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Bat populations are known to be affected by anthropogenic activities because bats are an

extremely diverse group occupying almost all available niches in terrestrial environment.

Hence, bats are considered bioindicators to monitor changes in the environment, but their

value as such also depends on the ease to monitor and detect demographic trends in their

populations. The long term interest of researchers in the acoustic of bats results from the

fact that it is a non-invasive, time-efficient methods to monitor spatiotemporal patterns of

bat diversity and activity.The analysis of sounds emitted by organisms has been

considered useful to gain insight into species-specific biotic and abiotic interactions, which

can further be applied to conservation. Besides manual identifications of bat calls, a

number of automated species identification programs using regional call classfiers have

been introduced into the market as an efficient tool in monitoring of bat populations. Most

of these programs have not been validated using field data. This study evaluates the

reliability of two automated softwares, SonoChiro and Kaleidoscope Pro, in comparison to

manual identifications of field data collected from the Neotropical region. There was low

agreement between the two automated methods at the species level, fair agreement at

the genus level and moderate agreement at the family level. There was also a significant

difference between the proportions of correctly identified calls of the two-automated

software at the species level identifications. Major challenges for using automated

identification software include the need for comprehensive call libraries of the regions

under scope; major opportunities, on the other hand, include the widespread possibility to

monitor spatiotemporal patterns of bat activity. Overall, there are serious gaps that

preclude a widespread application of automated programs ecological and conservation

studies of bats but it has the potential to serve as an effective tool.
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Abstract 20 

Bat populations are known to be affected by anthropogenic activities because bats are an 21 

extremely diverse group occupying almost all available niches in terrestrial environment. Hence, 22 

bats are considered bioindicators to monitor changes in the environment, but their value as such 23 

also depends on the ease to monitor and detect demographic trends in their populations. The 24 

long-term interest of researchers in the acoustic of bats results from the fact that it is a non-25 

invasive, time-efficient method to monitor spatiotemporal patterns of bat diversity and 26 

activity.The analysis of sounds emitted by organisms has been considered useful to gain insight 27 

into species-specific biotic and abiotic interactions, which can further be applied to conservation. 28 

Besides manual identifications of bat calls, some automated species identification programs 29 

using regional call classifiers have been introduced into the market as an effective tool in the 30 

monitoring of bat populations. Most of these programs have not been validated using field data. 31 

This study evaluates the reliability of two automated software, SonoChiro, and Kaleidoscope 32 

Pro, in comparison to manual identifications of field data collected from the Neotropical region. 33 

There was low agreement between the two automated methods at the species level, fair 34 

agreement at the genus level and moderate agreement at the family level. There was also a 35 

significant difference between the proportions of correctly identified calls of the two-automated 36 

software at the species level identifications. Major challenges for using automated identification 37 

software include the need for comprehensive call libraries of the regions under scope; significant 38 

opportunities, on the other hand, include the widespread possibility to monitor spatiotemporal 39 

patterns of bat activity. Overall, there are serious gaps that preclude a widespread application of 40 

automated programs ecological and conservation studies of bats, but it has the potential to serve 41 

as a useful tool.  42 
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Introduction 44 

Most bat species produce ultrasound for orientation, navigation and hunting prey (Adams 45 

and Pedersen 2013). Bats emit a signal (pulse) of a certain frequency and then perceive the 46 

reflected signal (echo) which returns after hitting a target or surrounding objects in the 47 

environment (Schnitzler and Kalko 2001; Fenton 2003; Adams and Pedersen 2013). These 48 

ultrasounds produced by bats are known as echolocation calls and have co-evolved over time 49 

depending on various ecological and physical factors (Murray et al. 2001; Obrist et al. 2007). 50 

When hunting for prey, bat echolocation calls are characterized by three phases: search phase, 51 

approximation phase and terminal buzz phase (Murray et al. 2001). Echolocating bats use tonal 52 

signals with structured changes in frequency over time ranging between 8 and 200kHz (Fenton 53 

2003; Adams and Pedersen 2013). Bats also produce social calls when mating, foraging, and 54 

during distress, aggression and mother-offspring interactions (Wilkinson and Boughman 1998; 55 

Fenton 2003; Budenz et al. 2009; Furmankiewicz et al. 2011). Echolocation and social calls are 56 

species- specific and, in some cases, even colony-specific (Fenton 2003). 57 

Biologists characterize bat calls using parameters of the pulse such as frequency 58 

modulation (FM), harmonic level, duration (D or t), inter-pulse interval (IPI), frequency of 59 

maximum energy (FME), maximum frequency (Fmax), minimum frequency (Fmin) and bandwidth 60 

(BW= Fmax-Fmin) (Figure 1). This is used it to identify the calls to species level.  61 

