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Because increasing evidence has confirmed the importance of plant-associated bacteria

for plant growth and productivity, it is believed that interactions between bacteria and

alien plants play an important role in plant invasions. However, the diversity of bacterial

communities associated with invasive plants is poorly understood. Therefore, we

investigated the diversity of rhizo- and endophytic bacteria associated with the invasive

annual plant Senecio vulgaris L (Asteraceae) based on bacterial 16S rRNA gene data

obtained from 57 samples of four S. vulgaris populations in a subtropical mountainous area

in central China. Significant differences in diversity were observed between plant

compartments. Rhizosphere harbored much more bacterial OTUs and showed higher alpha

diversity than the leaf and root endosphere. Bacterial community composition differed

substantially between compartments and locations in relative abundance profiles,

especially at phyla and family level. However, the top five phyla (Proteobacteria,

Firmicutes, Bacteroidetes, Actinobacteria and Acidobacteria) comprised more than 90% of

abundance in all the bacterial communities. And similar endophytic communities with a

shared core set of bacteria were observed from different S. vulgaris populations. According

to the function prediction based on the identification and abundance information of the

OTU, bacteria characterized as plant pathogens, as well as those involved in ureolysis and

nitrate reduction, were rich in endophytic communities. This study reveals the

microbiomes and their putative function in the invasive S. vulgaris plants and is also the

first step for future studies on the role of interactions between bacteria and alien plants in

plant invasions.
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21 Abstract

22 Because increasing evidence has confirmed the importance of plant-associated bacteria for plant 

23 growth and productivity, it is believed that interactions between bacteria and alien plants play an 

24 important role in plant invasions. However, the diversity of bacterial communities associated 

25 with invasive plants is poorly understood. Therefore, we investigated the diversity of rhizo- and 

26 endophytic bacteria associated with the invasive annual plant Senecio vulgaris L (Asteraceae) 

27 based on bacterial 16S rRNA gene data obtained from 57 samples of four S. vulgaris populations 

28 in a subtropical mountainous area in central China. 

29 Significant differences in diversity were observed between plant compartmentsÿrhizosphere 

30 harbored much more bacterial OTUs and showed higher alpha diversity than the leaf and root 

31 endosphere. Bacterial community composition differed substantially between compartments and 

32 populations in relative abundance profiles, especially at phyla and family level. However, the top 

33 five phyla (Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria and Acidobacteria) 

34 comprised more than 90% of abundance in all the bacterial communities. And similar endophytic 

35 communities with a shared core set of bacteria were observed from different S. vulgaris 

36 populations. According to the function prediction based on the identification and abundance 

37 information of the OTU, bacteria characterized as plant pathogens, as well as those involved in 

38 ureolysis and nitrate reduction, were rich in endophytic communities. 

39 This study reveals the bacteria and their putative function in the invasive S. vulgaris plants and is 

40 also the first step for future studies on the role of interactions between bacteria and alien plants in 

41 plant invasions.

42 Key words: invasive plant, bacterial community, plant-microbe interactions, endophytic 

43 bacteria, 16S rRNA gene 
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44 Introduction

45 With the development of globalization, the spread and outbreak of invasive species is occurring 

46 more frequently. Invasive plants can displace native species, destroy the structure and function of 

47 local plant communities, and further influence various animals or microbes inhabiting local 

48 communities, leading to decreased local or regional biodiversity and ultimately, unbalanced local 

49 ecosystems and loss of ecological function (Pysek et al., 2010; Blackburn et al., 2011). People 

50 worry that constant expansion of invasive plants reduces the uniqueness of local flora and even 

51 leads to global homogenization of species composition (Orians & Ward, 2010). To 

52 fundamentally control exotic plant invasion, it is essential to understand the mechanism of exotic 

53 plant invasion; accordingly, this topic has become one of the core studies of invasion ecology.

54 Some studies have shown that plants already have genetic characteristics in favor of invasion, 

55 known as the preadaptation hypothesis, which was supported by the observation of more biomass 

56 and higher root-stem ratios when compared with non-invasive plant species in the same genus 

57 under the same conditions (Van Kleunen et al., 2011). Hypotheses such as the Natural Enemies 

58 Release Hypothesis (ERH) (Keane & Crawley, 2002), Evolution of Increased Competition 

59 Ability (EICA) (Blossey & Notzold, 1995), Shifting Defense Hypothesis (Müller-Schärer et al., 

60 2004; Joshi & Vrieling, 2005) and New Weapon Hypothesis (Callaway et al., 2008) explain the 

61 invasion mechanism based on the relationship between plants and aspects of their biotic 

62 environments, such as natural enemies or competitors.

