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Bat populations are known to be affected by anthropogenic activities because bats are an

extremely diverse group occupying almost all available niches in terrestrial environment.

Hence, bats are considered bioindicators to monitor changes in the environment, but their

value as such also depends on the ease to monitor and detect demographic trends in their

populations. The long term interest of researchers in the acoustic of bats results from the

fact that it is a non-invasive, time-efficient methods to monitor spatiotemporal patterns of

bat diversity and activity.The analysis of sounds emitted by organisms has been

considered useful to gain insight into species-specific biotic and abiotic interactions, which

can further be applied to conservation. Besides manual identifications of bat calls, a

number of automated species identification programs using regional call classfiers have

been introduced into the market as an efficient tool in monitoring of bat populations. Most

of these programs have not been validated using field data. This study evaluates the

reliability of two automated softwares, SonoChiro and Kaleidoscope Pro, in comparison to

manual identifications of field data collected from the Neotropical region. There was low

agreement between the two automated methods at the species level, fair agreement at

the genus level and moderate agreement at the family level. There was also a significant

difference between the proportions of correctly identified calls of the two-automated

software at the species level identifications. Major challenges for using automated

identification software include the need for comprehensive call libraries of the regions

under scope; major opportunities, on the other hand, include the widespread possibility to

monitor spatiotemporal patterns of bat activity. Overall, there are serious gaps that

preclude a widespread application of automated programs ecological and conservation

studies of bats but it has the potential to serve as an effective tool.
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20 Abstract

21 Bat populations are known to be affected by anthropogenic activities because bats are an 

22 extremely diverse group occupying almost all available niches in terrestrial environment. Hence, 

23 bats are considered bioindicators to monitor changes in the environment, but their value as such 

24 also depends on the ease to monitor and detect demographic trends in their populations. The long 

25 term interest of researchers in the acoustic of bats results from the fact that it is a non-invasive, 

26 time-efficient methods to monitor spatiotemporal patterns of bat diversity and activity.The 

27 analysis of sounds emitted by organisms has been considered useful to gain insight into species-

28 specific biotic and abiotic interactions, which can further be applied to conservation. Besides 

29 manual identifications of bat calls, a number of automated species identification programs using 

30 regional call classfiers have been introduced into the market as an efficient tool in monitoring of  

31 bat populations. Most of these programs have not been validated using field data. This study 

32 evaluates the reliability of two automated softwares, SonoChiro and Kaleidoscope Pro, in 

33 comparison to manual identifications of field data collected from the Neotropical region. There 

34 was low agreement between the two automated methods at the species level, fair agreement at 

35 the genus level and moderate agreement at the family level. There was also a significant 

36 difference between the proportions of correctly identified calls of the two-automated software at 

37 the species level identifications. Major challenges for using automated identification software 

38 include the need for comprehensive call libraries of the regions under scope; major opportunities, 

39 on the other hand, include the widespread possibility to monitor spatiotemporal patterns of bat 

40 activity. Overall, there are serious gaps that preclude a widespread application of automated 

41 programs ecological and conservation studies of bats, but it has the potential to serve as an 

42 effective tool. 

43 Keywords: Bioacoustics; Chiroptera; Kaleidoscope; SonoChiro.
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44 Introduction

45 Most bat species produce ultrasound for orientation, navigation and hunting prey (Adams 

46 and Pedersen 2013). Bats emit a signal (pulse) of a certain frequency and then perceive the 

47 reflected signal (echo) which returns after hitting a target or surrounding objects in the 

48 environment (Schnitzler and Kalko 2001; Fenton 2003; Adams and Pedersen 2013). These 

49 ultrasounds produced by bats are known as echolocation calls and have co-evolved over time 

50 depending on various ecological and physical factors (Murray et al. 2001; Obrist et al. 2007). 

51 When hunting for prey, bat echolocation calls are characterized by three phases: search phase, 

52 approximation phase and terminal buzz phase (Murray et al. 2001). Echolocating bats use tonal 

53 signals with structured changes in frequency over time ranging between 8 and 200kHz (Fenton 

54 2003; Adams and Pedersen 2013). Bats also produce social calls when mating, foraging, and 

55 during distress, aggression and mother-offspring interactions (Wilkinson and Boughman 1998; 

56 Fenton 2003; Budenz et al. 2009; Furmankiewicz et al. 2011). Echolocation and social calls are 

57 species- specific and, in some cases, even colony-specific (Fenton 2003).

58 Biologists characterize bat calls using parameters of the pulse such as frequency 

59 modulation (FM), harmonic level, duration (D or t), inter-pulse interval (IPI), frequency of 

60 maximum energy (FME), maximum frequency (Fmax), minimum frequency (Fmin) and bandwidth 

61 (BW= Fmax-Fmin) (Figure 1). This is used it to identify the calls to species level. 

