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The advent of next-generation sequencing has resulted in transcriptome-based

approaches to investigate functionally significant biological components in a variety of

non-model organism. This has resulted in the area of <venomics=: a rapidly growing field

using combined transcriptomic and proteomic datasets to characterize toxin diversity in a

variety of venomous taxa. Ultimately, the transcriptomic portion of these analyses follows

very similar pathways after transcriptome assembly: candidate toxin identification using

BLAST, expression level screening, protein sequence alignment, gene tree reconstruction,

and characterization of potential toxin function. Here we describe the python package

Venomix, which streamlines these processes using commonly used bioinformatic tools

along with a public, annotated database comprised of characterized venom proteins. In

this study, we use the Venomix pipeline to characterize candidate venom diversity in four

phylogenetically distinct organisms, a cone snail (Conidae; Conus sponsalis), a snake

(Viperidae; Echis coloratus), an ant (Formicidae; Tetramorium bicarinatum), and a scorpion

(Scorpionidae; Urodacus yaschenkoi). Data on these organisms was sampled from public

databases and thus different approaches to either transcriptome assembly, toxin

identification, or gene expression quantification was used for each. Of the organisms used

in our analysis, Venomix recovered numerically more candidate toxin transcripts for three

of the four transcriptomes than the original analyses. In four of four organisms we

identified new toxin candidates that were not reported in the original analysis. In

summary, we show that the Venomix package is a useful tool to identify and characterize

the diversity of toxin-like transcripts. Venomix is available at:

https://bitbucket.org/JasonMacrander/Venomix/
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Abstract  593 

The advent of next-generation sequencing has resulted in transcriptome-based approaches to 594 

investigate functionally significant biological components in a variety of non-model organism. This has 595 

resulted in the area of <venomics=: a rapidly growing field using combined transcriptomic and proteomic 596 

datasets to characterize toxin diversity in a variety of venomous taxa. Ultimately, the transcriptomic 597 

portion of these analyses follows very similar pathways after transcriptome assembly: candidate toxin 598 

identification using BLAST, expression level screening, protein sequence alignment, gene tree 599 

reconstruction, and characterization of potential toxin function. Here we describe the python package 600 

Venomix, which streamlines these processes using commonly used bioinformatic tools along with a 601 
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public, annotated database comprised of characterized venom proteins. In this study, we use the Venomix 602 

pipeline to characterize candidate venom diversity in four phylogenetically distinct organisms, a cone 603 

snail (Conidae; Conus sponsalis), a snake (Viperidae; Echis coloratus), an ant (Formicidae; Tetramorium 604 

bicarinatum), and a scorpion (Scorpionidae; Urodacus yaschenkoi). Data on these organisms was sampled 605 

from public databases and thus different approaches to either transcriptome assembly, toxin identification, 606 

or gene expression quantification was used for each. Of the organisms used in our analysis, Venomix 607 

recovered numerically more candidate toxin transcripts for three of the four transcriptomes than the 608 

original analyses. In four of four organisms we identified new toxin candidates that were not reported in 609 

the original analysis. In summary, we show that the Venomix package is a useful tool to identify and 610 

characterize the diversity of toxin-like transcripts. Venomix is available at:  611 

https://bitbucket.org/JasonMacrander/Venomix/  612 

  613 
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   615 

1. Introduction  616 

Throughout the animal kingdom, venom has evolved independently multiple times to be used in 617 

prey capture, predatory defense, and intraspecific competition (Casewell et al., 2013). Venoms are toxic 618 

cocktails with remarkable diversity in protein action and specificity across animals. The evolutionary and 619 

ecological processes shaping this diversity are of major interest (Fry et al., 2009; Wong & Belov, 2012; 620 

Casewell, Huttley & Wüster, 2012; Sunagar et al., 2016; Rodríguez de la Vega & Giraud, 2016), with 621 

much of this focusing on characterizing protein and RNA composition expressed in the venom gland 622 

(Ménez, Stöcklin & Mebs, 2006). As sequencing costs decrease and assembly programs are becoming 623 

more efficient, the number of venom-focused studies is increasing at a dramatic rate. For some of the 624 

better studied venomous lineages (e.g. Colubroidea), comparative transcriptome and genome sequencing 625 

are being used to investigate processes involved with toxin gene recruitment and tissue specific gene 626 

expression (Vonk et al., 2013; Hargreaves et al., 2014a; Reyes-Velasco et al., 2015; Junqueira-deAzevedo 627 
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et al., 2015). For many poorly studied taxonomic lineages (e.g. Cnidaria), similar techniques are being 628 

used to evaluate venom diversity using bioinformatic pipelines for a particular species or taxonomic group 629 

(Tan, Khan & Brusic, 2003; Reumont et al., 2014; Macrander, Brugler & Daly, 2015; Kaas & Craik, 630 

2015; Prashanth & Lewis, 2015). Although these studies all take similar approaches to study diverse 631 

venoms across animal lineages, a streamlined systematic pipeline does not exist for rapid identification of 632 

candidate toxin genes from these datasets.  633 

Bioinformatic tools that use transcriptomic, proteomic, and genomic data sets have emerged for a 634 

variety venomous taxa. Among these, programs founded in machine learning appear to be the most 635 

abundant tools currently available; these use a combination of lineage specific annotation datasets 636 

(Kaplan, Morpurgo & Linial, 2007; Fan et al., 2011; Wong et al., 2013) and identifiers based on residue 637 

frequency and protein domains of interest (Gupta et al., 2013). Although taxonomic and tissue specific 638 

application of these programs vary, the pipelines follow a similar mechanical path. Typically starting with 639 

millions of raw reads assembled de novo using Trinity (Grabherr et al., 2011) or similar. Next, expression 640 

values for each transcript calculated using RSEM (Li & Dewey, 2011) or similar. Ultimately with the 641 

resulting transcriptome assembly searched by some component of BLAST (Camacho et al., 2009;  642 

Neumann, Kumar & Shalchian-Tabrizi, 2014) or other motif-searching algorithms (Kozlov & Grishin, 643 

2011). For many of the pipelines, these outputs are then screened using custom query datasets comprised 644 

of lineage specific toxin genes or the manually curated ToxProt dataset (Jungo et al., 2012), which 645 

includes all characterized/annotated animal venom proteins. Following candidate toxin gene 646 

identification, downstream analyses often involve predicting open-reading frames using Transdecoder  647 

(Haas et al., 2013), in combination with signal region prediction using SignalP (Petersen et al., 2011).  648 