63 However, plants can also form mutualistic symbiotic relationships with other organisms. Land 

64 plants are colonized by microbiota in the rhizosphere, phyllosphere, and endophytic 

65 compartment (within the leaves and roots) (Rodriguez et al., 2008; Bulgarelli et al., 2012; 

66 Lundberg et al., 2012). It is well known that arbuscular mycorrhizal fungi (AMF) and root 

67 nodule bacteria form mutualistic symbioses with plants (Hardoim et al., 2015). Moreover, it was 

68 recently recognized that bacteria other than rhizobia are beneficial to plants. Such plant growth-

69 promoting bacteria (PGPB) or plant growth-promoting rhizobacteria (PGPR) can stimulate plant 

70 growth, increase yield, reduce pathogen infection, and reduce biotic or abiotic stress without 

71 conferring pathogenicity (Compant et al., 2010; Pieterse et al., 2014). PGPR can produce 

72 growth-promoting substances such as IAA, GA3, zeatin, and ABA (Perrig et al., 2007). Many 

73 nitrogen-fixing bacteria in addition to Rhizobium species have been identified from plants (Gaby 

74 & Buckley, 2011).

75 Endophytic microbiome, which live within the tissues and organs of plants but do not cause plant 

76 infections (Rodriguez et al., 2009). Some PGPB are endophytic microbes that can enhance the 

77 tolerance of host plants to stressful environments, promote plant growth and improve plant 

78 protection (Bulgarelli et al., 2013). Moreover, unlike PGPR, endophytic PGPB can be 

79 propagated to the next generation of plants by seeds (Truyens et al., 2015). Accordingly, it can 

80 be inferred that endophytic bacteria can establish long-term symbiotic relationships with host 

81 plants and have an evolutionary impact on the adaptation of plant populations.

82 In recent years, several studies have suggested that endophytic bacteria play an important role in 

83 plant-invasion mechanisms. Sorghum halepense, an invasive plant that thrives on grassland with 

84 few nitrogen sources, contains endogenous nitrogen-fixing bacteria, which have improved the 

85 availability of resources in the soil (Rout & Chrzanowski, 2009; Rout et al., 2013). The effects of 
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86 rhizo- and endophytic bacteria on the invasion of exotic plants are species-specific and vary 

87 across environmental conditions (Long et al., 2008; Rout & Callaway, 2012; Dai et al., 2016). As 

88 people have done for fungal diversity in invasive plants (Shipunov et al., 2008; Mei et al., 2014), 

89 it is equally important to explore the diversity of bacteria associated with invasive plants to 

90 understand the plant-bacterial interactions that occur in the plant-invasion mechanism, 

91 Senecio vulgaris (Asteraceae), an annual or biennial herb, is treated as a weed in the United 

92 Kingdom, Western Europe, North America, Australia and New Zealand (Paul & Ayres, 1987; 

93 Müller-Schärer & Frantzen, 1996; Vitousek et al., 1996; Frantzen & Hatcher, 1997; Robinson et 

94 al., 2003; Figueroa et al., 2007). Senecio vulgaris are small plants with short life cycles and a 

95 high self-crossing rate that can produce large numbers of seeds, which can germinate under the 

96 right conditions at any time; therefore, its ability to spread is very strong (Robinson et al., 2003). 

97 This species was introduced into northeast China in the 19th century, and it is now widely 

98 distributed and included in The Checklist of the Invasive Plants in China (Ndihokubwayo et al., 

99 2016; Zhu et al., 2016; Cheng et al., 2017). Senecio vulgaris grows well in ambient habitats, such 

100 as gardens, lawns and arable land, while it survives in stressful habitats such as roadside areas 

101 and waste facilities (Robinson et al., 2003). Bacteria might help S. vulgaris resist heavy metals as 

102 well as to acquire nitrogen and phosphate in contaminated and oligotrophic environments.

103 In this study, we collected rhizosphere soil and plant samples of S. vulgaris populations from 

104 four sites in the Shennongjia Forestry District, Hubei Province, China. We made the following 

105 hypotheses: (1) plant compartments and sampling locations determine the diversity and function 

106 of rhizosphere and endophytic bacterial communities associated with S. vulgaris plants; (2) 

107 endophytic bacteria communities from different sites share core operational taxonomic units 

108 (OTUs); and (3) rhizosphere and endophytic bacteria have the potential to be beneficial to host 

109 plants. To test these hypotheses, we examined bacterial communities in the rhizosphere and leaf 

110 and root endospheres of S. vulgaris populations using Illumina amplicon sequencing targeting 

111 the bacterial 16S rRNA gene region and through subsequent analyses. We also explored the 

112 functions of the OTUs, especially some of the top core endophytic bacterial OTUs of S. vulgaris 

113 plants based on the Functional Annotation of Prokaryotic Taxa (FAPROTAX) database (Louca 

114 et al., 2016) and by review of previous studies.