62 Bats are nocturnal mammals, difficult to catch and sensitive to anthropogenic intrusion 

63 which make them difficult to account for only using traditional capturing methods with mist nets 

64 or harp traps (MacSwiney et al. 2009; Russo and Voigt 2016). Acoustic monitoring has emerged 

65 as a non-invasive, time-efficient method which can be used to study spatiotemporal patterns of 

66 bat diversity and activity (Russo and Voigt 2016; Silva et al. 2017; Stathopoulos et al. 2017) and 
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67 is not limited by inaccessible environments or bad weather conditions (Skalak et al. 2012; 

68 Marques et al. 2016). Acoustic monitoring has helped researchers gain knowledge about bat 

69 behavior, habitat preferences, foraging strategies, distribution, abundance, population trends and 

70 about species that are difficult to capture (Miller and Degn 1981; Fenton et al. 1987; Vaughan et 

71 al. 1997; Verboom et al. 1999; Marques et al. 2016; Stathopoulos et al. 2017). 

72 Manual species identification of acoustic calls by experts using identification keys 

73 specific to an area is considered a reliable method but the problem arises with large data sets 

74 where identification becomes time consuming. The concept of automated species identification 

75 has been argued to have consistency, predictability, high levels of accuracy and measures of 

76 uncertainty (Jennings et al. 2008) which can be standardized over studies. The automated 

77 methods used in the past to quantify call parameters to classify animal calls include discriminant 

78 function analysis (Parsons and Jones 2000; Pfalzer and Kusch 2003; Broders et al. 2004; 

79 Preatoni et al. 2005; MacSwiney et al. 2009; Adams et al. 2010; Clement et al. 2014), cluster 

80 analysis (Preatoni et al. 2005), classification trees (Sattler et al. 2007), artificial neural networks 

81 (Preatoni et al. 2005; Jennings et al. 2008; Adams et al. 2010; Parsons and Jones 2000) and deep 

82 machine learning tools (Walters et al. 2012; Hackett et al. 2016). Jennings et al. (2008) compared 

83 identifications done manually with those of artificial neural networks (ANNs) and found that 

84 ANNs performed better than 75% of humans in the study. Walters et al. (2012) developed a 

85 continental-scale acoustic identification tool for European bats, which was confirmed to provide 

86 robust classification.

87 The Neotropics show a very high diversity of bats with numerous gaps in knowledge 

88 about their ecology, behavior, acoustic classification and conservation status (Zortéa and Alho 

89 2008; Adams and Pedersen 2013). Bats of this region, as well as other regions, are under threat 
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90 due to changes caused by anthropogenic activities such as alteration of land-use, invasive 

91 species, air, water and noise pollution (Mendes and De Marco 2017). Therefore, the need for 

92 efficient and accurate species identification methods for larger areas has rapidly escalated and 

93 resulted in the availability of many automated software in the market. SonoChiro and 

94 Kaleidoscope are two such programs that have been used in previous studies for automated 

95 species identification with region specific call classifiers and careful speculation (Slough et al. 

96 2014; Michaelsen 2016; Toffoli 2016). Even though, the producers of the software insist that the 

97 accuracy rates are high, researchers are aware of the inaccuracies and use manual identifications 

98 for certain species most of them have never actually been tested on field data (Russo and Voigt 

99 2016). Lemen et al. (2015) used unidentified field data to compare the performance of 4 

100 automated programs and found an average pair-wised agreement of 40%. More recently a study 

101 in Sweden showed poor performance of classifiers used by Kaleidoscope Pro and SonoChiro 

102 because the identifications were not reliable (Rydell et al. 2017). 

103 The performance of such software has already been evaluated for temperate species, but 

104 the performance of the available Neotropical software and their respective classifiers has not 

105 been validated previously. The challenge of using automated identification for Neotropical 

106 species is that there is a lot of evidence showing inter and intraspecific variability of bat calls due 

107 to high species richness (Jones et al. 1992; Jones 1997; Barclay et al. 1999; Murray et al. 2001; 

108 Pfalzer and Kusch 2003; Broders et al. 2004; Russ et al. 2004; Jung et al. 2007; López-Baucells 

109 et al. 2017).

110 The aim of this study is to evaluate the reliability of two automated programs (SonoChiro 

111 and Kaleidoscope Pro) that are widely used for automated identifications, for Neotropical bat 

112 species. The agreement between the two automated and manual identifications for the same 
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113 dataset was predicted to be low at species and genus level identification but not at the family 

114 level. Using the manual identifications as absolute true species, the second hypothesis was that 

115 there would be a difference in the proportion of correctly identified between the two-automated 

116 software. SonoChiro was predicted to perform better than Kaleidoscope because SonoChiro can 

117 give group (family and genera) and species level identifications separately while Kaleidoscope 

118 uses only species classifiers (Rydell et al. 2017).