These types of data are sometimes complemented with genome and proteome datasets (see Sunagar et al., 649 

2016). However, the majority of studies that are exploratory in nature use transcriptomic approaches to 650 

describe overall toxin diversity for a variety of poorly studied taxa (Reumont et al., 2014; Macrander,  651 
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Brugler & Daly, 2015; Barghi et al., 2015; Luna-Ramírez et al., 2015; Macrander, Broe & Daly, 2016; 652 

Lewis Ames et al., 2016). One major drawback to this approach, and using these self-constructed 653 

pipelines, is that downstream analyses begin to become quite cumbersome when trying to identify and 654 

characterize multiple toxin gene families for diverse toxin genes.  655 

Here were present Venomix, a bioinformatic pipeline written in the programming languages 656 

Python and R that follows generally accepted methods for identifying and characterizing toxin-like genes 657 

from transcriptomic datasets. This is a single, easy-to-use bioinformatic pipeline that will screen 658 

transcriptomic datasets of diverse taxa for toxin-like genes. Venomix incorporates widely used programs 659 

into its pipeline, like BLAST (Camacho et al., 2009) for initial toxin-like transcript identification, 660 

Transdecoder (Haas et al., 2013) to translate transcripts into their proper reading frame, SignalP (Petersen 661 

et al., 2011) to predict toxin gene signaling regions, MAFFT (Katoh & Standley, 2013) for protein 662 

sequence alignment, and the R package APE (Paradis, Claude & Strimmer, 2004) to construct gene trees. 663 

Candidate toxin genes are grouped based on sequence similarity, with each directory corresponding to a 664 

specific toxin group based on the ToxProt sequence names (e.g., some variation of conotoxin, Kunitz-type 665 

serine protease, phospholipase A2, zinc metalloproteinase). The Venomix pipeline provides the user with 666 

several output files that can be used to characterize the potential function of these candidate toxins, 667 

compare relevant expression level values across toxin-gene candidates, evaluate amino acid conservation 668 

among functionally important residues in sequence alignments, and review taxonomic and functional 669 

information in combination with tree reconstructions to further evaluate toxin gene candidates.   670 

In this study, we use Venomix to characterize the toxin-like diversity from venom gland 671 

transcriptomes for a cone snail (Conus sponsalis), a snake (Echis coloratus), an ant (Tetramorium 672 

bicarinatum), and a scorpion (Urodacus yaschenkoi), using the Venomix bioinformatic pipeline. 673 

Although Venomix alone is not designed to be used to as a definitive validation pipeline for toxin genes, 674 

it can quickly identify, sort, and characterize transcripts that may be used to further evaluate these venom 675 

candidates. By abating time required by these processes, researchers are freed to focus on other aspects of 676 
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toxin gene identification, such functionally characterizing toxin genes from their transcriptome or some of 677 

the lineage specific tools to better understand venom diversity present in the transcriptome.   678 

2. Materials and Methods  679 

2.1 Data Acquisition and Transcriptome Assembly  680 

Raw reads from four different analyses were downloaded from the short read archive (SRA) on 681 

GenBank (C. sponsalis: SRR260951 (Phuong, Mahardika & Alfaro, 2016); U. yaschenkoi: SRR1557168 682 

(Luna-Ramírez et al., 2015); E. colaratus: ERR216311 3 ERR216312 (Hargreaves et al., 2014b); T.  683 

bicarinatum: SRR1106144 - SRR1106145 (Bouzid et al., 2014)). The previously published transcriptome 684 

level analysis for U. yaschenkoi and T. bicarinatum were restricted to just characterizing the venom gland 685 

transcriptome in their respective species (Bouzid et al., 2014; Luna-Ramírez et al., 2015), while the C. 686 

sponsalis and E. coloratus venom gland transcriptomes were investigated in a comparative framework 687 

alongside closely related taxa (Hargreaves et al., 2014b; Phuong, Mahardika & Alfaro, 2016). All four 688 

transcriptomes were assembled in Trinity (Grabherr et al., 2011; Haas et al., 2013), using default 689 

parameters of its built-in Trimmomatic program to clean up the sequences (Bolger, Lohse & Usadel,  690 

2014). For each transcriptome, expression values (TPM and FKPM) were calculated in the program  691 

RSEM (Li & Dewey, 2011) as part of the Trinity package.  692 

2.2 Analysis Pipeline and Execution  693 

The bioinformatic pipeline for Venomix is outlined in Figure 1. The program requires three inputs 694 

provided by the user: an assembled transcriptome, gene expression information in the form of a tab 695 

delimited output with transcript names in the first column, and tab delimited BLAST output using the 696 

ToxProt as query sequences. Following transcriptome assembly and expression level calculations, the 697 

final user provided file is created using tBLASTn from NCBI BLAST+ version 2.4.0 (Camacho et al., 698 

2009), with the ToxProt dataset as the search query with the final BLAST alignment results shown in a 699 

tabular format (-outfmt 6). Query sequences from ToxProt are provided within the Venomix package, 700 

however, alternative curations of the ToxProt dataset may be used if the sequence identifiers are not 701 
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changed. In our analysis, we implemented two BLAST search procedures; the first used a more stringent 702 

identification algorithm (E-value 1e-20) and a less stringent identification algorithm (E-value 1e-6).  703 

For these tests, Venomix was run on the University of North Carolina at Charlotte  704 

COPPERHEAD Research Computing Cluster with 944 Computing Cores, 8 TBs of memory, and 100  705 

Gb/s Infiniband connectivity. The implementation of Venomix requires the scripting languages Python 706 

2.7 (http://www.python.org/download/releases/2.7/) and R 3.1.1 (https://cran.r-project.org/bin/), in 707 

addition to other Biopython packages (Cock et al., 2009) and data from ToxProt and Genbank that are 708 

built into the Venomix pipeline (https://bitbucket.org/JasonMacrander/Venomix). We included versions 709 

of MAFFT (Katoh & Standley, 2013), NCBI BLAST+ (Camacho et al., 2009), and Transdecoder (Haas et 710 

al., 2013) that can be run locally. Although there are two versions of MAFFT (64 bit and 32 bit), the 711 

default is the 64-bit, as this is more common for computers used in bioinformatic analyses. Modification 712 

to the version of MAFFT in the Venomix pipeline can be done in the support_files/Alignment.py file. 713 