 Bats are nocturnal mammals, difficult to catch and sensitive to anthropogenic intrusion 62 

which make them difficult to account for only using traditional capturing methods with mist nets 63 

or harp traps (MacSwiney et al. 2009; Russo and Voigt 2016). Acoustic monitoring has emerged 64 

as a non-invasive, time-efficient method which can be used to study spatiotemporal patterns of 65 
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bat diversity and activity (Russo and Voigt 2016; Silva et al. 2017; Stathopoulos et al. 2017) and 66 

is not limited by inaccessible environments or adverse weather conditions (Skalak et al. 2012; 67 

Marques et al. 2016). Acoustic monitoring has helped researchers gain knowledge about bat 68 

behavior, habitat preferences, foraging strategies, distribution, abundance, population trends and 69 

about species that are difficult to capture (Miller and Degn 1981; Fenton et al. 1987; Vaughan et 70 

al. 1997; Verboom et al. 1999; Marques et al. 2016; Stathopoulos et al. 2017).  71 

 Manual species identification of acoustic calls by experts using identification keys 72 

specific to an area is considered a reliable method, but the problem arises with large data sets 73 

where identification becomes time-consuming. The concept of automated species identification 74 

has been argued to have consistency, predictability, high levels of accuracy and measures of 75 

uncertainty (Jennings et al. 2008) which can be standardized over studies. The automated 76 

methods used in the past to quantify call parameters to classify animal calls include discriminant 77 

function analysis (Parsons and Jones 2000; Pfalzer and Kusch 2003; Broders et al. 2004; 78 

Preatoni et al. 2005; MacSwiney et al. 2009; Adams et al. 2010; Clement et al. 2014), cluster 79 

analysis (Preatoni et al. 2005), classification trees (Sattler et al. 2007), artificial neural networks 80 

(Preatoni et al. 2005; Jennings et al. 2008; Adams et al. 2010; Parsons and Jones 2000) and deep 81 

machine learning tools (Walters et al. 2012; Hackett et al. 2016). Jennings et al. (2008) compared 82 

identifications done manually with those of artificial neural networks (ANNs) and found that 83 

ANNs performed better than 75% of humans in the study. Walters et al. (2012) developed a 84 

continental-scale acoustic identification tool for European bats, which was confirmed to provide 85 

robust classification. 86 

 The Neotropics show a very high diversity of bats with numerous gaps in knowledge 87 

about their ecology, behavior, acoustic classification and conservation status (Zortéa and Alho 88 
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2008; Adams and Pedersen 2013). Bats of this region, as well as other areas, are under threat due 89 

to changes caused by anthropogenic activities such as alteration of land-use, invasive species, air, 90 

water and noise pollution (Aguiar et al. 2016; Mendes and De Marco 2017). Therefore, the need 91 

for efficient and accurate species identification methods for more extensive areas has rapidly 92 

escalated and resulted in the availability of much automated software in the market. SonoChiro 93 

and Kaleidoscope are two such programs that have been used in previous studies for automated 94 

species identification with region-specific call classifiers and careful speculation (Slough et al. 95 

2014; Michaelsen 2016; Toffoli 2016). Even though the producers of the software insist that the 96 

accuracy rates are high, researchers are aware of the inaccuracies and use manual identifications 97 

for certain species most of them have never actually been tested on field data (Russo and Voigt 98 

2016). Lemen et al. (2015) used unidentified field data to compare the performance of 4 99 

automated programs and found an average pair-wise agreement of 40%. More recently a study in 100 

Sweden showed poor performance of classifiers used by Kaleidoscope Pro and SonoChiro 101 

because the identifications were not reliable (Rydell et al. 2017).  102 

The performance of such software has already been evaluated for temperate species, but the 103 

performance of the available Neotropical software and their respective classifiers has not been 104 

validated previously. The challenge of using automated identification for Neotropical species is 105 

that there is a lot of evidence showing inter and intraspecific variability of bat calls due to high 106 

species richness (Jones et al. 1992; Jones 1997; Barclay et al. 1999; Murray et al. 2001; Pfalzer 107 

and Kusch 2003; Broders et al. 2004; Russ et al. 2004; Jung et al. 2007; López-Baucells et al. 108 

2017). 109 

 The aim of this study is to evaluate the reliability of two automated programs (SonoChiro 110 

and Kaleidoscope Pro) that are widely used for automated identifications, for Neotropical bat 111 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26712v3 | CC BY 4.0 Open Access | rec: 20 Mar 2018, publ: 20 Mar 2018



   

 

   

 

species. The agreement between the two automated and manual identifications for the same 112 

dataset was predicted to be low at species and genus level identification but not at the family 113 

level. Using the manual identifications as absolute true species, the second hypothesis was that 114 

there would be a difference in the proportion of correctly identified between the two-automated 115 

software. SonoChiro was predicted to perform better than Kaleidoscope because SonoChiro can 116 

give group (family and genera) and species level identifications separately while Kaleidoscope 117 

uses only species classifiers (Rydell et al. 2017). 118 

Materials and methods 119 

Field Collection 120 

Our study species included eight out of nine families of Chiroptera found in Brazil, 121 

namely Emballonuridae, Furipteridae, Molossidae, Mormoopidae, Natalidae, Noctilionidae, 122 