119 Materials and methods

120 Field Collection

121 Our study species included eight out of nine families of Chiroptera found in Brazil, 

122 namely Emballonuridae, Furipteridae, Molossidae, Mormoopidae, Natalidae, Noctilionidae, 

123 Thyropteridae and Vespertilionidae. In Brazil, these families cover a total of 93 species (Arias-

124 Aguilar et al. submitted), of at least 178 occurring in Brazil (Nogueira et al. 2014). The 

125 recordings were collected at two sites at 10 different sampling points at the National Park of 

126 Brasília in Federal district of Brasília, which is situated in the center of the Brazilian Cerrado. 

127 The Cerrado is composed of woodlands, savannas, grasslands and dry forests and forms the 

128 second largest biome of Brazil (Klink & Machado 2005). The recording was made over two 

129 periods, August and September 2016, which correspond to the middle and the end of the dry 

130 season respectively.  The SM2 Bat detector (Wildlife Acoustics, U.S.A; 

131 www.wildlifeacoustics.com) was used to record bat calls at the sites, without using any filter for 

132 the ambient noise. The data used for this paper was secondary data collected under the license 

133 number #27719-13 issued by the ICMBIO, which is the institution that grants permits to work in 

134 protected areas.
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135 Each recording had lasted four minutes. To carry out call analyses, the recordings had to 

136 be cut into 15-second intervals using Kaleidoscope, as the automatic identification software can 

137 only process files with a maximum duration of 15-seconds. A total of 49,783 WAVE files were 

138 extracted and again processed using the same software to filter out empty files. Finally, the 

139 remaining number of recordings added up to 3,465 15-second duration files.

140 Automated identification of recordings

141 For the automated identification, the 3,465 15-second duration files were analyzed using 

142 SonoChiro v.3.0 (Biotope, France www.biotope.fr) and Kaleidoscope Pro 3.14B (Wildlife 

143 Acoustics, U.S.A; www.wildlifeacoustics.com). The settings used were: for SonoChiro - type of 

144 recorder (SM2 Bat), region (Amazonian basin), time expansion (x1), maximum call duration 

145 (0.5), sensitivity (7), for Kaleidoscope Pro – filter noise files (keep noise files), signal of interest 

146 (8-120kHz, 2-500ms, minimum two calls), classifiers (Neotropical bats), (0 Neutral sensitivity). 

147 The sensitivity scale of SonoChiro ranges from 10 to 0 and that of Kaleidoscope is +1 to -1. 

148 They are calculated differently but essentially range between giving results for low quality pulses 

149 (more sensitive) and only high-quality pulses (more accurate). The output generated by the two 

150 automated programs is expected to show group and species level identifications. The 

151 identifications that may not be attempted result in “parasi” (SonoChiro), “no ID” or “Noise” 

152 (Kaleidoscope Pro).

153 Manual identification of recordings

154 The identifications were made manually on 44% of the recordings used for automated 

155 identifications (1506 WAVE files) using Avisoft SASLab Pro (Specht 2004). The spectrogram 

156 for each recording was created using the following parameters: FFT length (1024), frame size 

157 (100%), Overlap (87.5%) and Hamming window. The parameters determine the frequency and 
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158 time resolution of the pulse or sequence in the spectrogram. Frequencies below 10kHz were 

159 filtered out using noise filter for better identification. The recordings attempted to be manually 

160 identified required at least three clear pulses and any overlapping pulses were discarded to avoid 

161 any bias. The parameters that were observed and tabulated to identify the calls up to species level 

162 were: i) average call duration of at least three pulses; ii) number of harmonics and maximum 

163 energy harmonic; iii) number of call types; iv) pulse structure (FM, CF or qCF); v) frequency of 

164 maximum intensity (FME); vi) maximum frequency (Fmax); vii) minimum frequency (Fmin); 

165 viii) bandwidth (BW); and ix) inter-pulse interval (IPI) (Figure 1). Some additional parameters 

166 were measured when required, such as initial frequency (Fintial), end frequency (Fend) and 

167 individual parameters of different call types. The identification was done using an Illustrated 

168 identification key to the calls of Brazilian bats (Arias-Aguilar et al. submitted).

169 Statistical analysis

170 The data compiled for statistical analysis included family, genus and species level 

171 identifications for the automated programs (SonoChiro and Kaleidoscope Pro) and manual 

172 identifications. The agreement between the three sets of identifications for each of the levels 

173 (family, genus and species) was tested using the inter-rater reliability Fleiss’s kappa statistic 

174 (Dunn 1992). Further, the manual identifications were assumed as true identifications and the 

175 number of correctly identified recordings were recorded for each of the automated software. 