Once the user specifies the input files (Transcriptome, Expression file, and BLAST output), the Venomix 714 

pipeline automatically produces several potentially useful and informative files within each of the toxin 715 

group directories (Figure 1). The outputs within each of the Toxin Group directories are intended to 716 

provide the user with curated information to focus future investigations and analyses. Depending on the 717 

next step of the analysis, some of the output files may be used for additional venom related downstream 718 

applications or simply a quick reference for the user (see Discussion). Venomix also creates two ancillary 719 

products that may be informative to some users: TPM.fasta (only transcripts with TPM values > 1.0) 720 

and a large GenBank file with information from ToxProt BLAST hits in a format that may lend itself to 721 

quick searches or downstream annotation (Figure 1). The user may choose to rerun Venomix with 722 

TPM.fasta instead of their assembled transcriptome if they would like to characterize only transcripts 723 

with a TPM >1.0, but it is not recommended when looking for rare or extremely diverse toxin genes.   724 

2.2 Venomix Evaluation  725 

For each assembled transcriptome, we identified candidate toxin genes using the Venomix pipeline 726 

using a stringent (E-value 1e-20) and less stringent (E-value 1e-6) search strategy in BLAST. Venomix 727 
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outputs were compared for both search parameters in terms of the number of toxin groups, number of 728 

transcripts, and number of <candidate= transcripts identified by the pipeline. A transcript was considered a 729 

<candidate= if the transcript had significantly better e-value associated with a toxin than with a non-toxin 730 

protein in Uniprot. Candidate transcripts were translated into their protein sequences using Transdecoder 731 

(Haas et al., 2013) and further evaluated in ToxClassifier (Gacesa, Barlow & Long, 2016). If a protein 732 

sequence received a score of > 1according to ToxClassifier, it was retained as a toxin candidate. In 733 

addition to screening the overall transcriptome analyses, some toxin groups and candidate toxins 734 

identified in our analysis were subjected to additional screening beyond what is included in the Venomix 735 

pipeline. Sequence alignments for candidate transcripts shown below were done using MAFFT (v.1.3.3)  736 

(Katoh & Standley, 2013) and visualized in Geneious (Kearse et al., 2012). Toxin gene tree 737 

reconstructions were done in Fasttree v2 (Price, Dehal & Arkin, 2010) using maximum likelihood tree 738 

reconstruction methods and bootstrap supports calculated over 1000 replicates. For the Bouzid et al.  739 

(2014) dataset, Venomix was used to compare alternative assembly approaches (Oases/Velvet vs.  740 

Trinity), in addition to assessing both transcriptomes for overall completeness in BUSCO (Simão et al., 741 

2015). Expression values for each transcriptome were calculated using RSEM (Li & Dewey, 2011) rather 742 

than raw read counts as originally proposed by Bouzid et al (Bouzid et al., 2014).  743 

3. Results  744 

3.1 Transcriptome Assemblies  745 

Transcriptomes for each species previously assembled in Trinity (Grabherr et al., 2011) resulted 746 

in a similar assembly parameter in Venomix (Table 1), with the only notable difference being in the 747 

number of transcripts for C. sponsalis, which may be due to repetitiveness and sequence complexity 748 

encountered during their initial assemblies (Phuong, Mahardika & Alfaro, 2016). The transcriptome for T. 749 

bicarinatum was originally done using Velvet/Oases (Li & Durbin, 2009), however, we compared this to 750 

our Trinity assembly because of its ease of use (Sanders et al., 2018) and frequency in the venom 751 

literature (Macrander, Broe & Daly, 2015), in addition to a lower redundancy and chimera rate (Yang &  752 

Smith, 2013).  753 
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3.2 Pipeline Output  754 

In the original published annotations, species-specific transcriptomes of C. sponsalis, E. colaratus 755 

and U. yaschenkoi were not subjected to any BLAST searches using ToxProt, but instead were screened 756 

using taxonomic specific toxin datasets from venom proteins of closely related species. The Venomix 757 

pipeline recovered the majority of these lineage specific toxins and additional transcripts that resemble 758 

toxin genes from other taxa. It is worth noting that if there were lineage specific toxins that shared high 759 

sequence similarity to other toxins, the toxin group name may be assigned an incorrect lineage 760 

classification, yet remain a toxin candidate. For example, analyses of the scorpion U. yaschenkoi resulted 761 

in four venom groups with <Snake venom= in the name, however, in these instances, lineage specific 762 

toxin names are often members of larger gene families that may not be lineage specific. The number of 763 

identified toxin groups varied considerably across species and stringency parameters (Table 2), with the 764 

less stringent parameters dramatically increasing the number of toxin groups. Each species had multiple 765 

toxin groups that were separated based on sequence similarity and that correspond to large gene families, 766 

including astacin-like metalloproteases, conotoxins, phospholipases A2s, Cysteine-rich secretory proteins 767 

(CRISPs), Kunitz-type serine protease inhibitors, snaclecs, metalloproteinases, thrombin-like enzymes, 768 

and allergens. For each species, there was at least one toxin group that was not retained following the 769 

reciprocal BLASTp search after the toxin-like transcripts were translated into their open reading frame 770 

(Table 2).   771 

3.3 Venomix outputs for C. sponsalis  772 

  Collectively, conotoxins represent some of the best- studied toxin genes across the genus Conus, 773 

comprising of multiple gene families with cysteine rich proteins (Buczek, Bulaj & Olivera, 2005; Kaas et 774 

al., 2012). Our less stringent analysis identified 76 toxin groups comprising of 246 toxin gene candidates 775 

based on our preliminary low stringency BLAST survey; 20 of these groups cluster with various 776 

conotoxins (Table 2). In total, there were 179 of the 246 toxin gene candidates from the 20 conotoxin 777 

groups. The largest number of candidate toxin genes were associated with the conotoxin O1 superfamily 778 

(n = 105), which was also the most abundant conotoxin identified in the original transcriptome (Phuong, 779 
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Mahardika & Alfaro, 2016) (Table 3). Among the remaining conotoxins, superfamily M was the second 780 

largest (n = 29), followed by conoodipine and conophysin. There were three instances where Venomix 781 

recovered more candidate conotoxins than the original study (O1, conodipine, and conophysin 782 

superfamilies), however, for the majority of the conotoxin superfamilies identified in the original study 783 

(Phuong, Mahardika & Alfaro, 2016) were missing from our analysis (Table 3). This discrepancy is likely 784 

due to the different approaches used in the initial transcriptome assemblies, as iterative assemblies used 785 

by Phuong et al. (2016) were unable to recover known transcripts using Trinity alone. Beyond the 786 

conotoxins, there were many candidate toxin genes found within the Kunitz-type conkuitzin-S1 group (n 787 