Thyropteridae and Vespertilionidae. In Brazil, these families cover a total of 93 species, of at 123 

least 178 occurring in Brazil (Nogueira et al. 2014). The recordings were collected at two sites at 124 

10 different sampling points at the National Park of Brasília in the city of Brasilia, Federal 125 

District, which is situated in the core area of the Brazilian Cerrado. The Cerrado is composed of 126 

woodlands, savannas, grasslands and dry forests and forms the second largest biome of Brazil 127 

(Klink & Machado 2005) and 40% of its mammals are bats (Aguiar et al. 2016). The recording 128 

was made over two periods, August and September 2016, which correspond to the middle and 129 

the end of the dry season respectively.  The SM2 Bat detector (Wildlife Acoustics, U.S.A; 130 

www.wildlifeacoustics.com) was used to record bat calls at the sites, without using any filter for 131 

the ambient noise. The data used for this paper was secondary data collected under the license 132 

number #27719-13 issued by SISBIO/ICMBIO, which is the institution that grants permits to 133 

work in protected areas. 134 
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Each recording had lasted four minutes. To carry out call analyses, the recordings had to 135 

be cut into 15-second intervals using Kaleidoscope, as the automatic identification software can 136 

only process files with a maximum duration of 15-seconds. A total of 49,783 WAVE files were 137 

extracted and again processed using the same software to filter out empty files. Finally, the 138 

remaining number of recordings added up to 3,465 15-second duration files. 139 

Automated identification of recordings 140 

For the automated identification, the 3,465 15-second duration files were analyzed using 141 

SonoChiro v.3.0 (Biotope, France www.biotope.fr) and Kaleidoscope Pro 3.14B (Wildlife 142 

Acoustics, U.S.A; www.wildlifeacoustics.com). The settings used were: for SonoChiro - type of 143 

recorder (SM2 Bat), region (Amazonian basin), time expansion (x1), maximum call duration 144 

(0.5), sensitivity (7), for Kaleidoscope Pro – filter noise files (keep noise files), signal of interest 145 

(8-120kHz, 2-500ms, minimum two calls), classifiers (Neotropical bats), (0 Neutral sensitivity). 146 

The sensitivity scale of SonoChiro ranges from 10 to 0 and that of Kaleidoscope is +1 to -1. 147 

They are calculated differently but essentially range between giving results for low quality pulses 148 

(more sensitive) and only high-quality pulses (more accurate). The output generated by the two 149 

automated programs is expected to show group and species level identifications. The 150 

identifications that may not be attempted result in “parasi” (SonoChiro), “no ID” or “Noise” 151 

(Kaleidoscope Pro). 152 

Manual identification of recordings 153 

The identifications were made manually on 44% of the recordings used for automated 154 

identifications (1506 WAVE files) using Avisoft SASLab Pro (Specht 2004). The spectrogram 155 

for each recording was created using the following parameters: FFT length (1024), frame size 156 

(100%), Overlap (87.5%) and Hamming window. The parameters determine the frequency and 157 
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time resolution of the pulse or sequence in the spectrogram. Frequencies below 10kHz were 158 

filtered out using noise filter for better identification. The recordings attempted to be manually 159 

identified required at least three clear pulses and any overlapping pulses were discarded to avoid 160 

any bias. The parameters that were observed and tabulated to identify the calls up to species level 161 

were: i) average call duration of at least three pulses; ii) number of harmonics and maximum 162 

energy harmonic; iii) number of call types; iv) pulse structure (FM, CF or qCF); v) frequency of 163 

maximum intensity (FME); vi) maximum frequency (Fmax); vii) minimum frequency (Fmin); 164 

viii) bandwidth (BW); and ix) inter-pulse interval (IPI) (Figure 1). Some additional parameters 165 

were measured when required, such as initial frequency (Fintial), end frequency (Fend) and 166 

individual parameters of different call types. The identification was done using an Illustrated 167 

identification key to the calls of Brazilian bats (Arias-Aguilar et al. submitted). 168 

Statistical analysis 169 

The data compiled for statistical analysis included family, genus and species level 170 

identifications for the automated programs (SonoChiro and Kaleidoscope Pro) and manual 171 

identifications. The agreement between the three sets of identifications for each of the levels 172 

(family, genus and species) was tested using the inter-rater reliability Fleiss’s kappa statistic 173 

(Dunn 1992). Further, the manual identifications were assumed as true identifications and the 174 

number of correctly identified recordings were recorded for each of the automated software. 175 

Overall difference in proportion of correctly identified files at each level (species, genus and 176 

family) between the two automated programs was computed using Chi-squared tests. True 177 

positives, false positives, true negatives and false negatives for each species were calculated for 178 

