
causal effects could be identified by G-causality analysis. These results demonstrate a
good sensitivity and specificity of the conditional G-causality analysis in the time domain
when applied on covariance stationary, non-correlated electrophysiological signals.
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30 Abstract           
31 Background. Brain function requires a coordinated flow of information among functionally specialized areas. 

32 Quantitative methods provide a multitude of metrics to quantify the oscillatory interactions measured by invasive or 

33 non-invasive recording techniques. Granger causality (G-causality) has emerged as a useful tool to investigate the 

34 directions of information flows, but challenges remain on the ability of G-causality when applying on biological 

35 data. In addition it is not clear if G-causality can distinguish between direct and indirect influences and if G-

36 causality reliability was related to the strength of the neural interactions.   

37 Methods. In this study time domain G-causality connectivity analysis was performed on simulated 

38 electrophysiological signals. A network of 19 nodes was constructed with a designed structure of direct and indirect 

39 information flows among nodes, which we referred to as a ground truth structure. G-causality reliability was 

40 evaluated on two sets of simulated data while varying one of the following variables: the number of time points in 

41 the temporal window, the lags between causally interacting nodes, the connection strength between the links, and the 

42 noise. 

43 Results. Results showed that the number of time points in the temporal window affects G-causality reliability 

44 substantially. A large number of time points could decrease the reliability of the G-causality results, increasing the 

45 number of false positive (type I errors). In the presence of stationary signals, G-causality results are reliable showing 

46 all true positive links (absence of type II errors), when the underlying structure has the delays between the 

47 interacting nodes lower than 100 ms, the connection strength higher to 0.1 time the amplitude of the driver signal 

48 and good signal to noise ratio. Finally, indirect links were revealed by G-causality analysis for connection strength 

49 higher than the direct link and lags lower than the direct link. 

50 Discussion. Conditional multivariate vector autoregressive model was applied to 19 virtual time series to estimate 

51 the reliability of the G-causality analysis on the identification of the true positive link, on the presence of spurious 

52 links and on the effects of indirect links. Simulated data revealed that weak direct but not weak indirect causal 

53 effects could be identified by G-causality analysis. These results demonstrate a good sensitivity and specificity of 

54 the conditional G-causality analysis in the time domain when applied on covariance stationary, non-correlated 

55 electrophysiological signals. 

56
57
58
59
60
61
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64 Keywords: Granger causality; simulation; temporal window; lags; gain; noise.
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65 Introduction
66 The characterization of the functional connectivity (FC) patterns of the human brain is a key challenge in 

67 neuroscience. FC is defined as the statistical dependence among measured time series usually evaluated in terms of 

68 correlations or mutual information. Recent advances have shown that FC patterns of human brain networks can be 

69 non-invasively characterized from a variety of electrophysiological (electroencephalography (EEG), 

70 magnetoencephalography) and neuroimaging techniques, e.g., structural, diffusion and functional MRI (fMRI). 

71 Specifically, resting state EEG is a promising technique to derive FC patterns in terms of non-invasive, cost-

72 effective nature and independence of task difficulty. The hypothesis is that neuronal oscillations provide a 

73 mechanism underlying dynamic coordination in the brain (Varela et al., 2001; Fries, 2015). A multitude of metrics 

74 quantifies oscillatory interactions (see Wang et al., 2014 for a review). A first subdivision among methods can be 

75 made on whether the metric quantifies the direction of the interaction. Nondirected FC metrics seek to capture some 

76 form of interdependence between signals, without reference to the direction of influence (Bastos & Schoffelen, 

77 2016). FC can be quantified by measures of statistical dependencies, such as correlations, coherence in the 

78 frequency domain, or transfer entropy (TE). It is not based on model comparison because the correlations are 

79 attributes of the data, not the model (Friston, 2011). In contrast, effective connectivity is based on the comparison of 

80 a model with and without a particular connection to infer its presence (Friston, 2011). Effective connectivity 

81 measures can distinguish the driver from the recipient estimating the direction of information flow and provide 

82 effective mechanisms estimating the interaction coefficients. Among the statistically principled techniques which 

83 estimate the direction of influence in time series, Granger causality (G-causality) has emerged in recent years as a 

84 useful tool to investigate the directions of neuronal interactions (Brovelli et al., 2004; Hesse et al., 2003) and is 

85 probably the most prominent and powerful technique (Nolte et al., 2008; Seth, Barrett & Barnett, 2015). 