176 Overall difference in proportion of correctly identified files at each level (species, genus and 

177 family) between the two automated programs was computed using Chi-squared tests. True 

178 positives, false positives, true negatives and false negatives for each species were calculated for 

179 SonoChiro and Kaleidoscope Pro. True positives of each software were all the identifications of 

180 a species matched with manual identifications. False positives were those where the presence of 
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181 species was identified incorrectly by the software while false negatives were those where the 

182 species was present but not perceived by the software. True negatives were calculated by 

183 accounting for all the recordings where other species were identified.

184 Results

185 A total of 643 and 274 WAVE files were not identified by the automated programs and 

186 manually by an expert, respectively. Therefore, these were removed, and the remaining 602 

187 WAVE files were used for the further analyses.

188 Agreement between two automated and manual identifications

189 Following Dunn (1992) agreement level described as Poor if κ<0.00, Slight if 0.00 ≤ κ ≤ 

190 0.20, Fair if 0.21 ≤ κ ≤ 0.40, Moderate if 0.41 ≤ κ ≤ 0.60, Substantial if 0.61 ≤ κ ≤ 0.80 and 

191 Almost perfect κ> 0.80, the Fleiss’s kappa statistic value showed that there was low agreement 

192 between the three sets of identifications at the species level (κ=0.145), fair agreement at the 

193 genus level (κ=0.326) and moderate agreement at the family level (κ=0.456). The total number 

194 of recordings that were agreed on at the species, genus and family level was 23, 89 and 285 

195 WAVE files respectively (Figure 2).

196 Comparison of the proportion of correctly identified files

197 There was a significant difference between the proportion of correctly identified recordings by 

198 two automated programs at the species level (X2 = 280.54, df =1, p <0.05) and family level (X2 = 

199 20.917, df =1, p <0.05) (Figure 3). The percentage of correctly identified species by SonoChiro 

200 and Kaleidoscope Pro was 5%. At the family level, 77% of the recordings were correctly 

201 identified by SonoChiro and 65% was correctly identified by Kaleidoscope Pro. There was no 

202 significant difference between the proportions of correctly identified files by the two automated 
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203 programs at the genus level (X2 = 1.608, df =1, p >0.05). The percentage of correctly identified 

204 genera was 48% for SonoChiro and 52% for Kaleidoscope Pro.

205 Correctly and misidentified species by automated software

206 In Table 1 is shown the number of true positives, false positives, true negative and false 

207 negatives calculated for each species manually identified from the 602 WAVE files: Eptesicus 

208 brasiliensis, Eptesicus furnalis, Lasiurus blossevilli, Lasiurus ega, Molossos currentium, 

209 Molossus, Molossops temminckii, Myotis lavali, Myotis nigricans, Myotis riparius, Peropteryx 

210 leucoptera/paldioptera, Peropteryx macrotis, Promops nasutus and Pteronotus parnellii. The 

211 genera Cynomops, Eumops, Nyctinomops and Tadarida could not be manually identified to the 

212 species level.  The species of genera Myotis and Peropteryx had no true positives for 

213 Kaleidoscope Pro but SonoChiro identified two out of five Myotis riparius and the only 

214 Peropteryx macrotis call correctly. Eptesicus brasiliensis, Molossus currentium, Promops 

215 nasutus and Pteronotus parnellii were misidentified by both programs. Lasiurus ega calls were 

216 identified correctly by Kaleidoscope Pro but not by SonoChiro in the two instances it was 

217 present. Most Eptesicus furnalis calls were identified correctly by SonoChiro (9 out of 10) and 

218 Kaleidoscope (7 out of 10) but they had 148 and 18 false positives respectively. Almost 88% of 

219 Lasiurus blossevillii calls were identified correctly by Kaleidoscope but none by SonoChiro. 

220 Species of Molossidae, Molossus and Molossops temminckii, were identified correctly 80.5% and 

221 84% of the time respectively. On the other hand, SonoChiro misidentified 80% Molossus and all 

222 Molossops temminckii calls.

223 Discussion

224 The low agreement between the three different methods, two automated and one manual, 

225 for species identification raises a concern about the reliability of automated species identification 
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226 for bat monitoring and studies in the neotropics. Bats, unlike birds and other echolocating 

227 animals, alter certain parameters of their calls depending on their interaction with the 

228 environment or other species (Jones 1997; Kalko and Handley 2001; Chaverri et al. 2010). This 

229 would make it difficult to distinguish between individuals in species-rich areas, such as the 

230 Neotropical region, where certain bats species might occupy similar niches and hence would 

231 have overlaps in call structures.