SonoChiro and Kaleidoscope Pro. True positives of each software were all the identifications of 179 

a species matched with manual identifications. False positives were those where the presence of 180 
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species was identified incorrectly by the software while false negatives were those where the 181 

species was present but not perceived by the software. True negatives were calculated by 182 

accounting for all the recordings where other species were identified. 183 

Results 184 

A total of 643 and 274 WAVE files were not identified by the automated programs and 185 

manually by an expert, respectively. Therefore, these were removed, and the remaining 602 186 

WAVE files were used for the further analyses. 187 

Agreement between two automated and manual identifications 188 

Following Dunn (1992) agreement level described as Poor if κ<0.00, Slight if 0.00 ≤ κ ≤ 189 

0.20, Fair if 0.21 ≤ κ ≤ 0.40, Moderate if 0.41 ≤ κ ≤ 0.60, Substantial if 0.61 ≤ κ ≤ 0.80 and 190 

Almost perfect κ> 0.80, the Fleiss’s kappa statistic value showed that there was low agreement 191 

between the three sets of identifications at the species level (κ=0.145), fair agreement at the 192 

genus level (κ=0.326) and moderate agreement at the family level (κ=0.456). The total number 193 

of recordings that were agreed on at the species, genus and family level was 23, 89 and 285 194 

WAVE files respectively (Figure 2). 195 

Comparison of the proportion of correctly identified files 196 

There was a significant difference between the proportion of correctly identified recordings by 197 

two automated programs at the species level (X2 = 280.54, df =1, p <0.05) and family level (X2 = 198 

20.917, df =1, p <0.05) (Figure 3). The percentage of correctly identified species by SonoChiro 199 

and Kaleidoscope Pro was 5%. At the family level, 77% of the recordings were correctly 200 

identified by SonoChiro and 65% was correctly identified by Kaleidoscope Pro. There was no 201 

significant difference between the proportions of correctly identified files by the two automated 202 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26712v3 | CC BY 4.0 Open Access | rec: 20 Mar 2018, publ: 20 Mar 2018



   

 

   

 

programs at the genus level (X2 = 1.608, df =1, p >0.05). The percentage of correctly identified 203 

genera was 48% for SonoChiro and 52% for Kaleidoscope Pro. 204 

Correctly and misidentified species by automated software 205 

In Table 1 is shown the number of true positives, false positives, true negative and false 206 

negatives calculated for each species manually identified from the 602 WAVE files: Eptesicus 207 

brasiliensis, Eptesicus furinalis, Lasiurus blossevillii, Lasiurus ega, Molossus currentius, 208 

Molossus Molossus, Molossops temminckii, Myotis lavali, Myotis nigricans, Myotis riparius, 209 

Peropteryx leucoptera/palidoptera, Peropteryx macrotis, Promops nasutus and Pteronotus 210 

parnellii. The genera Cynomops, Eumops, Nyctinomops and Tadarida could not be manually 211 

identified to the species level.  The species of genera Myotis and Peropteryx had no true 212 

positives for Kaleidoscope Pro but SonoChiro identified two out of five Myotis riparius and the 213 

only Peropteryx macrotis call correctly. Eptesicus brasiliensis, Molossus currentium, Promops 214 

nasutus and Pteronotus parnellii were misidentified by both programs. Lasiurus ega calls were 215 

identified correctly by Kaleidoscope Pro but not by SonoChiro in the two instances it was 216 

present. Most Eptesicus furinalis calls were identified correctly by SonoChiro (9 out of 10) and 217 

Kaleidoscope (7 out of 10) but they had 148 and 18 false positives respectively. Almost 88% of 218 

Lasiurus blossevillii calls were identified correctly by Kaleidoscope but none by SonoChiro. 219 

Species of Molossidae, Molossus and Molossops temminckii, were identified correctly 80.5% and 220 

84% of the time respectively. On the other hand, SonoChiro misidentified 80% Molossus and all 221 

Molossops temminckii calls. 222 

Discussion 223 

The low agreement between the three different methods, two automated and one manual, 224 

for species identification raises a concern about the reliability of automated species identification 225 
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for bat monitoring and studies in the neotropics. Bats, unlike birds and other echolocating 226 

animals, alter certain parameters of their calls depending on their interaction with the 227 

environment or other species (Jones 1997; Kalko and Handley 2001; Chaverri et al. 2010). This 228 

would make it difficult to distinguish between individuals in species-rich areas, such as the 229 

Neotropical region, where certain bats species might occupy similar niches and hence would 230 

have overlaps in call structures. 231 

Classification methods 232 

 Lemen et al. (2015) suggested that the low levels of agreement between software could 233 

be because of recordings collected with different recording devices but in our study the call 234 

database was the same and recorded using the same bat detector. This discrepancy could be 235 

attributed to the difference in sensitivity scale, classification method and the classifiers used by 236 

each of the methods. The sensitivity setting in the software allows researchers to manipulate the 237 

detectability of a call in the recording i.e. high sensitivity setting would detect even low-quality 238 

pulses and low sensitivity setting would detect only high quality, clear pulses.  Even though both 239 

the software were set at similar sensitivity, SonoChiro can detect and classify more calls 240 

compared to Kaleidoscope Pro. In the presence of more than one species in one recording, 241 