86 For fMRI acquisitions, G-causality has been applied to core regions recruited during a task of motor execution and 

87 motor imagery (Gao, Duan & Chen, 2011), during spatial working memory task in early deaf subjects (Ding et al., 

88 2015), or during resting state (Franciotti et al., 2013). In epilepsy, G-causality analysis has been shown to depict 

89 pathway important for seizure propagation (Coben et al., 2015) or for diagnosis and monitoring purposes (Protopapa 

90 et al., 2016), G-causality analysis reported similar results to dynamic causal modelling applied to fMRI acquisition 

91 (David et al., 2008) and to pathways revealed by diffusion tensor imaging (Bhardwaj et al., 2010). Successful results 

92 of G-causality were also found on EEG data. Indeed it showed higher inter-subject consistency than the synchrony 

93 analysis during loss of consciousness (Barret et al., 2012). It classified ‘awake’ and ‘anesthetized’ states of  patients 

94 with an high accuracy (Nicolau et al., 2012) and was able to distinguish patients with mild cognitive impairment 

95 from age-matched control subjects (Dauwels et al., 2010). In addition G-causality method was found to be useful to 

96 study also complex cognitive functions distinguishing distinct network patterns during visuo-spatial working 

97 memory task (Protopapa et al., 2014). 

98 G-causality seeks to establish a statistical causation from the data that is based on the maxim that causes precede 

99 their effects. The statistical causality approach was originally developed by Wiener (1956) and later implemented 

100 using auto-regressive models by Granger (1969). These measures have recently been supplemented with methods 

101 like multivariate G-causality to provide measures that are less sensitive to indirect links (Barnett & Seth, 2013). The 
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102 G-causality calculates the directed connectivity (j→i) based on the notion that information in the past of j helps to 

103 predict the future of i with greater accuracy than by only considering the past of i itself (Granger, 1969). However, 

104 challenges remain on the ability of G-causality to infer the direction of information flows among nodes of a network 

105 when applying on biological data. In addition it is not clear if G-causality can distinguish between direct and indirect 

106 influences and if G-causality reliability was related to the strength of the neural interactions.   

107 The aim of this study was to establish the reliability of G-causality when varying one of the different conditions: the 

108 length of the temporal window, the lag between causally interacting nodes, the strength of the connection, and the 

109 adding noise. By means of 19 simulated signals mimicking 19 channels of the international 10-20 EEG system, we 

110 assessed the reliability and robustness of G-causality results by means of parameters of sensibility and specificity 

111 related to the number of true positive and false positive links. In addition G-causality reliability was compared for 

112 direct and indirect link and was estimated how it was modulated by the strength of the connection.

113
114 Material and Methods 
115
116 Simulated data
117 G-causality analysis can be performed under these assumptions:

118 1) data sets are not correlated, thus the data-generating processes in any time series have to be independent 

119 variables,

120 2) the signals are stationary, more specifically the signals must be covariance stationary (also known as weak or 

121 wide-sense stationarity, i.e., the means and variances of the time series are stable over time),

122 3) the model does not have any unit roots which are one cause for non-stationarity.

123 If the stationarity of the signals is not satisfied, used models for G-causality are invalid and may contain so-called 

124 ‘spurious regression’ results, i.e., correlations that arise from non-stationarities rather than from relations among 

125 signals (Granger and Newbold 1974).

126 Simulated signals X(t) were generated in order to guarantee these assumptions, summing the sinusoidal signals, with 

127 a random phase for each frequency i and according to the following formula:

128 ( ) ( )∑
=

+=
n

i
iii tfAtX

1
2sin ϕπ

129 where n=2460 (considering a sampling rate of 256 Hz and the frequency resolution of 0.05 Hz),

130 Ai and fi the amplitude and frequency 

131 πϕ 2⋅= randni

132 randn is a random scalar drawn from the standard normal distribution.

133 G-causality is not based on the phase differences between signals, thus the results were not influenced by the 

134 distortion of the signals by the randomization of the phases. 

135 In addition, randomly generated white Gaussian noise was performed by means of the awgn(snr) function from 

136 matlab library and was super-imposed to each signal, obtaining a simulated raw signal for each channel. The scalar 
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137 parameter snr specifies the signal-to-noise ratio per sample, in dB. The simulated raw data are available as 

138 supplemental file (see S.mat).

139 The link from the signal Y(t) to the signal X(t) was simulated according to the following formula:

140  

))(......(1

)()()(

lagXlengtht
where

tYAmplagtXlagtX

−=

⋅++=+

141 The lag and Amp parameters were the delay and the connection strength factor in the information flow from the 

142 signal Y (driver) to the signal X (recipient). 