115

116 Materials and Methods

117 Sample collection and processing

118 We aimed to examine bacterial communities in the rhizosphere, leaf and root endosphere of S. 

119 vulgaris plants in four locations. Five quadrats were set in three locations and four quadrats were 

120 set in the fourth location. Thus, nineteen quadrats were set in our experiment. From each quadrat, 

121 we collected one rhizosphere, one root and one leaf endosphere sample. In total, we analyzed 57 

122 samples.

123 All samples were collected in April of 2016 in Shennongjia Forestry District, Hubei Province 

124 (Figure 1). In Shennongjia, the annual temperature is 12°C, annual precipitation ranges from 800 

125 to 2500 mm, and the elevation ranges from 398 to 3105 m above sea level. In March and April 
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126 2016, the daily minimum temperature in Shennongjia was often below 10°C (Figure S1). The 

127 vertical vegetation spectrum along sampling sites consisted of mixed deciduous and evergreen 

128 broad-leaved forest (100031700 m) and deciduous forest (160032100 m). 

129 We sampled the S. vulgaris population in a waste disposal facility and a roadside area. At each 

130 sampling point, we set four or five square quadrats with an area of 1 m×1 m. The distance 

131 between each quadrat was greater than 5 m. In each quadrat, more than three healthy S. vulgaris 

132 plants were gently pulled out of the ground, and soil around the roots was shaken off. We then 

133 put these plants into a sterile plastic bag, which was subsequently sealed and stored at 4°C until 

134 return to the laboratory, at which time the samples were treated immediately. All plants from one 

135 quadrat were polled as one sample. 

136 We put the roots of S. vulgaris from one quadrat into a 50 ml centrifuge tube, after which they 

137 were rinsed with sterile water and centrifuged for 5 min at 2000 g. The supernatant was then 

138 discarded, while the rhizosphere soil was stored at -80°C until DNA extraction. Healthy and 

139 undamaged leaves and roots were randomly selected, washed with ultrapure water, soaked and 

140 oscillated for 1 min with 70% alcohol, then washed for 1 or 5 min with 1% sodium hypochlorite 

141 solution (leaves for 1 min and roots for 5 min), and finally rinsed 4 times with sterile water. 

142 Next, 0.1 mL of the final wash was spread on trypticase soy agar (TSA) plates to check for 

143 contamination (Siciliano & Germida, 1999).

144 Plant tissue was macerated with a sterile pestle and mortar with liquid nitrogen and 0.2530.3 g of 

145 finely ground material of soil or plant tissue were used for DNA extraction. We extracted DNA 

146 with the MOBIO Power Soil DNA Isolation Kit (MO-BIO, Carlsbad, CA, USA) according to the 

147 manufacturer9s protocols. 

148 PCR amplification and next-generation sequencing

149 We used 16S rRNA gene amplicons to determine the diversity of the bacterial communities in 

150 each of the samples. For polymerase chain reaction (PCR), we used primers 799F (59-

151 AACMGGATTAGATACCCKG-39) and 1193R (59-ACGTCATCCCCACCTTCC-39), which 

152 were designed to specifically amplify the V5, V6, and V7 hypervariable regions of the 16S 

153 rRNA gene of bacterial DNA while excluding amplification of chloroplast DNA from plants as 

154 suggest in some previous studies (Chelius & Triplett, 2001; Bulgarelli et al., 2012; Bodenhausen 

155 et al., 2013; Beckers et al., 2016). PCR reactions were conducted with a Phusion® High-Fidelity 

156 PCR Master Mix (New England Biolabs). Briefly, the same volume of 1× loading buffer 

157 (contained SYB green) was mixed with PCR products, then electrophoresed on 2% agarose gel 

158 for detection. Samples with a bright main strip between 4003450 bp were chosen for further 

159 experiments. PCR products mixed in equidensity ratios were purified with a Qiagen Gel 

160 Extraction Kit (Qiagen, Germany) and sequencing libraries were generated using a TruSeq® 

161 DNA PCR-Free Sample Preparation Kit (Illumina, USA) following the manufacturer's 

162 recommendations. In addition, index codes were added to the libraries. The library quality was 