SonoChiro has the ability to identify up to three species while Kaleidoscope identifies only what 242 

it perceives as the dominant call in the recording. Also, considering classification methods, 243 

SonoChiro detects any calls present on the recording and then classifies them using Random 244 

Forest classification method, which in this case uses active learning/ negative labelling (Bas et al. 245 

2013). This method is supposed to have a powerful confidence index and can spot obvious errors 246 

in calls from diverse sources (Beard 2007; Cutler et al. 2007). On the other hand, the 247 

classification method of Kaleidoscope Pro uses error rates calculated from the confusion 248 
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matrices of specific regional classifiers to determine the most likely distribution of the different 249 

species. The error rates for confusion matrices from different geographic regions and habitat 250 

types might be different leading to misidentifications (Agranat 2012). To reduce the 251 

misidentification rates, SonoChiro computes confidence levels for group and species level 252 

identification while Kaleidoscope can give possible alternative identifications for the data; both 253 

retrieve unknown classifications. Previously used automated identification methods were not 254 

able to provide confidence levels, alternative and unknown classifications; the lack of these 255 

variables might result in higher levels of misidentifications and has been criticized (Adams et al. 256 

2010).  257 

Reliable manual identifications are dependent on the level of expertise of the observer 258 

and the identification key used for species identification. There is a level of aptitude that can be 259 

acquired and applied, which allows the detection of certain patterns or variations when 260 

recordings are manually identified but this also adds an unquantifiable uncertainty in the 261 

identifications (Jennings et al. 2008; Rydell et al. 2017). An advantage of using automated 262 

identifications is that the results can be combined, and a quantifiable uncertainty can be 263 

accounted for by using statistical methods (Russo and Voigt 2016) 264 

Intraspecific variation and interspecific overlap 265 

Although, SonoChiro showed discrepancies when compared to manual identification, 266 

there was a gradual improvement from species to genus to family level identifications. 267 

Kaleidoscope could correctly identify more species than SonoChiro, but it only gives species 268 

level identification with no confidence indices. Therefore, SonoChiro might be at a better 269 

advantage as it is able to identify certain individuals at least up to the genus level. This 270 

information can be useful to survey and monitor specific focal genera (Rydell et al. 2017). At the 271 
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species level, there were some species correctly identified by one or the other software but only 272 

Eptesicus furinalis and some Molossus calls were correctly identified by both. Eptesicus furinalis 273 

was often misidentified as Lasiurus blossevilliii probably because the two species have similar 274 

call structures and frequency ranges. The main difference noted while manually identifying these 275 

species is the transition of the downward frequency modulation (FMd) to quasi constant 276 

frequency (qCF), that is highly marked by a sharp edge in E. furinalis as compared to a curved 277 

one for L. blossevillii (Arias-Aguilar et al. submitted). The species of the genus Myotis were 278 

mostly misidentified by both software programs. Previous studies using automated 279 

identifications also refer problems when distinguishing Myotis species; in fact, this genus, while 280 

highly specious and widespread worldwide, tends to show very similar call designs level and 281 

suggest that Myotis species tend to have very similar call designs and frequency ranges, probably 282 

due to phylogenetic constraints (Parsons and Jones 2000; Rydell et al. 2017) and, eventually due 283 

to ecological convergence. Myotis lavali was only recently described as a separate species from 284 

Myotis nigricans complex and a possible sympatry of these species has been suggested 285 

(Moratelli and Wilson 2013). SonoChiro was able to identify the genera Peropteryx and 286 

Pteronotus correctly almost 100% of the time but at species level it failed to do so. Species of 287 

these genera, as well, share call design and frequency ranges; therefore, we suggest that the call 288 

parameters considered for species level identification might be too similar for the software to 289 

classify. On the contrary, Kaleidoscope misidentified all the calls of the genera Peropteryx as 290 

Centronycteris and Pteronotus as Noctilio, possibly because of interspecific overlaps amongst 291 

these species. The genera Peropteryx and Centronycteris are from the family Emballonuridae 292 

and have similar call structure with qCF component (Jung et al. 2007). Similarly, genera 293 

Pteronotus and Noctilio have similar call structure with CF -FM component but are from 294 
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different families (Suga 1990).  295 

Misidentifications can be explained by the intraspecific variation in bat calls. Indeed, 296 

species show acoustic geographic variation (Barclay 1999; Murray et al. 2001; López-Baucells et 297 

al. 2017). Arias-Aguilar et al. (submitted) presents a revision of geographical call variation in 298 

Brazilian bats; according to these authors at least ten species of bats present regional variation 299 

above 10kHz difference in the FME parameter. At the intraspecific level, bats may also show 300 

variation according to habitat type (Surlykke and Moss 2000; Schnitzler and Kalko 2001; 301 