143 In the simulation the designed structure of information flow did not change, while the length of the temporal 

144 window, the time delays (the lags) of the interactions across nodes, the connection strength and the noise were 

145 selected as variables. They changed one at a time in order to evaluate the effects of these variables on the reliability 

146 of G-causality. The range of the variations of these variables was chosen in order to obtain the model consistency of 

147 G-causality higher than 80%, as values below 80% may give cause for concern (Seth, 2010).

148 Two examples of simulated data were performed. The first example consisted of 19 nodes, with five sources 

149 (drivers), seven sinks (recipients) and seven links. The delay values (i.e. the lags between causal interacting nodes) 

150 and the gain values (i.e. the connection strength factor which multiplied the amplitude of the driver signal) between 

151 nodes are reported for the starting designed structure in Table 1. In the simulation, we added a value ranging from -9 

152 to 30 time points to the lag values and a value ranging from -0.2 to 0.2 to the connection strength factor of the 

153 starting designed structure. In addition, to simulate the presence of an indirect link we added in the designed 

154 structure a latent 20th signal to simulate a connection from node 10 to node 20 and a connection from node 20 to 

155 node 13. The causal link from the node 10 to the node 20, which it is not included in the analysis, had the lag of 11 

156 time points and the connection strength factor fixed to 0.5. The link from the node 20 to the node 13 had the starting 

157 value of the lag of 14 time points and the strength factor was performed according to the formula: 0.6+2⋅connecting 

158 strength factor (ranging from -0.2 to 0.2). 

159 The aim was to verify if G-causality would pick the false link from 10 to 13 when the 20th signal was not included in 

160 the analysis. 

161 To investigate the ability of the G-causality to distinguish weak direct causal effects, a second example of simulation 

162 was performed. To the designed structure of the first simulation, 7 links were added. Then, the new system of the 

163 second example consisted of 19 nodes with 12 sources, 11 sinks and 14 links. Table 2 shows the starting values for 

164 the designed structure of this second example. Moreover, the indirect link from node 10 to node 13 was also 

165 included with the same characteristics of the first example. 

166 Figure 1 shows a schematic representation of the designed structures for the two examples. The Matlab code to 

167 simulate the designed structure while varying the number of time points in the temporal window, the lags between 

168 causally interacting nodes, the connection strength between the links, and the noise is available as Supplemental file 

169 for the first and the second example (see code.m). 

170
171 G-causality analysis on simulated data
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172 Time domain G-causality connectivity analysis was applied to identify patterns of causal interaction between nodes. 

173 According to linear vector autoregressive (VAR) models, two wide-sense stationary time series X (t) and Y(t) can be 

174 explained by their own past by means of a linear model with coefficients aj and bj and prediction errors ε1(t) and 

175 η1(t) respectively: 

176 ( ) ( ) ( )∑
=

+−=
m

j
j tjtXatX

1
1ε

177 ( ) ( ) ( )∑
=

+−=
m

j
j tjtYbtY

1
1η

178 Lagged vector autoregression models are used to determine the ability of one time-varying signal to predict the 

179 future behaviour of another, comparing the accuracy of the prediction obtained by considering only information of 

180 the own past than the inclusion of the past of the other signal of the system (Granger, 1969). Thus, the temporal 

181 dynamics of the time series X(t) and Y(t) (both of length T) can be described also including in the model not only 

182 information on the own past of the time series, but also information on the past of the other time series, with 

183 prediction errors ε2(t) and η2(t) which are different from the previous ε1(t) and η1(t).  
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186 where m is the maximum number of lagged observations included in the model (the model order, m < < T), whereas 

187 bj and dj are the gain factors, respectively, of the signal Y(t) (driver) influencing the signal X(t) (recipient), and of the 

188 signal X(t) (driver) influencing the signal Y(t) (recipient).

189 The linear influence from X(t) to Y(t) (FX→Y) and from Y(t) to X(t) (FY→X) can be calculated as the log ratio between 

190 the variances of the residual errors.
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193 G-magnitude is given by the log ratio of the variance of the prediction-error terms for the reduced (omitting the 

194 signal of the potential cause) and full regressions (including the signal of the potential cause). 

195 G-causality analysis is generalized to the multivariate (conditional) case in which the G-causality of Y(t) on X(t) is 

196 tested in the context of multiple additional variables (Geweke, 1982) when all other variables are also included in 

197 the regression model. 

198 In our simulation study, conditional multivariate VAR (MVAR) model was applied to 19 time series (Seth, 2010). 

199 Data analysis was performed using the in-house software BSMART, a MATLAB/C Toolbox implemented to 

200 analyse brain circuits (Cui et al., 2008). MVAR model was applied to the 19 time series to estimate G-causality 
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201 connectivity (Seth, 2010). The method of ordinary-least-squares was used to compute the regression coefficients. 

202 The F-statistic, Bonferroni-corrected (nominal p value of 0.05, then divided for multiple comparisons by n⋅(n-1) 

203 where n=19), was applied to the coefficients of the MVAR model. In the presence of high dimensional time series, 

204 conditional G-causality could fail because of the large number of coefficients to be estimated. The problem of 

205 reducing the number of model coefficients has been addressed in the last years, developing many methods of 

206 variable subset selection. These methods include the simple sequential search method and stepwise methods 

207 implementing the bottom-up (forward selection) and top-down (backward elimination) strategies or more 

208 complicated schemes such as the genetic algorithms, the particle swarm optimization and the ant colony 

209 optimizations (Siggiridou & Kugiumtzis, 2016). Another method known as backward-in-time selection takes also 

210 into account the lag dependence structure, implementing a supervised stepwise forward selection guided by the lag 

211 order of the lagged variables (Vlachos & Kugiumtzis, 2013).