= 19), which included characterized toxin proteins from the venom Kunitz-type family of sea anemones, 788 

cone snails, and snakes.  789 

3.4 Venomix outputs for E. coloratus  790 

In total, in our low stringency search (E-value = 1E-6) Venomix identified 132 <Toxin Groups= 791 

for E. coloratus, most of which can be combined and placed within groups outlined by Hargreaves et al. 792 

(2014b). Among the transcripts identified, 45 had a TPM value greater than 100, with 39 of these in the 793 

venom gland, four in the scent gland, and two in the skin. The most abundant transcript was actually in 794 

the scent gland and identified as a cathelicidin-related peptide (Supplemental Table 1). The majority of 795 

the highly expressed transcripts in the venom gland (TPM > 100) corresponded with toxin groups 796 

previously identified (Hargreaves et al., 2014b), comprising mostly of C-type lectins, cysteine rich venom 797 

proteins, disintegrins, metalloproteinases, and several others.  798 

In addition to these venom candidates, we found one cystatin highly expressed in the venom 799 

gland, although it was also highly expressed in other tissues and not thought to be a toxic component of 800 

the E. coloratus venom (Hargreaves et al., 2014b). We also identified a single peroxiredoxin, which may 801 

play a role in the structural/functional diversification of toxins (Calvete et al., 2009). Additionally, 802 

Venomix recovered a single ficolin, which is involved in platelet aggregation and/or coagulation 803 

(OmPraba et al., 2010), a prothrombin-like activator, which may really be a complement factor B-like 804 

protein based on reciprocal BLAST search and have no known function, and three transcripts expressed at 805 
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high levels from the latroinsectotoxin gene family, which was previously characterized in spiders 806 

(Magazanik et al., 1992). Reciprocal BLAST searches against the entire UNIPROT dataset revealed that 807 

two of these were ankyrin rich peptides, and the other a dysferlin3like protein and may not be toxins.   808 

3.5 Venomix outputs for T. bicarinatum  809 

  Of the four datasets included in our analysis, T. bicarinatum was the only transcriptome which 810 

originally used the ToxProt dataset for toxin identification. The original transcriptome assembly was done 811 

in Velvet/Oases (Li & Durbin, 2009), resulting in very different transcriptome assembly outputs (Bouzid 812 

et al., 2014). Despite the alternative approaches, the original assembly resulted in a higher Busco (Simão 813 

et al., 2015) score for the Velvet/Oases assembly (95.9%) when compared to our Trinity assembly 814 

(92.2%). Interestingly, when considering TPM (rather than raw counts) the number of candidate genes in 815 

the venom gland following the approach by Bouzid et al. (2014) was similar to what was originally 816 

published (Table 2). Among these 527 candidates, only 44 predicted ORFs from Transdecoder, and only 817 

three of these were given a score of 1 or greater in Toxclassifier (Table 2). The BLAST screening, 818 

however, resulted in 62 of candidate toxins identified when the E-value threshold was set to 1E-3, but 287 819 

when the E-value threshold was set to 10. As E-values were not specified by Bouzid et al. (Bouzid et al., 820 

2014) both are reported here.   821 

For the Venomix analysis or our Trinity assemblies, there were 75 and 36 toxin groups for the less 822 

stringent (E-value = E-06) and more stringent (E-value = E-20) analyses, respectively. In the less stringent 823 

analysis, the largest number candidate toxin genes corresponded to the alpha-latroinsectotoxinLt1a group 824 

(N = 280), but overall expression within the ant carcass and venom gland across these transcripts were 825 

approximately the same in both the ant carcass and venom gland. Among those more highly expressed in 826 

the venom gland, there were six transcripts expressed at TPM values greater than 100 in the venom gland, 827 

four corresponding to venom allergen 3 and two to cysteine-rich venom protein Mr30. Upon closer 828 

examination, BLAST searches against UNIPROT indicated that all six of these toxins are likely Venom 829 

Allergen 3 toxins, indicating that these are likely the most abundant venom toxins in the T. bicarinatum 830 
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transcriptome, with these six toxins making up ~ 92% of the cumulative gene expression across the 831 

transcripts identified as potential toxins in Venomix.  832 

  When we compared the Venomix outputs for our Trinity assembly to the Velvet/Oases assembly 833 

that was previously published by Bouzid et al (2014), we recovered some unexpected results. Although 834 

we used RSEM instead of BWA, of the original 69 candidate toxin sequences recovered from their 835 

analysis only 33 had higher TPM expression in the venom gland than in the ant carcass. Additionally, of 836 

these 33, only 10 were 81000 fold9 higher based on expected count values (Supplemental Table 2). 837 

Although not all 69 candidate toxin sequences identified by Bouzid et al (Bouzid et al., 2014) were 838 

confidently called toxins, all but one was reported as having a higher number of raw read counts in the 839 

venom gland transcriptome as opposed to the ant carcass. The reason behind the larger than 50% 840 

discrepancy between our analyses and theirs remains unknown, as alternative approaches to quantifying 841 

gene expression should exhibit some proportional correlations across the two sample types. Among the 842 

toxin-like sequences identified in Venomix, Thrombin-like enzymes recovered 8688 transcripts from the 843 

Velvet/Oases assembly with a TPM difference of 100 or greater in the venom gland transcriptome when 844 

compared to the ant carcass. After further examination, 33 of the original 69 transcripts were also grouped 845 

in this Thrombin-like group (Supplemental Table 2). These transcripts had an average length of 704 846 

nucleotides, while the other 8688 transcripts identified in Venomix had an average length of 291 847 

nucleotides. It is likely that incomplete transcripts for other proteins were recovered here as protein 848 

sequences were 407 amino acids (1221 nucleotides) long, which corresponded to the identified transcripts 849 

in our analysis. Incomplete transcripts are likely the reason behind this as only 47 of the 8688 transcripts 850 

identified in Venomix were translated into their open reading frame.  851 

3.6 Venomix outputs for U. yaschenkoi  852 

The original analysis for this species used scorpion-specific toxins as query sequences and 853 

identified 210 transcripts representing 111 unique scorpion toxins, venom gland enzymes, and 854 

antimicrobial peptides (Luna-Ramírez et al., 2015). By expanding the query sequences with the ToxProt 855 

dataset, we recovered 117 toxin groups representing 689 unique transcripts for the less stringent search 856 
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(Table 2). Within the Toxprot dataset, there were only 10 of the 117 toxin groups with scorpion derived 857 

query sequences. Of these 10, the <Toxin-like protein 14= were the same number as the original 858 

investigation. One notable difference, however, is that Venomix recovered the complete protein sequence, 859 

whereas the original investigation by Luna-Ramírez et al. (Luna-Ramírez et al., 2015) did not (Figure 860 