Broders et al. 2004; Guillén-Servent and Ibáñez 2007; Jung et al. 2007), foraging mode and diet 302 

(Fenton 1986; Jones 1997; Kalko and Handley 2001; Chaverri et al. 2017). All measurements for 303 

cryptic species Pteronotus cf. rubiginosus varied between individuals recorded in Central 304 

Amazon and French Guiana (López-Baucells et al. 2017). It has been shown that bats emit 305 

higher frequency, short duration calls when they are in areas of higher clutter or foraging at 306 

habitat edges as compared to their conspecific foraging in open spaces (Barclay et al. 1999; 307 

Surlykke and Moss 2000; Schnitzler and Kalko 2001; Broders et al. 2004; Jung et al. 2007; 308 

López-Baucells et al. 2017). Sex and age also have been shown to cause variation among 309 

individuals (Jones et al. 1992; Murray et al. 2001). Peak frequency of bat calls of species from 310 

the Vespertilionidae and Emballonuridae have shown to decrease with increase in body size 311 

(Barclay et al. 1999; Jung et al. 2007). Individuals also tend to alter their calls to differentiate 312 

their reflecting calls from their conspecifics (Obrist 1995; Ulanovsky et al. 2004; Adams and 313 

Pedersen 2013). Chaverri et al. (2017) showed also that certain species of the Molossidae modify 314 

their calls by decreasing frequency and increasing call duration in order to cancel out 315 

atmospheric attenuation, which is caused due to complex interaction between temperature and 316 

humidity. 317 
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Misidentifications may also be explained by interspecific overlap in call parameters. 318 

Interspecific overlap tends to occur amongst species that occupy similar ecological niches 319 

(Schnitzler and Kalko 2001) because they adopt similar call designs to navigate and forage in 320 

similar environments.  321 

Classifiers used by automated software 322 

Considering the intra and interspecific variation as one of the major source of 323 

misidentification, it would be appropriate to suggest that the classifiers used by the automated 324 

programs might not be reliable. They might not include calls from different region or habitat 325 

types which account for the variability discussed above. Also, they could be missing certain 326 

species that are not found in the region from where the reference calls were collected. For 327 

example, Molossops temminckii, Pteronotus parnellii, Eptesicus brasiliensis and Molossus 328 

currentium, which were largely misclassified by SonoChiro, are not included in the Neotropical 329 

classifier used by the software. Therefore, we argue that the classifiers used for automated 330 

identification should be specific to a region. Another factor which could jeopardise the accuracy 331 

of a classifier, i.e. the probability of correctly classifying a randomly selected recording (Fielding 332 

and Bell 1997), are the calls used as reference. Reference calls used for classifiers are of 333 

extremely good quality and should be that way, i.e. calls recorded from captured individuals and 334 

close to important roost sites (Lemen et al. 2015). However, field recordings often are of much 335 

lower quality. Classifiers should thus include calls recorded in a myriad of situations as to 336 

include the maximum variability acoustically expressed by a species. Currently, it is clear that 337 

the SonoChiro and Kaleidoscope Pro classifiers still do not account for the intraspecific variation 338 

required to make accurate species level identifications. The classification methods also need to 339 

include additional parameters for distinguishing acoustically similar species. Because classifiers 340 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26712v3 | CC BY 4.0 Open Access | rec: 20 Mar 2018, publ: 20 Mar 2018



   

 

   

 

are regionally or quantitatively limited (Adams et al. 2010), they should not be used as the only 341 

source of identification in monitoring and surveying of bats until this barrier is overcome.  342 

The choice of relevant call parameters for species identification 343 

Call structure and harmonics are usually enough for information about the family and 344 

often also genus. However, species identification implies measurements of additional 345 

parameters, ideally measured in several calls or pulses (Adams et al. 2010; Adams and Pedersen 346 

2013). For example, the differentiation between Peropteryx species is based on FME. However, 347 

because FME intervals slightly overlap between species, FME measurements may often not be 348 

enough for species discrimination. Walters et al. (2012) established a continental scale tool for 349 

acoustic identification of European bats using 12 different parameters to characterize frequency 350 

and time course of the call and this tool was tested to give robust classifications. Still, it was 351 

unable to give reliable identifications in several occasions. This means that more parameters may 352 

be necessary for discriminating species with very similar calls. 353 

Application Framework 354 

Considering the limitations of automated acoustic software, we provide an application 355 

framework, which can potentially be used to gain more information about species of bats in 356 

ecology and conservation field. Figure 4 represents a schematic diagram of a possible 357 

application framework for automated bioacoustics software. The challenges that exist in applying 358 

acoustics to monitor biodiversity are the need for robust identifications to species level and the 359 

ability of acoustic surveys to provide reliable information about population trends (Walters et al. 360 