212 The Akaike information criterion (Akaike, 1974) was used to estimate the order of the model (Bressler & Seth, 

213 2011). Covariance stationarity was checked by using the Durbin–Watson test, based on MATLAB code provided by 

214 Seth (Seth, 2010) and the Dickey–Fuller test (p<0.01) to identify unit roots. The consistency of the MVAR model, 

215 which ensures that the MVAR model properly represents the data, was verified by the tests proposed by Ding (Ding 

216 et al., 2000), whereas the Durbin–Watson statistics assessed whether the residuals are uncorrelated. 

217 G-causality matrix of 19 rows and 19 columns represents the causal strength of the connection between each couple 

218 of nodes. The G-causality analysis was applied on a single time window because when multiple time windows are 

219 used the mean connectivity matrix which includes the mean connection strength across all time windows must be 

220 thresholded to produce a network graph. The choice of the most appropriate threshold value is an unresolved 

221 problem (Wang et al., 2014).

222 To estimate the reliability of G-causality we calculated the sensitivity and specificity of the results 

223
224 Results
225
226 Length of the temporal window
227 The length of the temporal window of the time series used to perform G-causality is a crucial factor. It needs to be as 

228 short as possible since, in real datasets, FC may change dynamically over time, but it needs to be as long as possible 

229 to have reliable G-causality results. Indeed the length of the temporal window should be at least n⋅p, where n is the 

230 number of time series and p the model order (Seth, 2010). For the simulated data, we performed G-causality from 

231 512 (2 s) to 10496 (41 s) time points. The time delays of the interactions between channels (lags), the connection 

232 strength (Table 1 for the first and Table 2 for the second example) and the noise did not change while varying the 

233 number of time points of the time series. For the window length from 512 time points to 1280 time points the model 

234 order of G-causality was higher than 40 time points for both the simulations and the results were not reliable. In the 

235 first example, for window length equal or greater than 1536 time points, all the causal information flows were 

236 revealed by the G-causality analysis (the sensitivity was always 1), but the number of false positive links was high 

237 (see Figure 2 for 1792 time points). The specificity reached the maximum value of 0.99 for the temporal window of 
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238 4096 time points. The false link from 10 to 13 was revealed for temporal window length higher than 4608 time 

239 points (see Figure 2 for 1792 and 4352 time points). The values of the model order increased over the window 

240 length with a range from 17 to 29 time points. The specificity ranged from 0.96 to 0.99. The model consistency was 

241 always higher than 90% over the window length, ranging from 92% to 95%. 

242 The second example confirmed the results of the first simulation. The temporal window of 5120 time points was 

243 used for both the examples while varying lags between channels, connection strength factor and the noise separately 

244 because for this temporal window the false link from 10 to 13 was revealed by the G-causality analysis.

245
246 Lags and model order
247 The signalling between neurons and brain regions involves time delays, which must be taken into consideration in 

248 G-causality analysis. To assess the effect of lags between nodes on G-causality reliability, we varied the lags of the 

249 designed matrix adding a value of all lag values reported in Table 1 for the first example and in Table 2 for the 

250 second, example. This adding value ranged from -9 to 30 time points with a step of 1. Specifically, when we 

251 subtracted 9 to the starting designed structure in which the lags ranged from 10 to 16 time points across channels 

252 pairs (see Table 1 and Table 2), we obtained a structure with lags ranged from 1 to 7 time points. Other parameter 

253 values were 5120 time points (20s) for the length of the time series and the factor of the connection strength of the 

254 causal link as reported in Table 1 and Table 2. 

255 For the first example when the lags of the designed structure ranged from 1 to 7 time points (the adding value for the 

256 lags was -9), the sensitivity was 1 indicating that all the causal information flows were detected by the G-causality 

257 analysis, and the number of false positive was low (the specificity was 0.99, see Figure 3 for -9). The sensitivity was 

258 always 1 until the adding value for the lags was 24 (the lags of the designed structure ranged from 34 to 40 time 

259 points). Thus, for the designed structure, G-causality reached the best concordance with the designed structure (see 

260 Figure 3 for adding value of 5) when the lags across nodes ranged from 15 time points (59 ms) to 21 time points (82 

261 ms). For adding values of lags higher than 24 (the lags across nodes were higher than 34 time points), the sensitivity 

262 decreased drastically (see Figure 3 for 29). The values of the model order increased over the lags from 23 to 40 time 

263 points, whereas the model consistency was always around 94%. 