232 Classification methods

233 Lemen et al. (2015) suggested that the low levels of agreement between software could 

234 be because of recordings collected with different recording devices but in our study the call 

235 database was the same and recorded using the same bat detector. This discrepancy could be 

236 attributed to the difference in sensitivity scale, classification method and the classifiers used by 

237 each of the methods. The sensitivity setting in the software allows researchers to manipulate the 

238 detectability of a call in the recording i.e. high sensitivity setting would detect even low-quality 

239 pulses and low sensitivity setting would detect only high quality, clear pulses.  Even though both 

240 the software were set at similar sensitivity, SonoChiro can detect and classify more calls 

241 compared to Kaleidoscope Pro. In the presence of more than one species in one recording, 

242 SonoChiro has the ability to identify up to three species while Kaleidoscope identifies only what 

243 it perceives as the dominant call in the recording. Also, considering classification methods, 

244 SonoChiro detects any calls present on the recording and then classifies them using Random 

245 Forest classification method, which in this case uses active learning/ negative labelling (Bas et al. 

246 2013). This method is supposed to have a powerful confidence index and can spot obvious errors 

247 in calls from diverse sources (Beard 2007; Cutler et al. 2007). On the other hand, the 

248 classification method of Kaleidoscope Pro uses error rates calculated from the confusion 
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249 matrices of specific regional classifiers to determine the most likely distribution of the different 

250 species. The error rates for confusion matrices from different geographic regions and habitat 

251 types might be different leading to misidentifications (Agranat 2012). To reduce the 

252 misidentification rates, SonoChiro computes confidence levels for group and species level 

253 identification while Kaleidoscope can give possible alternative identifications for the data; both 

254 retrieve unknown classifications. Previously used automated identification methods were not 

255 able to provide confidence levels, alternative and unknown classifications; the lack of these 

256 variables might result in higher levels of misidentifications and has been criticized (Adams et al. 

257 2010). 

258 Reliable manual identifications are dependent on the level of expertise of the observer 

259 and the identification key used for species identification. There is a level of aptitude that can be 

260 acquired and applied, which allows the detection of certain patterns or variations when 

261 recordings are manually identified but this also adds an unquantifiable uncertainty in the 

262 identifications (Jennings et al. 2008; Rydell et al. 2017). An advantage of using automated 

263 identifications is that the results can be combined, and a quantifiable uncertainty can be 

264 accounted for by using statistical methods (Russo and Voigt 2016)

265 Intraspecific variation and interspecific overlap

266 Although, SonoChiro showed discrepancies when compared to manual identification, 

267 there was a gradual improvement from species to genus to family level identifications. 

268 Kaleidoscope could correctly identify more species than SonoChiro, but it only gives species 

269 level identification with no confidence indices. Therefore, SonoChiro might be at a better 

270 advantage as it is able to identify certain individuals at least up to the genus level. This 

271 information can be useful to survey and monitor specific focal genera (Rydell et al. 2017). At the 
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272 species level, there were some species correctly identified by one or the other software but only 

273 Eptesicus furnalis and some Molossus calls were correctly identified by both. Eptesicus furnalis 

274 was often misidentified as Lasiurus blossevilli probably because the two species have similar call 

275 structures and frequency ranges. The main difference noted while manually identifying these 

276 species is the transition of the downward frequency modulation (FMd) to quasi constant 

277 frequency (qCF), that is highly marked by a sharp edge in E. furnalis as compared to a curved 

278 one for L. blossevillii (Arias-Aguilar et al. submitted). The species of the genus Myotis were 

279 mostly misidentified by both software programs. Previous studies using automated 

280 identifications also refer problems when distinguishing Myotis species; in fact, this genus, while 

281 highly specious and widespread worldwide, tends to show very similar call designs level and 

282 suggest that Myotis species tend to have very similar call designs and frequency ranges, probably 

283 due to phylogenetic constraints (Parsons and Jones 2000; Rydell et al. 2017) and, eventually due 

284 to ecological convergence. Myotis lavali was only recently described as a separate species from 

285 Myotis nigricans complex and a possible sympatry of these species has been suggested 

286 (Moratelli and Wilson 2013). SonoChiro was able to identify the genera Peropteryx and 

287 Pteronotus correctly almost 100% of the time but at species level it failed to do so. Species of 

288 these genera as well share call design and frequency ranges; therefore, we suggest that the call 

289 parameters considered for species level identification might be too similar for the software to 

290 classify. On the contrary, Kaleidoscope misidentified all the calls of the genera Peropteryx as 

291 Centronycteris and Pteronotus as Noctilio, possibly because of interspecific overlaps amongst 

292 these species. The genera Peropteryx and Centronycteris are from the family Emballonuridae 

293 and have similar call structure with qCF component (Jung et al. 2007). Similarly, genera 

294 Pteronotus and Noctilio have similar call structure with CF -FM component but are from 
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295 different families (Suga 1990). 