2A). These differences may be due to changes in assembly algorithms between the two analyses, as 861 

Venomix has no input on the initial assembly parameters. When using exclusively scorpion venom 862 

proteins from ToxProt as query sequences, the number of candidate toxins identified by Venomix was 863 

approximately the same as that identified by Luna-Ramírez et al. (2015). Beyond the exclusive scorpion 864 

query sequences in ToxProt, Luna-Ramírez et al. (2015) also identified several phospholipases and 865 

potassium channel toxins, which were also recovered in our analysis, although a more thorough 866 

characterization is needed for these candidate toxins as they may also be non-venomous in nature.   867 

The most abundant toxin-like transcripts within the less stringent search criteria were found 868 

within the delta-latroinsectotoxin-Lt1a group (n = 190), the alpha latroinsectotoxin-Lt1a group (n = 182), 869 

and the Neprilysin-1 group (n = 91). Under the more stringent search criteria, these are still the largest 870 

toxin groups, however, the most abundant group was Neprilysin-1 group (n = 69), followed by alpha 871 

latroinsectotoxin-Lt1a group (n = 51) and delta-latroinsectotoxin-Lt1a group (n = 49). Query toxins which 872 

are used to form these toxin groups were previously identified in spiders (Graudins et al., 2012; Garb & 873 

Hayashi, 2013; Undheim et al., 2013; Bhere et al., 2014), and not included in the original transcriptome 874 

analysis (Luna-Ramírez et al., 2015). Preliminary screening based on comparative toxin groups indicated 875 

that the latroinsectotoxin groups identified in Venomix may not be toxins, as other non-toxin proteins in 876 

UNIPROT had better E-values than the genes used as queries in Uniprot. Among the neprilysin 877 

candidates, however, seven had better E-values from matching within the ToxProt dataset. Maximum 878 

likelihood gene tree reconstructions were used as post-processing steps to further screen these potential 879 

toxin sequences. Proteins from the less stringent analysis (E-value >1E-6) were used to construct gene 880 

trees for neprilysins using proteins of known venomous function along aside other proteins that are 881 

nonvenomous in origin and from the same gene family. The subsequent toxin gene tree for the search 882 
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revealed that candidate toxins from the Neprilysin-1 group formed a well-supported cluster with 883 

neprilysin toxins from other scorpions at high expression levels (Figure 2B).   884 

  885 

4. Discussion  886 

Venomix presents a less cumbersome, non-taxon specific alternative to any other pipeline 887 

currently being implemented in venom research. The pipeline allows the user to quickly identify and 888 

characterize toxin gene candidates within a transcriptomic dataset. The outputs provided by this pipeline 889 

give necessary information for further evaluation of their toxin gene candidates. We recommend using 890 

Venomix across multiple BLAST searches with varying E-value thresholds, as the variation among 891 

characterized toxin genes and those of the focal taxa may be more accommodating depending on the 892 

threshold used. Although Venomix was able to identify more candidate toxin genes in three out of the 893 

four datasets tested here, these results require further examination to determine which transcripts are 894 

viable toxin gene candidates. Venomix is not meant to be a definitive toxin gene identifier because this 895 

determination should not be made by sequence data alone, especially for poorly studied lineages.  896 

We chose four very different taxa to highlight some of the benefits and limitations of Venomix.  897 

Of the taxa used in this study, three of them are from taxonomic groups with ample representation in the 898 

ToxProt dataset (Figure 3), whereas the ant venom is poorly characterized among the diverse venomous 899 

insects found within Hexapoda on ToxProt. Additionally, these datasets represent diverse transcriptome 900 

assembly methods, query datasets, and gene expression quantification approaches. The original C. 901 

sponsalis assembly had a high number of toxin genes with relatively low variation across gene copies 902 

(Phuong, Mahardika & Alfaro, 2016), which likely resulted in many of these being clumped together in 903 

our Trinity assembly (Macrander, Broe & Daly, 2015). To get around this issue, Phuong et al (Phuong, 904 

Mahardika & Alfaro, 2016) did three assembly iterations involving toxin gene identification and 905 

subsequent mapping, in addition to downstream analysis incorporating the Assembly by Reduced  906 

Complexity pipeline (https://github.com/ibest/ARC) and manual alignments in Geneious (Biomatters, 907 

Auckland, New Zealand). In contrast to this, it is likely the differences we observed for T. bicarinatum 908 
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using Venomix was due to the alternative transcriptome assembly and gene expression approach (Yang & 909 

Smith, 2013; Vijay et al., 2013; Todd, Black & Gemmell, 2016). Additionally, limiting query sequences 910 

to only venoms of that lineage 3 which was done with the C. sponsalis, E. coloratus, and U. yaschenkoi, 911 

but not for T. bicarinatum 3 likely limited the number of toxin candidates being identified.   912 

 The Venomix pipeline was designed to sidestep much of the rigorous analysis used to identify  913 

and extract candidate toxin sequences. Specifically, our pipeline also will translate transcripts into their 914 

predicted protein, screen for signaling regions, assess their similarity through alignment and gene trees, 915 

extract expression information, and refer to taxonomic and other information available in the query 916 

sequence GenBank entries. This will allow venom biologists to quickly move onto additional downstream 917 

identification and characterization of toxin gene diversity using outputs provided by Venomix. 918 

Additionally, Venomix is the first pipeline to provide all these outputs in an easy to use search strategy 919 

that is flexible, but also repeatable, for all venomous taxa, or non-venomous animal to be used in a tissue 920 

specific comparative context (Reumont et al., 2014; Hargreaves et al., 2014b; Reyes-Velasco et al., 2015). 921 