264 The indirect link from 10 to 13 was revealed when the adding values of the lags of the designed structure ranged 

265 from -9 (lags between signals from 1 to 7 time points) to 0 (lags between signals from 10 to 16 time points). 

266 For the second example, similar results were found. Figure 4 shows the graphs of the results for lags ranging from 3 

267 to 9 time points (adding value to the starting structure was -7), ranging from 10 to 16 time points (no adding value), 

268 ranging from 39 to 45 time points (adding value of 29). When the lags across nodes were higher than 39 time points 

269 the sensitivity decreased drastically (Figure 4 for 29). When the designed structure had lag values between nodes 

270 ranging from 1 to 19 time points (the adding value for the lags ranged from -9 to 3) the model order was 20. The 

271 maximum model order was 35 for lags of the designed structure ranged from 32 to 38 time points (the adding value 

272 for the lags was 22). The indirect link from 10 to 13 was revealed when the adding values of the lags of the designed 

273 structure ranged from -9 (lags between signals from 1 to 7 time points) to -1 (lags between signals from 9 to 15 time 

274 points). 
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275
276 Influence of connection strength
277 To evaluate the effect of the connection strength on G-causality reliability, we varied the connection strength factor 

278 which multiplied the amplitude of the driver signal shown in Table 1 and in Table 2. A value which ranged from -

279 0.2 to 0.2 with a step of 0.01 was added to each connection strength factor of all the causal links for the first 

280 example (Table 1) and to connection strength factor with an “*” in Table 2 for the second example. Specifically, to 

281 the starting designed structure in which the connection strength factor ranged from 0.3 to 0.55 (first example, Table 

282 1) and from 0.05 to 0.55 (second example, Table 2), we subtracted 0.2 and we obtained a structure with connection 

283 strength factor ranged from 0.1 to 0.35 (first example) and from 0 to 0.35 (second example). Other parameter values 

284 were 5120 time points (20s) for the length of the time series and the lags as reported in the Table 1 and 2. All these 

285 parameters as well as the noise did not change while varying the connection strength.

286 In the first example, when the connection strength between nodes ranged from 0.1 to 0.35 the sensitivity was 0.86, 

287 indicating that G-causality analysis was not able to identify all the causal information flows, whereas the number of 

288 false positive was low (the specificity was 0.99, see Figure 5 for -0.2). The sensitivity was 1 when the connection 

289 strength factor of the structure was higher than 0.17 (adding value of -0.13). From adding factor ranging from 0.01 

290 to 0.07 the specificity was highest, then it decreased (see Figure 5 for 0.05 and 0.1). The values of the model order 

291 ranged from 22 to 25 time points and the model consistency increased linearly over connection strength even if only 

292 little (from 93.8% to 94.1%). The indirect link from 10 to 13 was revealed when the connection strength factor was 

293 higher than 0.33 (the adding value to the connection strength factor was 0.03). The influence of the connection 

294 strength was higher on the direct than the indirect link.

295 In the second example the link from node 3 to node 6 with connection strength factor fixed to 0.05 was not revealed, 

296 whereas the link from node 7 to node 19 with connection strength factor fixed to 0.1 was revealed until the other 

297 links of the designed structure had connection strength ranging from 0.05 to 0.55. The link from node 19 to node 3 

298 with connection strength factor fixed to 0.15 was always revealed. The link from node 1 to node 3 was revealed 

299 when its connection strength was higher or equal to 0.1 (adding value of -0.1). The indirect link from node 10 to 

300 node 13 was instead revealed when the connection strength from node 20 to node 13 was higher or equal to 0.5 

301 (adding value of 0.05). Figure 6 shows the graphs of the results for adding value of the connection strength factor 

302 from -0.2 to 0.15 with a step of 0.05. The values of the model order ranged from 20 to 25 time points and the model 

303 consistency ranged from 92.2% to 95.5%. 

304
305 Effect of noise
306 To evaluate the effect of noise on G-causality results, we varied the added noise of each node of the designed 

307 structure by a factor ranging from 0 to 0.78 time the standard deviation of the amplitude of each signal. The window 

308 length was fixed to 5120 time points, the lags and the connection strength had values as reported in Table 1 for the 

309 first and Table 2 for the second example. For the first example, the sensitivity was 1 for the added noise lower or 

310 equal to 0.4 (see Figure 7 for 0.2 and 0.4) and it decreased until 0.71, whereas the specificity increased over the 

311 noise (see Figure 7 for 0.4 and 0.6 for comparison). The model consistency decreased when the noise increased as a 
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312 quadratic function (R2=0.999) ranging from 97.3% to 93.6% and the model order changed from 21 to 24 time points. 