2012; Adams and Pedersen 2013; Frick 2013). Ecological and conservational studies are 361 

complementary to an extent because information produced by the first would benefit the latter 362 

field and vice-versa.  363 
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Currently, automated identification programs are capable of providing preliminary 364 

information to focus research efforts in a certain area. Further improvements can be achieved by 365 

accounting for the intraspecific variability and interspecific overlap of bat calls (Russo and Voigt 366 

2016). Using acoustic filters to extract more specific call parameters could also prove beneficial 367 

to differentiate at the species level (Clement et al. 2014). Other important aspects to consider 368 

before automated species identification is applied to the data collected, in particular the 369 

standardization of sampling methods, the implementation of statistically powerful sampling 370 

designs, and systematic and long-term sampling (Sampaio et al. 2003; Skalak et al. 2012; Adams 371 

and Pedersen 2013). 372 

Bat detectors can be distributed over large areas over several days and can record several 373 

hours of data from different areas simultaneously. Automated species identification can be 374 

optimized and used as a very powerful tool to efficiently study and monitor spatiotemporal 375 

patterns of bats globally if all the above conditions are met. Good quality ultrasound recordings 376 

can be uploaded into these programs and some useful information can be extracted. While both 377 

software retrieves species identification, SonoChiro includes confidence indices with group and 378 

species identification, number of bat passes, records of feeding buzzes and the presence of social 379 

calls. An important aspect to consider is that the identification software should either be tested 380 

for the region or confirmed manually before being applied to the objectives described in the 381 

subsequent sections.  382 

Species richness and composition 383 

Studying the assemblage of bats in an area requires information about individual species 384 

to calculate species richness and to determine species composition (Briones-Salas et al. 2013; 385 

Mendes et al. 2014). Both the automated programs give species level identification. To calculate 386 
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species richness, the number of species identified by the software might be sufficient; even if 387 

some species are misidentified, if there is a certain level of certainty that what is interpreted as 388 

two different species are indeed so, richness estimates may be reasonably accurate. For species 389 

composition, on the other hand, the identifications must be accurate. In this case, it would be 390 

better to use the highest level of sensitivity in the program which will retrieve results only for 391 

only high-quality pulses. Further confirmation, using supervised identifications of a certain 392 

percentage of randomly chosen calls, might be required before using this information.  393 

Density, abundance and activity 394 

One of the main challenges to overcome is monitoring bat populations with acoustics is 395 

gathering information on densities or abundances, as two bat-passes from the same species may 396 

result from two recorded individuals or from one individual flying twice over the bat detector. 397 

Until we develop means to individually identify each bat, only occurrence models and activity 398 

indexes may be attained.  399 

Bat activity recorded from large number of sites may be used for determining habitat 400 

preferences by bats; similarly, bat activity recorded through time at the same site may reveal if 401 

there is a decrease or increase in the use of that site by bats, and indicate, a decrease or increase 402 

in the quality of the environment. 403 

The number of feeding buzzes has been used as a proxy of foraging activity (Miller 2001; 404 

MacSwiney et al. 2009), may be especially relevant for determining foraging habitats and thus 405 

help in spatially prioritization for bat conservation. The presence of social calls has been 406 

considered an indication of a nearby roost (Chaverri et al. 2010; Furmankiewicz et al. 2011) or 407 

swarming sites (Furmankiewicz et al. 2013). Data retrieved from the automated software may 408 
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provide information on specific behavioural patterns like mating, mother-infant interactions and 409 

territoriality. 410 

Conservations implications 411 

According to Bat Conservation International’s five-year strategic plan towards bat 412 

conservation, Significant Bat Areas (SBA) are areas harbouring threatened species, high 413 

diversity and mega populations of bats (Bat Conservation International 2013). As referred in the 414 

previous sections, automated software may be useful to generate preliminary information 415 

regarding such areas by accounting for species richness, by detecting habitats with higher levels 416 

of bat activity, or even by detecting rare or unknown sonotypes, thus suggesting the presence of 417 

cryptic bat diversity. Information on social calls and feeding buzzes retrieved by SonoChiro can 418 

also aid in detecting roosting, foraging and mating sites, which would be of utmost importance 419 

for bat management and conservation. 420 

Final Considerations 421 

There are still several gaps in the concept of applying automated identification programs 422 

for bat monitoring projects, but they have some important immediate applications and a great 423 

potential for improvement. Acoustic surveys are gradually becoming one of the main methods 424 

for monitoring and surveying bats globally considering that, in some situations, they account for 425 

more species than traditional monitoring methods, and are non-invasive, which is an important 426 

consideration when working with more sensitive species. Also, and perhaps more importantly, 427 

passive acoustic monitoring presents a high value-for-money ratio, retrieving an immense 428 

volume of information with low cost and human effort. The problem is exactly the immense 429 

volume of data retrieved by this method; only by using automated software we will be able to 430 

deal with terabytes of acoustic information. Technological advances might soon be able to 431 
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optimize automated identification programs and classifiers to make it an extremely powerful tool 432 

in ecology and conservation. This also means that researchers across the world should contribute 433 

with high-quality calls for the development of local and regional classifiers. The development of 434 

freeware, for example under the R environment, should be promoted. Indeed, more people use 435 

freeware, users may be willing and able to adapt or fix the program (for example by adding calls 436 

to existing libraries or by improving classification methods), and other developers may learn 437 

from the program, or base new work on it. The warbleR package (Araya-Salas and Smith-438 