296 Misidentifications can be explained by the intraspecific variation in bat calls. Indeed, 

297 species show acoustic geographic variation (Barclay 1999; Murray et al. 2001; López-Baucells et 

298 al. 2017). Arias-Aguilar et al. (submitted) presents a revision of geographical call variation in 

299 Brazilian bats; according to these authors at least ten species of bats present regional variation 

300 above 10kHz difference in the FME parameter. At the intraspecific level, bats may also show 

301 variation according to habitat type (Surlykke and Moss 2000; Schnitzler and Kalko 2001; 

302 Broders et al. 2004; Guillén-Servent and Ibáñez 2007; Jung et al. 2007), foraging mode and diet 

303 (Fenton 1986; Jones 1997; Kalko and Handley 2001; Chaverri et al. 2017). All measurements for 

304 cryptic species Pteronotus cf. rubiginosus varied between individuals recorded in Central 

305 Amazon and French Guiana (López-Baucells et al. 2017). It has been shown that bats emit 

306 higher frequency, short duration calls when they are in areas of higher clutter or foraging at 

307 habitat edges as compared to their conspecific foraging in open spaces (Barclay et al. 1999; 

308 Surlykke and Moss 2000; Schnitzler and Kalko 2001; Broders et al. 2004; Jung et al. 2007; 

309 López-Baucells et al. 2017). Sex and age also have been shown to cause variation among 

310 individuals (Jones et al. 1992; Murray et al. 2001). Peak frequency of bat calls of species from 

311 the Vespertilionidae and Emballonuridae have shown to decrease with increase in body size 

312 (Barclay et al. 1999; Jung et al. 2007). Individuals also tend to alter their calls to differentiate 

313 their reflecting calls from their conspecifics (Obrist 1995; Ulanovsky et al. 2004; Adams and 

314 Pedersen 2013). Chaverri et al. (2017) showed also that certain species of the Molossidae modify 

315 their calls by decreasing frequency and increasing call duration in order to cancel out 

316 atmospheric attenuation, which is caused due to complex interaction between temperature and 

317 humidity.
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318 Misidentifications may also be explained by interspecific overlap in call parameters. 

319 Interspecific overlap tends to occur amongst species that occupy similar ecological niches 

320 (Schnitzler and Kalko 2001) because they adopt similar call designs to navigate and forage in 

321 similar environments. 

322 Classifiers used by automated software

323 Considering the intra and interspecific variation as one of the major source of 

324 misidentification, it would be appropriate to suggest that the classifiers used by the automated 

325 programs might not be reliable. They might not include calls from different region or habitat 

326 types which account for the variability discussed above. Also, they could be missing certain 

327 species that are not found in the region from where the reference calls were collected. For 

328 example, Molossops temminckii, Pteronotus parnellii, Eptesicus brasiliensis and Molossus 

329 currentium, which were largely misclassified by SonoChiro, are not included in the Neptropical 

330 classifier used by the software. Therefore, we argue that the classifiers used for automated 

331 identification should be specific to a region. Another factor which could jeopardise the accuracy 

332 of a classifier, i.e. the probability of correctly classifying a randomly selected recording (Fielding 

333 and Bell 1997), are the calls used as reference. Reference calls used for classifiers are of 

334 extremely good quality and should be that way, i.e. calls recorded from captured individuals and 

335 close to important roost sites (Lemen et al. 2015). However, field recordings often are of much 

336 lower quality. Classifiers should thus include calls recorded in a myriad of situations as to 

337 include the maximum variability acoustically expressed by a species. Currently, it is clear that 

338 the SonoChiro and Kaleidoscope Pro classifiers still do not account for the intraspecific variation 

339 required to make accurate species level identifications. The classification methods also need to 

340 include additional parameters for distinguishing acoustically similar species. Because classifiers 
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341 are regionally or quantitatively limited (Adams et al. 2010), they should not be used as the only 

342 source of identification in monitoring and surveying of bats until this barrier is overcome. 

343 The choice of relevant call parameters for species identification

344 Call structure and harmonics are usually enough for information about the family and 

345 often also genus. However, species identification implies measurements of additional 

346 parameters, ideally measured in several calls or pulses (Adams et al. 2010; Adams and Pedersen 

347 2013). For example, the differentiation between Peropteryx species is based on FME. However, 

348 because FME intervals slightly overlap between species, FME measurements may often not be 

349 enough for species discrimination. Walters et al. (2012) established a continental scale tool for 

350 acoustic identification of European bats using 12 different parameters to characterize frequency 

351 and time course of the call and this tool was tested to give robust classifications. Still, it was 

352 unable to give reliable identifications in several occasions. This means that more parameters may 

353 be necessary for discriminating species with very similar calls.

354 Application Framework

355 Considering the limitations of automated acoustic software, we provide an application 

356 framework, which can potentially be used to gain more information about species of bats in 

357 ecology and conservation field. Figure 4 represents a schematic diagram of a possible 

358 application framework for automated bioacoustics software. The challenges that exist in applying 

359 acoustics to monitor biodiversity are the need for robust identifications to species level and the 

360 ability of acoustic surveys to provide reliable information about population trends (Walters et al. 