313 The indirect false link was never revealed by G-causality analysis, increasing the noise. 

314 The second example confirmed the results of the first example and it did not provide any additional results.   

315
316 Discussion
317 In this study we generated 19 virtual simulated covariance stationary signals with a designed structure of 

318 information flows among nodes, which we referred to as a ground truth structure and we performed conditional G-

319 causality analysis in the time domain to test its reliability. Previous simulation studies reported results on the 

320 reliability of G-causality concept, but for frequency domain multivariate methods such as Partial Directed 

321 Coherence, Directed Transfer Function (DTF), and its modification known as direct DTF (Astolfi et al., 2007), TE 

322 and phase slope index (Silfverhuth et al., 2012). In the present study, G-causality measure was applied by means of 

323 “Granger Causal Connectivity Analysis” toolbox (Seth, 2010) combined with standard significance testing. The 

324 same procedure was applied by a previous simulation study (Haufe et al., 2013) reporting spurious connectivity 

325 results regardless of whether the analysis was performed on sensor-space data or on sources estimated using three 

326 different established inverse methods. Spurious results of G-causality analyses were attributed to weak data 

327 asymmetries caused by linear mixing of the interacting sources, as opposed to strong asymmetries related to genuine 

328 time-lagged information flow (Haufe et al., 2013).

329 In the present study G-causality analysis was performed on simulated data while varying one of the following 

330 variables: the number of time points used to perform G-causality, the lags between interacting nodes, the connection 

331 strength of the links, and the noise. Based on the ground truth structures, we could estimate the reliability of the G-

332 causality analysis on the identification of the true positive link, on the presence of the false positive link and on the 

333 indirect links. 

334 Due to the randomization of the phase of each surrogate signal and to the randomly generated white Gaussian noise, 

335 the G-causality results could vary slightly, but these changes did not influenced G-causality reliability and the 

336 general conditions which may lead to spurious or missed causalities. In addition the results could change if an 

337 alternative less conservative statistic than Bonferroni correction was applied to the coefficients of the MVAR model. 

338 The false discovery rate (Benjamini & Hochberg, 1995) could be applied in future studies for comparison. 

339 The main result of this simulation study was that in the presence of covariance stationary signals, window length 

340 higher than 1500 time points, model order lower than 40 time points, model consistency higher than 80%, G-

341 causality identified all causal links with the connection strength factor between nodes higher than 0.1 time the 

342 amplitude of the driver signal. The number of the false positive links in the G-causality results was more dependent 

343 on the length of the temporal window than the lags between causal links, the connection strength and the noise. In 

344 the first example if the length of the temporal window was higher than 4000 time points (about 16 s), the G-causality 

345 picked all the causal links and the number of false positive links was low (Figure 2, 4352 time points). A previous 

346 simulation study with a sampling frequency of 125 Hz reported that 2000 time points (16 s) were sufficient for G-

347 causality analysis (Wang et al., 2014). The number of spurious non-zero G-causality increased when the used 

348 number of time points was more than necessary. Indeed if the widow length was higher than 4096 time points the 
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349 specificity decreased. This result confirms a previous study claiming the wrong idea of using as much information as 

350 possible because the high number of time points could lead to the presence of sampling artifacts in both linear and 

351 nonlinear processes (Zhou et al., 2014). The second example did not provide any additional results on the length of 

352 the temporal window, as expected, because the number of the signals (19 nodes) and the model order (related to the 

353 lags between nodes) are not different between the two examples. Further simulations should be performed with 

354 smaller lags to demonstrate that smaller time series would be sufficient for a system of 19 variables.  

355 Another issue in the G-causality analysis is the choice of the model order. An order too low may not allow to 

356 describe the data to its full extent, while too big may introduce spurious results (Seth, 2010). For these reasons we 

357 evaluated the optimal model order directly by means of the Akaike information criterion. The model order needs to 

358 be larger than or at least close to the signal delays (the lags between the causal links), indeed the model order 

359 increases when the lags increase. In the first example, when the designed structure had lag values ranging from 1 to 

360 14 time points (the adding value for the lags ranged from -9 to -2) the model order was 23 and all the causal links 

361 were detected by G-causality analysis. For the second example, the model order was more close to the maximum lag 

362 of the designed structure. Indeed when the maximum lag of the designed structure was 19 the model order was 20. 

363 The maximum model order was 35 for lags of the designed structure ranged from 32 to 38 time points. When the 

364 lags across nodes were higher than 34 time points (133 ms) or 39 time points (152 ms) for the second example, the 

365 sensitivity of G-causality results decreased. This result suggests that G-causality can identify the underlying 

366 structure when the lags between signals is lower than about 100 ms. 

367 The variation of the connection strength revealed that G-causality was able to pick all causal links if the connection 

368 strength was higher than 0.17 time the amplitude of the driver signal. This result is in accordance with a previous 

369 study which showed that when a source influenced a sink with a connection strength lower than 0.2, the causal 

370 information was not detected by the G-causality analysis and/or type I errors (the presence of false positive links) 

371 were evident (Falasca et al., 2015). 