Vidaurre 2016) which presently only aims at streamlining the analysis of animal acoustic signals, 439 

may be a good starting point. In the meantime, it is important to carry out validation tests for the 440 

classifiers in the available software before using them to test hypotheses or take management 441 

decisions. 442 

Conclusion 443 

The automated software programs have the potential to be used in ecological and 444 

conservation studies if the variability of bat calls and more parameters are included in the 445 

classifiers (Russo and Voigt 2016). The erroneous classification of species can result in 446 

inaccurate distribution mapping of species or selection of incorrect areas to protect. The current 447 

programs available in the market have not been tested on field data; relying on species 448 

identifications made by these programs for management decision-making may thus have 449 

negative conservation consequences. As of now, automated programs can and should be used to 450 

make a preliminary round of identification, while files with low confidence values should 451 

undergo manual confirmation, in what is called supervised automated identification. A 452 

combination of different automated programs used with caution might be able to give a 453 
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reasonable level of accuracy but does not solve the need for efficient automated software to 454 

sample large data sets quickly. 455 

The moderate performance of the two automated programs, namely SonoChiro and 456 

Kaleidoscope Pro, in identifying bats from the Brasília National Park should not disregard the 457 

ability of these programs to be used as essential tool in field of acoustics, ecology and 458 

conservation. Currently, Kaleidoscope Pro can be used to filter sound files containing bat calls 459 

and SonoChiro can be used to make identifications for most families and several genera. 460 

Incorporation of classifiers containing highly variable bat calls from species of different regions 461 

and better filters for extracting more specific call parameters can result in a powerful automated 462 

tool to make rapid species identifications.  463 
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Figure 1

Typical spectrogram view of the echolocation call of Pteronotus parnelli

The y-axis is frequency in kilohertz and x-axis is time in seconds. The color scale represents the amplitude

of sound in decibels (dB). The call parameters indicated are: maximum frequency (Fmax), minimum

frequency (Fmin), frequency of maximum energy (FME), time duration (t), inter-pulse interval (IPI) and

harmonics (HF, H2, H3, H4).
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Figure 2

Stacked bar chart showing the level of agreement for species (κ=0.145, 23 agree, 579

disagree), genus (κ=0.326, 89 agree, 513 disagree) and family level (κ=0.456, 285

agree, 317 disagree). The y-axis represents the number of files analyzed.
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Figure 3

Stacked bar chart indicating the proportion of correctly identified files for each software.

For Kaleidoscope, species = 48%, genus = 52%, family = 65% and for SonoChiro, species=

5%, genus=48% and family=77%. The y-axis shows the number of files and the x-axis is the

two-automated software
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Figure 4

An application framework to use automated acoustic identification software in

ecological and conservation studies of bats.
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Table 1(on next page)

True positives, false positives, true negatives and false negatives compared to the total

number of manual identifications for each of the species.
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  True positives False positives True negatives False negatives 

Species Total Kaleidoscope SonoChiro Kaleidoscope SonoChiro Kaleidoscope SonoChiro Kaleidoscope SonoChiro 

Cynomops sp. 31 0 0 0 0 571 571 31 31 
Eptesicus brasiliensis 4 0 0 0 0 598 598 4 4 

Eptesicus furinalis 10 7 9 18 148 574 444 3 1 

Lasiurus blossevillii 136 119 0 13 0 453 466 17 136 
Lasiurus ega 2 2 0 0 0 600 600 0 2 

Molossus currentium 4 0 0 0 0 598 598 4 4 
Molossus molossus 103 83 21 8 3 491 496 20 82 

Molossops temminckii 96 81 0 3 0 503 506 15 96 

Myotis lavali 54 0 0 0 0 548 548 54 54 

Myotis nigricans 11 0 0 0 28 591 563 11 11 

Myotis riparius 5 0 2 0 32 597 565 5 3 
Myotis sp. 1 0 0 0 0 601 601 1 1 

Peropteryx  
leucoptera/palidoptera 15 0 0 0 0 587 587 15 15 

Peropteryx macrotis 1 0 1 5 36 596 565 1 0 

Promops nasutus 7 0 0 0 0 595 595 7 7 
Pteronotus parnellii 25 0 0 0 0 577 577 25 25 

Eumops/Nyctinomops/ 

Tadarida sp. 97 0 0 0 0 505 505 97 97 
 

 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26712v3 | CC BY 4.0 Open Access | rec: 20 Mar 2018, publ: 20 Mar 2018