361 2012; Adams and Pedersen 2013; Frick 2013). Ecological and conservational studies are 

362 complementary to an extent because information produced by the first would benefit the latter 

363 field and vice-versa. 
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364 Currently, automated identification programs are capable of providing preliminary 

365 information to focus research efforts in a certain area. Further improvements can be achieved by 

366 accounting for the intraspecific variability and interspecific overlap of bat calls (Russo and Voigt 

367 2016). Using acoustic filters to extract more specific call parameters could also prove beneficial 

368 to differentiate at the species level (Clement et al. 2014). Other important aspects to consider 

369 before automated species identification is applied to the data collected, in particular the 

370 standardization of sampling methods, the implementation of statistically powerful sampling 

371 designs, and systematic and long-term sampling (Sampaio et al. 2003; Skalak et al. 2012; Adams 

372 and Pedersen 2013).

373 Bat detectors can be distributed over large areas over several days and can record several 

374 hours of data from different areas simultaneously. Automated species identification can be 

375 optimized and used as a very powerful tool to efficiently study and monitor spatiotemporal 

376 patterns of bats globally if all the above conditions are met. Good quality ultrasound recordings 

377 can be uploaded into these programs and some useful information can be extracted. While both 

378 software retrieves species identification, SonoChiro includes confidence indices with group and 

379 species identification, number of bat passes, records of feeding buzzes and the presence of social 

380 calls. An important aspect to consider is that the identification software should either be tested 

381 for the region or confirmed manually before being applied to the objectives described in the 

382 subsequent sections. 

383 Species richness and composition

384 Studying the assemblage of bats in an area requires information about individual species 

385 to calculate species richness and to determine species composition (Briones-Salas et al. 2013; 

386 Mendes et al. 2014). Both the automated programs give species level identification. To calculate 
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387 species richness, the number of species identified by the software might be sufficient; even if 

388 some species are misidentified, if there is a certain level of certainty that what is interpreted as 

389 two different species are indeed so, richness estimates may be reasonably accurate. For species 

390 composition, on the other hand, the identifications must be accurate. In this case, it would be 

391 better to use the highest level of sensitivity in the program which will retrieve results only for 

392 only high-quality pulses. Further confirmation, using supervised identifications of a certain 

393 percentage of randomly chosen calls, might be required before using this information. 

394 Density, abundance and activity

395 One of the main challenges to overcome is monitoring bat populations with acoustics is 

396 gathering information on densities or abundances, as two bat-passes from the same species may 

397 result from two recorded individuals or from one individual flying twice over the bat detector. 

398 Until we develop means to individually identify each bat, only occurrence models and activity 

399 indexes may be attained. 

400 Bat activity recorded from large number of sites may be used for determining habitat 

401 preferences by bats; similarly, bat activity recorded through time at the same site may reveal if 

402 there is a decrease or increase in the use of that site by bats, and indicate, a decrease or increase 

403 in the quality of the environment.

404 The number of feeding buzzes has been used as a proxy of foraging activity (Miller 2001; 

405 MacSwiney et al. 2009), may be especially relevant for determining foraging habitats and thus 

406 help in spatially prioritization for bat conservation. The presence of social calls has been 

407 considered an indication of a nearby roost (Chaverri et al. 2010; Furmankiewicz et al. 2011) or 

408 swarming sites (Furmankiewicz et al. 2013). Data retrieved from the automated software may 
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409 provide information on specific behavioural patterns like mating, mother-infant interactions and 

410 territoriality.

411 Conservations implications

412 According to Bat Conservation International’s five-year strategic plan towards bat 

413 conservation, Significant Bat Areas (SBA) are areas harbouring threatened species, high 

414 diversity and mega populations of bats (Bat Conservation International 2013). As referred in the 

415 previous sections, automated software may be useful to generate preliminary information 

416 regarding such areas by accounting for species richness, by detecting habitats with higher levels 

417 of bat activity, or even by detecting rare or unknown sonotypes, thus suggesting the presence of 

418 cryptic bat diversity. Information on social calls and feeding buzzes retrieved by SonoChiro can 

419 also aid in detecting roosting, foraging and mating sites, which would be of utmost importance 

420 for bat management and conservation.