372 The second example was performed to investigate better the effect of the connection strength on G-causality 

373 reliability. In the same designed structure, we simulated links with fixed connection strength and links with varying 

374 connection strength factor. Results showed that G-causality did not identify very weak links (i.e. the connection 

375 strength factor was equal to 0.05 time the amplitude of the driver signal of the link), whereas it was able to identify 

376 links with the connection strength factor higher or equal to 0.1 if the other links of the structure had a connection 

377 strength lower than 0.55 time the amplitude of the driver signal. Due to the fact that 0.55 could be considered an 

378 high value for interactions in biological systems, this result revealed that G-causality reliability was good also for 

379 weak direct causal effects (0.1 time the amplitude of the driver signal).  

380 The simulations showed that the model consistency was affected mainly by the level of the noise. Indeed, the model 

381 consistency and the sensitivity decreased when the added uncorrelated noise increased. At high values of noise, G-

382 causality did not pick true causal links, but also false causal links, suggesting that when G-causality analysis reveals 

383 a low number of links in real datasets, it is possible that the signal to noise ratio is too low. Previous studies showed 

384 that G-causality reliability could be strongly affected by both uncorrelated and linearly mixed additive noise (Nolte 

385 et al., 2008; Sommerlade et al., 2012; Friston et al., 2014). In addition uncorrelated noise affected only weakly the 
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386 detection of G-causality directionality, whereas linearly mixed noise caused a large fraction of false positives (Vinck 

387 et al., 2015). 

388 The evaluation of the G-causality reliability on the indirect link showed that G-causality picked the false link as true 

389 when the length of the temporal window was higher than 4864, the lags of the designed structure was lower than 15 

390 time points and the connection strength factor was higher than 0.3 time the amplitude of the driver signal for the first 

391 example and 0.5 for the designed structure with higher number of links (second example). To note that in both 

392 examples, the connection factor between node 10 to the latent node 20 was fixed to 0.5, whereas the connection 

393 factor between the latent node 20 to node 13 varied. Additional simulations should be performed varying also the 

394 connection strength factor between node 10 to node 20. 

395 In conclusion, the present simulation study reveals that the number of time points in the temporal window affects G-

396 causality reliability substantially, and rice the issue that a large number of time points could decrease the reliability 

397 of the G-causality results, increasing the number of false positive (type I errors). G-causality results are reliable 

398 showing all true positive links (absence of type II errors), when the underlying structure has the signal delays 

399 between the interacting nodes lower than 100 ms, the connection strength higher to 0.1 time the amplitude of the 

400 driver signal and good signal to noise ratio. G-causality detects the indirect link for connection strength higher than 

401 the direct link and lags lower than the direct link.
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539 Figure legend
540 Figure 1 Schematic representation of the designed structures for the two examples. The links of the designed 

541 structures are shown by the G-causality matrices with their connection strength factors (as indicated by the 

542 colorbars) for the first and the second examples (A), and by arrows indicating the direction and versus of the links 

543 between nodes (B).   

544
545 Figure 2 G-causality results of the first example for different values of the window lengths. (A) The G-

546 causality matrices show the G-magnitude values (as indicated by the colorbars) for the causal links at 1792, 4352 

547 and 7424 time points. Pink circles indicate the true positive links. (B) Graphs of the results. The thickness of the 

548 arrows indicates the values of the G-magnitude for the identified links.

549
550 Figure 3 G-causality results of the first example for different values of lags. (A) The G-causality matrices show 

551 the G-magnitude values (as indicated by the colorbars) for the causal links for adding values of the lags of the 

552 starting structure of -9, 5 and 29 time points. Pink circles indicate the true positive links. (B) Graphs of the results. 
553 The thickness of the arrows indicates the values of the G-magnitude for the identified links.

554
555 Figure 4 Graphs of the results of the second example while varying lag values between links. Results show the 

556 identified links by G-causality for a designed structure with lag ranging from 3 to 9 time points (adding value to the 

557 starting structure was -7), ranging from 10 to 16 time points (no adding value), ranging from 39 to 45 time points 

558 (adding value of 29).

559
560 Figure 5 G-causality results of the first example for different values of the connection strength. (A) The G-

561 causality matrices show the G-magnitude values (as indicated by the colorbars) for adding values of the connection 

562 strength factor of -0.2, 0.05 and 0.1. Pink circles indicate the true positive links. (B) Graphs of the results. The 

563 thickness of the arrows indicates the values of the G-magnitude for the identified links.

564
565 Figure 6 Graphs of the results of the second example while varying connection strength factor between links. 
566 Numbers indicate the adding value to the connection strength factors of the starting designed structure of the Table 

567 2. 

