

"V=.2
a

b

c

a

b

c

A. B.

³7

CPG

L

R

BODY

³

"V

C.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26734v2 | CC BY 4.0 Open Access | rec: 7 Aug 2018, publ: 7 Aug 2018



Table 1(on next page)

Optimal CPG parameters

The parameter values were selected from Yakovenko (2011).
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1 Table 1. Optimal CPG parameters from Yakovenko (2011).

Parameter x
01 x

02
g

1
g

2
r
leak

r
13 

r
14 

r
23 

r
24 

Value -0.0007 2.4256 0.6203 0.4882 -0.0094 0.1339 -0.0485 -0.0823 0.0981

2
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