The pipeline also provides users with easy to navigate directories and organized output files, allowing the 922 

user to sort manually or quickly pull information for all toxin groups using simple unix commands (i.e., 923 

grep) as the files within each toxin group directory have the same name.  924 

Venomix can facilitate the process of determining what constitutes a venom protein and aid in 925 

testing future hypotheses of venom diversity and tissue specific expression. The E. coloratus 926 

transcriptome used in our analysis was part of a broader study, to test the early evolution of venom in 927 

reptiles, the Toxicofera hypothesis (Hargreaves et al., 2014b). They used tissue specific expression in 928 

combination with toxin gene tree reconstruction to determine which of the approximately 16 venom toxin 929 

gene families that occur across Toxicofera attribute to the E. coloratus venom transcriptome. Of these 930 

which are venom candidates in E. coloratus a comparison of the Venomix output containing expression 931 

information would identify toxin candidates with ease (Table 4). Conversely, there are also transcripts 932 

highly expressed in the venom gland that are likely not venomous (Terrat & Ducancel, 2013). This was 933 

made evident in the U. yaschenkoi analysis, as several transcripts within the latroinsectotoxins cluster 934 
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were actually neprilysins in high abundance, but transcripts resembling neprilysins matched to other 935 

neprilysin toxins in a reciprocal blast hit.   936 

Regardless of the bioinformatic approach to identifying toxin genes, one major hurdle using these 937 

types of datasets as query sequences is the limited taxonomic diversity present in the ToxProt dataset.  938 

Although the transcriptome for U. yaschenkoi was larger and had a longer N50 than that of E. coloratus 939 

(Table 1), there were more toxin-like transcripts identified in the E. coloratus transcriptome. This likely 940 

reflects the abundance of snake proteins deposited into ToxProt and is in contrast to the paucity of 941 

proteins for other, poorly studied venomous lineages (Figure 3). Additionally, Venomix <group= names 942 

should be examined closely because some candidate toxin genes were labeled with lineage-specific 943 

proteins. For example, our analysis recovered a group called conophysin (a cone snail toxin) for T. 944 

bicarinatum, however, the transcripts associated with this appeared to be neurophysins. This was also 945 

observed when Venomix failed to group Venom Allergen 3 and Cysteine-rich venom protein Mr30 946 

groups together for T. bicarinatum even though it was apparent that the most highly expressed were all 947 

Venom Allergen 3 genes. When investigating venom diversity for poorly studied taxa, caution is 948 

warranted in using these gene names because the specific classifiers of the Venomix outputs provide a 949 

starting point for toxin gene identification, but does not act as a distinct classification system.  950 

In every transcriptome, the machine learning program ToxClassifier failed to recover all of the 951 

toxins identified in their respective publications (Table 2). Our downstream analysis of the protein 952 

sequences produced by Transdecoder included any candidate toxin with a score > 1. Even though some 953 

datasets were close (Table 2), ToxClassifier considers a <potential toxin= (> 4), meaning that the number 954 

of <toxins= for C. sponsalis drops to 243 and E. coloratus to 7. Despite this, one major contrast between 955 

ToxClassifier and Venomix is that our pipeline is not meant to be a toxin gene identifier. Venomix was 956 

designed to be useful for preliminary searches for users new to the command line, or provide a platform 957 

that is adaptable for those that are well versed in the command line. The incorporated alignment and tree 958 

building methods are rudimentary and meant to be used for only initial screenings. This allows users to 959 

focus their efforts on downstream analyses using complementary proteomics and machine learning to 960 
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differentiate between functionally toxic and non-toxic venom components (Gacesa, Barlow & Long, 961 

2016) or to complement their transcriptomic data with functional assays of proteins or crude venom 962 

extracts. 963 

5. Conclusion 964 

The advent of next-generation sequencing has allowed for a large influx of comparative 965 

transcriptomic datasets to identify toxin gene candidates in a variety of taxa. Our Venomix pipeline is a 966 

versatile in that it can accommodate transcriptomic datasets for a variety of species and can quickly 967 

identify a large number of toxin gene candidates from venom gland or other tissue specific 968 

transcriptomes. Overall, Venomix addresses three shortcomings encountered in similar approaches: (1) it 969 

is reproducible, (2) it does not claim to be a toxin gene identifiers as other programs or pipelines do that 970 

appear to be less reliable, and (3) it is able to accommodate a wide variety of taxa. Because of its ease of 971 

use and ability to quickly identify toxin gene candidates, researchers can move past the tedious and time 972 

consuming stages of toxin candidate identification and move onto toxin gene characterization. 973 
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Table 1(on next page)

Table 1. Species specific information for transcriptome assemblies.

*indicates alternative assembly approach, so comparisons were not possible; PE= Paired

End; bp = Base Pair
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1 Table 1. Species specific information for transcriptome assemblies. 

Sequencing  Raw Reads Transcripts N50 

PE-100bp 26,419,249 (-8.9%) 53,349 (+22.0%) 546 (-4.7%) 

PE-100bp 68,011,342 173,198 1,603 

 

C. sponsalis 

E. coloratus* 

T. bicarinatum* PE-100bp 424,743,516 200,106 881 

U. yaschenkoi PE-100bp 82,746,144 (-1.0%) 170,984 (-29. 9%) 1,248 (+8.7%) 

 *indicates alternative assembly approach, so comparisons were not possible; 

PE= Paired End; bp = Base Pair 

2  

3
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Table 2(on next page)

Table 2. Species-specific Venomix outputs following different search strategies

N = number of candidate toxins identified in original study. Groups = number of toxins types

identified based on sequence similarity, c = conotoxins only (Phuong, Mahardika & Alfaro,

2016), s = scorpion toxins only (Luna-Ramírez et al., 2015); Transcripts = total number of

unique transcripts evaluated,   = includes duplicates as cumulative after three iterations in

Trinity [see 33]. ³ = >100 TPM difference upregulated in the venom gland compared the ant

carcass. E = number of candidates based on different E-values 10/1E-3 thresholds. Evaluated

= number of unique transcripts retained after using BLAST screening, parenthesis indicates

number of transcripts identified using a Toxclassifier score of 1 or greater.
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1 Table 2. Species-specific Venomix outputs following different search strategies 

 Original Publication Stringent (e-value 1e-20) Less Stringent (e-value 1e-6) 

 N Groups Transcripts Evaluated Groups Transcripts Evaluated Groups Transcripts Evaluated 

401 35c 780  393(363) 22 61 44(13) 75 293 246(45) C. sponsalis 

E. coloratus 34 8 82 62(35) 72 339 147(116) 130 775 202(143) 

T. bicarinatum 69 32 527³ 287/62E(14) 36 289 95(14) 75 761 201(36) 

111 11s 210 71(6) 50 277 48(34) 117 689 179(38) U. yaschenkoi 

 N = number of candidate toxins identified in original study. Groups = number of toxins types identified based on sequence 

similarity, c = conotoxins only (Phuong, Mahardika & Alfaro, 2016), s = scorpion toxins only (Luna-Ramírez et al., 2015); 

Transcripts = total number of unique transcripts evaluated,   = includes duplicates as cumulative after three iterations in 

Trinity [see 33]. ³ = >100 TPM difference upregulated in the venom gland compared the ant carcass. E = number of 

candidates based on different E-values 10/1E-3 thresholds. Evaluated = number of unique transcripts retained after using 

BLAST screening, parenthesis indicates number of transcripts identified using a Toxclassifier score of 1 or greater. 