568
569  Figure 7 G-causality results of the first example for different values of noise. (A) The G-causality matrices 

570 show the G-magnitude values (as indicated by the colorbars) for adding value of the noise of 0.2, 0.4 and 0.6 the 

571 standard deviation of the amplitude of each signal. Pink circles indicate the true positive links. (B) Graphs of the 

572 results. The thickness of the arrows indicates the values of the G-magnitude for the identified links.
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Table 1(on next page)

First example.

Starting values of the lags of the causal links and the factors which multiply the amplitude of

the driver signal of the link defining the connection strength of the designed structure.
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1 Table 1 First example. Starting values of the lags of the causal links and the factors which multiply the amplitude of 

2 the driver signal of the link defining the connection strength of the designed structure.

Links Lags (time points)      Connection strength factor

from node 2 to node 4 10 0.4

from node 4 to node 2 12 0.5

from node 4 to node 15 13 0.45

from node 8 to node 6 14 0.3

from node 11 to node 9 16 0.35

from node 11 to node 18 14 0.3 

from node 17 to node 7 15 0.55

3
4
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Table 2(on next page)

Second example.

Starting values of the lags of the links and the connection strength factors which multiply the

amplitude of the driver signal of the link. An “*” was added to the connection strength factor

which changed during the simulation for the study of the influence of connection strength to

G-causality results.
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1 Table 2 Second example. Starting values of the lags of the links and the connection strength factors which multiply 

2 the amplitude of the driver signal of the link. An “*” was added to the connection strength factor which changed 

3 during the simulation for the study of the influence of connection strength to G-causality results.

4
Links Lags (time points)      Connection strength factor

from node 1 to node 3 14     0.2   *

from node 3 to node 6 11 0.05

from node 5 to node 8 10 0.2

from node 10 to node 9 12 0.25

from node 13 to node 5 13 0.05

from node 7 to node 19 16 0.1

from node 19 to node 3 15 0.15

from node 2 to node 4 10      0.4    *

from node 4 to node 2 12       0.5    *

from node 4 to node 15 13      0.45   *

from node 8 to node 6 14      0.3     *

from node 11 to node 9 16       0.35   *

from node 11 to node 18 14      0.3     *

from node 17 to node 7 15      0.55   *

5
6

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26703v1 | CC BY 4.0 Open Access | rec: 15 Mar 2018, publ: 15 Mar 2018



Figure 1(on next page)

Schematic representation of the designed structures for the two examples.

The links of the designed structures are shown by the G-causality matrices with their

connection strength factors (as indicated by the colorbars) for the first and the second

examples (A), and by arrows indicating the direction and versus of the links between nodes

(B).
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Figure 2(on next page)

G-causality results of the first example for different values of the window lengths.

(A) The G-causality matrices show the G-magnitude values (as indicated by the colorbars) for

the causal links at 1792, 4352 and 7424 time points. Pink circles indicate the true positive

links. (B) Graphs of the results. The thickness of the arrows indicates the values of the G-

magnitude for the identified links.
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Figure 3(on next page)

G-causality results of the first example for different values of lags.

(A) The G-causality matrices show the G-magnitude values (as indicated by the colorbars) for

the causal links for adding values of the lags of the starting structure of -9, 5 and 29 time

points. Pink circles indicate the true positive links. (B) Graphs of the results. The thickness of

the arrows indicates the values of the G-magnitude for the identified links.
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Figure 4(on next page)

Graphs of the results of the second example while varying lag values between links.

Results show the identified links by G-causality for a designed structure with lag ranging from

3 to 9 time points (adding value to the starting structure was -7), ranging from 10 to 16 time

points (no adding value), ranging from 39 to 45 time points (adding value of 29).
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Figure 5(on next page)

G-causality results of the first example for different values of the connection strength.

(A) The G-causality matrices show the G-magnitude values (as indicated by the colorbars) for

adding values of the connection strength factor of -0.2, 0.05 and 0.1. Pink circles indicate the

true positive links. (B) Graphs of the results. The thickness of the arrows indicates the values

of the G-magnitude for the identified links.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26703v1 | CC BY 4.0 Open Access | rec: 15 Mar 2018, publ: 15 Mar 2018



PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26703v1 | CC BY 4.0 Open Access | rec: 15 Mar 2018, publ: 15 Mar 2018



Figure 6(on next page)

Graphs of the results of the second example while varying connection strength factor
between links.

Numbers indicate the adding value to the connection strength factors of the starting

designed structure of the Table 2.
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Figure 7(on next page)

G-causality results of the first example for different values of noise.

(A) The G-causality matrices show the G-magnitude values (as indicated by the colorbars) for

adding value of the noise of 0.2, 0.4 and 0.6 the standard deviation of the amplitude of each

signal. Pink circles indicate the true positive links. (B) Graphs of the results. The thickness of

the arrows indicates the values of the G-magnitude for the identified links.
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