421 Final Considerations

422 There are still several gaps in the concept of applying automated identification programs 

423 for bat monitoring projects, but they have some important immediate applications and a great 

424 potential for improvement. Acoustic surveys are gradually becoming one of the main methods 

425 for monitoring and surveying bats globally considering that, in some situations, they account for 

426 more species than traditional monitoring methods, and are non-invasive, which is an important 

427 consideration when working with more sensitive species. Also, and perhaps more importantly, 

428 passive acoustic monitoring presents a high value-for-money ratio, retrieving an immense 

429 volume of information with low cost and human effort. The problem is exactly the immense 

430 volume of data retrieved by this method; only by using automated software we will be able to 

431 deal with terabytes of acoustic information. Technological advances might soon be able to 
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432 optimize automated identification programs and classifiers to make it an extremely powerful tool 

433 in ecology and conservation. This also means that researchers across the world should contribute 

434 with high-quality calls for the development of local and regional classifiers. The development of 

435 freeware, for example under the R environment, should be promoted. Indeed, more people use 

436 freeware, users may be willing and able to adapt or fix the program (for example by adding calls 

437 to existing libraries or by improving classification methods), and other developers may learn 

438 from the program, or base new work on it. The warbleR package (Araya-Salas and Smith-

439 Vidaurre 2016) which presently only aims at streamlining the analysis of animal acoustic signals, 

440 may be a good starting point. In the meantime, it is important to carry out validation tests for the 

441 classifiers in the available software before using them to test hypotheses or take management 

442 decisions.

443 Conclusion

444 The automated software programs have the potential to be used in ecological and 

445 conservation if the variability of bat calls and more parameters are included in the classifiers 

446 (Russo and Voigt 2016). The erroneous classification of species can result in inaccurate 

447 distribution mapping of species or selection of incorrect areas to protect. The current programs 

448 available in the market have not been tested on field data; relying on species identifications made 

449 by these programs for management decision-making may thus have negative conservation 

450 consequences. As of now, automated programs can and should be used to make a preliminary 

451 round of identification, while files with low confidence values should undergo manual 

452 confirmation, in what is called supervised automated identification. A combination of different 

453 automated programs used with caution might be able to give a reasonable level of accuracy but 

454 does not solve the need for efficient automated software to sample large data sets quickly.
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455 The moderate performance of the two automated programs, namely SonoChiro and 

456 Kaleidoscope Pro, in identifying bats from the Brasília National Park should not disregard the 

457 ability of these programs to be used as essential tool in field of acoustics, ecology and 

458 conservation. Currently, Kaleidoscope Pro can be used to filter sound files containing bat calls 

459 and SonoChiro can be used to make identifications for most families and several genera. 

460 Incorporation of classifiers containing highly variable bat calls from species of different regions 

461 and better filters for extracting more specific call parameters can result in a powerful automated 

462 tool to make rapid species identifications. 
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Figure 1

Typical spectrogram view of the echolocation call of Pteronotus parnelli

The y-axis is frequency in kilohertz and x-axis is time in seconds. The color scale represents the amplitude

of sound in decibels (dB). The call parameters indicated are: maximum frequency (Fmax), minimum

frequency (Fmin), frequency of maximum energy (FME), time duration (t), inter-pulse interval (IPI) and

harmonics (HF, H2, H3, H4).
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Figure 2

Stacked bar chart showing the level of agreement for species (κ=0.145, 23 agree, 579

disagree), genus (κ=0.326, 89 agree, 513 disagree) and family level (κ=0.456, 285

agree, 317 disagree). The y-axis represents the number of files analyzed.
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Figure 3

Stacked bar chart indicating the proportion of correctly identified files for each software.

For Kaleidoscope, species = 48%, genus = 52%, family = 65% and for SonoChiro, species=

5%, genus=48% and family=77%. The y-axis shows the number of files and the x-axis is the

two-automated software
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Figure 4

An application framework to use automated acoustic identification software in

ecological and conservation studies of bats.
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Table 1(on next page)

True positives, false positives, true negatives and false negatives compared to the total

number of manual identifications for each of the species.
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True positives False positives True negatives False negatives

Species Total Kaleidoscope SonoChiro Kaleidoscope SonoChiro Kaleidoscope SonoChiro Kaleidoscope SonoChiro

Cynomops sp. 31 0 0 0 0 571 571 31 31

Eptesicus brasiliensis 4 0 0 0 0 598 598 4 4

Eptisicus furnalis 10 7 9 18 148 574 444 3 1

Lasiurus blossevillii 136 119 0 13 0 453 466 17 136

Lasiurus ega 2 2 0 0 0 600 600 0 2

Molossus currentium 4 0 0 0 0 598 598 4 4

Molossus molossus 103 83 21 8 3 491 496 20 82

Molossops temminckii 96 81 0 3 0 503 506 15 96

Myotis lavali 54 0 0 0 0 548 548 54 54

Myotis nigricans 11 0 0 0 28 591 563 11 11

Myotis riparius 5 0 2 0 32 597 565 5 3

Myptis sp. 1 0 0 0 0 601 601 1 1

Peropteryx 

leucoptera/paldioptera 15 0 0 0 0 587 587 15 15

Peropteryx macrotis 1 0 1 5 36 596 565 1 0

Promops nasutus 7 0 0 0 0 595 595 7 7

Pteronotus parnellii 25 0 0 0 0 577 577 25 25

Eumops/Nyctinomops/

Tadarida sp. 97 0 0 0 0 505 505 97 97
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