2

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26733v1 | CC BY 4.0 Open Access | rec: 19 Mar 2018, publ: 19 Mar 2018



Table 3(on next page)

Table 3. Comparison of Conotoxin Transcripts for C. sponsalis
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1

2  Table 3. Comparison of Conotoxin Transcripts for C. sponsalis 

 Super Family  Venomix Phuong et al. (2016) 

A 0 3  

 B1 2 2 

 B4r 0 9 

con-ikot-ikot 0 12  

 conkunitzin 0 7 

 conodipine 10 3 

 conophysin 7 3 

 D 0 4 

 Divergent_MKFPLLFISL 0 2 

 E 0 3 

 F 0 2 

 G-like 1 11 

I1 2 2 

I2 0 3 

I3 4 3 

I4 0 3 

J 0 3 

L 1 1 

M 29 29 

MEFRRr 0 3 

MKFLLr 0 2 

MKISL* 1 1 

N 0 8 

O1 108 95 

O2 12 28 

O3 1 6 

P 0 13 

Q 0 1 

SF-04 0 1 

SF-mi1 0 6 

SF-mi2 0 3 

T 3 56 

U 0 6 

V 0 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Y 0 3 

 Total 179 401 

3
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Table 4. Number of previously predicted toxin compared to those derived from Venomix
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Table 4. Number of previously predicted toxin compared to those derived from Venomix 

Toxin Family Venomix Hargreaves et al (2014b)

Snake Venom Metalloproteases 36 13

C-type lectin 49 8

Serine protesase 10 6

Phospholipase A2 6 3

Cysteine-rich secretory proteins 3 1

L-amino acid oxidase 2 1

Vascular Endothelial Growth Factors 1 1

Crotamine 0 1

1
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Venomix Pipeline Outline

Outline showing the stepwise progression of the Venomix pipeline, including the necessary

inputs (dashed lined boxes above), ancillary products, and files included for every Toxin

Group directory.
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Venomix
Ancillary products
1. Creates TPM.fasta based on expression values

2. Creates genbank.info based on BLAST hits

Toxin Group Products
1. Creates a unique directory for every Uniref50 toxin group recovered 

from the BLAST hits.

2. Transdecoder predicts ORFs for transcripts identified as significant hits 

in BLAST.

3. Screens predicted ORFs by doing a reciprocal BLAST hit against the 

ToxProt database.

4. Creates fasta files containing nucleotide and protein sequences for 

translated transcripts and the ToxProt dataset.

5. Uses MAFFT to align protein sequences from transcipts and ToxProt

for each Toxin Group.

6. Uses SignalP to identify signaling region for each predicted proteins 

sequences and writes the the predicted mature toxins to a separate fasta

file.

7. Pulls expression information for each from toxin-like transcript.

8. Writes species name for associated ToxProt sequences for a quick 

taxonomic reference

9. Creates text files with GenBank information based on matched 

ToxProt sequences for each toxin group.

10. Makes an unrooted neighbor joining tree in APE for quick reference.

Transcriptome (Fasta)

>DN85_c0_g1_i1 len=940 path=[&
ATATATTCTCTAACAAGTCTGTGAACGGTTCCTTGTT

CTAAGTACATACATGGGTTTACAGGCAGCTTTGGCAC

CACAGTTTTGATAATTAGCACTTGATTAATCAAGTGC

AGTCTTTTTGGCAAATTCTGTTAGAGCAGATATTTCG

...

Blast results (tab delimited)

P30431|VM3JA_BOTJA DN32787_c0_g1_i1 32.269 595 351...

P30431|VM3JA_BOTJA DN32787_c0_g1_i2 33.840 526 319...

P30431|VM3JA_BOTJA DN30872_c0_g1_i1 31.778 450 265...

P30431|VM3JA_BOTJA DN30872_c0_g1_i1 31.132 106 66...

P30431|VM3JA_BOTJA DN30872_c0_g1_i2 31.778 50 203...

P30431|VM3JA_BOTJA DN30872_c0_g1_i2 31.132 106 66...

P30431|VM3JA_BOTJA DN3675_c0_g1_i1 39.552 268 136...

P30431|VM3JA_BOTJA DN58847_c0_g1_i1 25.829 422 25...

Expression (tab delimited)

transcript_id gene_id length ...

DN0_c0_g1_i1 DN0_c0_g1_i1 228 ...

DN100000_c0_g1_i1 DN100000_c0_g1_i1 292 ...

DN100001_c0_g1_i1 DN100001_c0_g1_i1 406 ...

DN100002_c0_g1_i1 DN100002_c0_g1_i1 247 ...

DN100003_c0_g1_i1 DN100003_c0_g1_i1 232 ...

DN100004_c0_g1_i1 DN100004_c0_g1_i1 282 ...

Toxin Group (A unique directory for each toxin group)

Fasta Files
" Protein sequence alignments

" Unedited Transcripts

" Protein sequences (ToxProt, 

Transdecoder output, and Signal 

P output)

Gene Tree 

of Toxprot

and toxin-

like protein 

sequences

GenBank

information

from 

ToxProt

Sequences

SignalP

output for 

translated 

transcripts 

and Toxprot

Sequences

Expression

Values for 

transcripts

Taxa from 

Toxprot

Sequences

ToxProt Data (included)
1. uniprot.fasta

Protein sequences from ToxProt (6405 

sequences).

2. uniprot_ID.fasta
Same information as uniprot.fasta, just 

with Uniprot IDs.

3. uniref_50.txt
Clustering information for 1503 Toxin 

Groups based on sequence similarity.

4. seqeunce.gp

ToxProt dataset in GenBank format.

TPM.fasta

Transcriptome sequences with a TPM g 1.0 that can be 
used in subsequent analyses or rerun through Venomix to 

remove transcripts expressed at low levels

genbank.info

GenBank information relating ToxProt BLAST 

hits that lends itself to searching through 

GREP or other means.

Ancillary Products

Necessary Programs:
" Transdecoder (included)

" Python 2.7 and 

BioPython

" R 3.1+ (APE)

" NCBI BLAST+

" MAFFT
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Figure 2(on next page)

Candidate toxins from U. yaschenkoi.

(A) Candidate toxins from U. yaschenkoi highlighting alignment difference in the candidate

Toxin-like protein 14 sequencing in both analyses. Conserved residues across the alignment

are highlighted. (B) Maximum likelihood neprilysin gene tree highlighting the abundance and

diversity of candidate neprilysin toxins and non-venomous neprilysin genes. Branches

associated with transcripts from U. yaschenkoi are highlighted in orange throughout the tree.

Venomous taxa emphasized with bold font.
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MNTXNXRFYIFSLAIALXILXXXEGYXXRIXQDXGAVVCVDXSGVEHKPGXVWYDDEKCEKLSCDXXKGNLEIVGMGCX-XAVSAHCNXVRGSGHYPNCC--LHC*T*

TCVLS---------------HPAFCVDDSGVRYKPGDVWYDDEKCEKLRCSGAEASLKIIGAGCG-TIHVVGCETVRGSGHYPNCCPRPKC
MNTCNARFYIFSLAIALMILKDAEGYIYRIPQKQGAVSCVDDSGVKFNPGNVWYDDEKCERMSCDGAVGNLEIVAAGCG-VVDPSGCELVQGSGHYPDCCPFLKCST*
MNTCNARFYIFSLAIALMILKDAEGYIYRIPQKQGAVSCVDDSGVKFNPGNVWYDDEKCERMSCDGAVGNLEIV
MNTYNSRFYIFSLAIALVILEGTEGYMFRIAQDPGAVVCVDKSGVEHKPGEVWYDDERCQKLSCDRIKWNLEIVGMGCA-PAVSAHCNPVRCSGHYPNCC--LHC*
MNTYNSRFYIFSLAIALVILEGTEGYMFRIAQDPGAVVCVDKSGVEHKPGEVWYDDERCQKLSCDRIKWNLEIVGMGCA-PAVSAHCNPVRCSGHYPNCC--LHC

DIVKVVCVDKSGVEHKPGEVWYDDERCQKLSCDRIKWNLEIVGMGCA-PAVSAHCNPVRCSGHYPNCC--LHC
MFSIDKTFIGTLIVVCVICPLTNTYSSLKRQKYGSGTPCIDHLGGNRKLYDIWYDDGNCEEHSCIKYRGIPYVQVYGCIITVARPECQLVKGSGSYPDCCEEEIC*
MRSASKAFFCVLVTVCLISTLARAYSYISRQKYGLAAPCVDHLGASRNLYDTWYDDGKCEEHTCIKHRGIPHVQVYGCGVTEASPECKLVKGSGSYPDCCEEEVC*
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Sequence Logo

Identity

A

B O16796 Caenorhabditis elegans
Q18673 Caenorhabditis elegans

A0A1W7RA35  Hadrurus spadix

W4VS99 Trittame loki
A0A1E1WVT1 Tityus obscurus

A0A1S5QMZ0 Tityus serrulatus
A0A1W7RA39 Hadrurus spadix

A0A1V1WBN0 Superstitionia donensis
A0A1V1WBI8 Superstitionia donensis

A0A1V1WC31 Superstitionia donensis
A0A1V1WBI4 Superstitionia donensis

A0A1V1WBI5 Superstitionia donensis
A0A1S5QN08 Tityus serrulatus

A0A1W7RA36 Hadrurus spadix

U. yaschenkoi DN39015_c4_g4_i1 [18.75]
U. yaschenkoi DN36534_c0_g1_i1 [250.94]
U. yaschenkoi DN36534_c0_g1_i2 [0.1]

A0A1W7RA31 Hadrurus spadix
A0A1W7RA40 Hadrurus spadix
A0A1S5QMY5 Tityus serrulatus

A0A076L7Z9 Tityus serrulatus
A0A1E1WWL5 Tityus obscurus

A0A1W7RA26 Hadrurus spadix

Q22523 Caenorhabditis elegans
A0A1W7RA46 Hadrurus spadix

U. yascheakoi DN33559_c0_g1_i1 [2.55]
A0A1S5QMY9 Tityus serrulatus

A0A1S5QN01 Tityus serrulatus
A0A1S5QN34 Tityus serrulatus

A0A1S5QNT0 Tityus serrulatus
A0A1W7RA43 Hadrurus spadix

U. yascheakoi DN36260_c0_g1_i3 [27.34]
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U. yascheakoi DN33923_c0_g1_i1 [12.11]
U. yaschenkoi D29260_c0_g1_i1 [14.74] 

O44857 Caenorhabditis elegans

U. yaschenkoi DN38728_c1_g1_i2 [0.68]
U. yaschenkoi DN38728_c1_g1_i3 [5.5]

P0C1T0 Rattus norvegicus
Q495T6 Homo sapiens

P08473 Homo Sapien
J3SEW5 Crotalus adamanteus

V8NQ76 Ophiophagus hannah
P78562 Homo sapiens

O95672 Homo sapiens
A0A0K8RWU4 Crotalus horridus

P42359 Streptococcus
Q07744 Lactococcus

O52071 Lactobacillaceae

A0A1W6EW48 Ampulex compressa
A0A1W6EWG1 Ampulex compressa

U. yaschenkoi DN33923_c0_g1_i1 [5.95]
Q9EQF2 Mus musculus

P23276 Homo sapiens
O60344 Homo sapiens
J3SC53 Crotalus adamanteus

A0A098M0E7 Hypsiglena sp.
P42892 Homo sapiens
P42891 Bos taurus

Q8IS64 Locusta migratoria
A0A1S5QMY7 Tityus serrulatus
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6 isoforms

[10.8 -0.97]

U. yaschenkoi

DN35363_c0_g1
8 isoforms

[41.8 -0.1]

U. yaschenkoi DN36477_c0_g1
3 isoforms

[1646.64 - 45.93]

U. yaschenkoi DN39015_c4_g2
3 isoforms

[81.06 - 1.09]
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9 isoforms

[364.28 - 0]
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Figure 3(on next page)

Taxonomic distribution of venom and toxin proteins in the ToxProt dataset.

Taxonomic distribution of venom and toxin proteins in the ToxProt dataset. Deuterostomes

are highlighted in green, protostomes in brown, and cnidarians in grey.
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