163 assessed using a Qubit@ 2.0 Fluorometer (Thermo Scientific) and Agilent Bioanalyzer 2100 

164 system. Finally, the library was sequenced on an IlluminaHiSeq2500 platform and 250 bp 

165 paired-end reads were generated. Sequencing was conducted at Novogene Bioinformatics 

166 Technology Co., Ltd. (Beijing, China).
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167 Sequence data treatment

168 Paired-end reads were assigned to samples based on their unique barcode, truncated by cutting 

169 off the barcode and primer sequence and then merged using FLASH (V1.2.7, 

170 http://ccb.jhu.edu/software/FLASH/). Quality filtering of the raw tags was performed under 

171 specific filtering conditions to obtain high-quality clean tags according to the QIIME (V1.7.0, 

172 http://qiime.org/index.html) quality-controlled process. The tags were compared with those in a 

173 reference database (Gold Database, http://drive5.com/uchime/uchime_download.html) using the 

174 UCHIME algorithm (http://www.drive5.com/usearch/manual/uchime_algo.html) to detect 

175 chimera sequences, which were removed to yield the effective tags.

176 Sequence analyses were performed with the Uparse software (Uparse v7.0.1001, 

177 http://drive5.com/uparse/), and sequences with g97% similarity were assigned to the same OTU. 

178 Representative sequences for each OTU were then screened for further annotation. For each 

179 representative sequence, the GreenGene Database (http://greengenes.lbl.gov/cgi-bin/nph-

180 index.cgi) was employed based on the RDP classifier (Version 2.2, 

181 http://sourceforge.net/projects/rdp-classifier/) algorithm to annotate taxonomic information.

182 To investigate the phylogenetic relationships of different OTUs and the differences in the 

183 dominant species among samples (groups), multiple sequence alignment was conducted using 

184 the MUSCLE software (Version 3.8.31, http://www.drive5.com/muscle/). OTUs abundance 

185 information were normalized using a standard sequence number corresponding to the sample 

186 with the lowest number of sequences.

187 Selection of core bacterial OTUs in the endosphere

188 The core OTUs were manually selected based on the average relative abundance and the relative 

189 frequency of each OTU per compartment. We first ranked the OTUs from highest relative 

190 abundance to lowest, then selected a certain number of top OTUs that collectively comprised 

191 about 80% of the total abundance of the bacterial community. This is similar to the Pareto 

192 concept (the 80320 rule) applied in microbiological community analysis as suggested by Werner 

193 et al. (2011). After their identification, we plotted average relative abundance and frequency of 

194 the core OTUs across each sample type.

195 Bacterial function prediction

196 Based on the identification and abundance information of the OTU, we predicted its 

197 metabolically and ecologically relevant functions using the FAPROTAX database and quantified 

198 every functional groups (Louca et al., 2016). We then illustrated the metabolic structure of the 

199 bacterial communities using a heatmap based on the standard and average data of the relative 

200 abundance of OTUs associated with each function group annotated by FAPROTAX for each of 

201 the 12 sampling groups (3 plant compartments × 4 sampling locations).

202 Statistical analyses

203 Analyses of alpha and beta diversity were performed based on the output normalized data. We 

204 calculated the Shannon diversity (H9) index using the BiodiversityR, while Venn diagrams were 
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205 plotted with the 8venn.diagram9 function of the VennDiagram package. Differences in the 

206 bacterial alpha diversities between compartments and locations were compared by two-way 

207 ANOVA using the 8aov9 function. Multiple comparisons of means between compartments were 

208 accomplished using Tukey Contrasts. Nonmetric multidimensional scaling (NMDS) was 

209 performed using the 8Mass9 and 8vegan9 packages. Permutational ANOVAs (PERMANOVAs) 

210 were conducted with the 8adonis9 function in the 8vegan9 package as described by Desgarennes et 

211 al. (2014). All analyses were conducted using R v.2.15.2 (R Foundation for Statistical 

212 Computing; available at http://www.R-project.org).

213 Results

214 Alpha-diversity of bacterial communities

215 Of 3,046,898 high-quality reads that we obtained, we used the 2,620,319 sequences that 

216 remained after removing OTUs not classified as bacteria or matching chloroplasts, mitochondrial 

217 or Viridiplantae for further analysis. The average length of the sequences was 375 nt. Because of 

218 contamination from chloroplasts, less sequences were obtained from leaf samples than from root 

219 and soil samples. However, all samples showed high-coverage (>10,000 usable reads); therefore, 

220 we used all samples (Table S1). In total, 554,085 reads were annotated to 34 bacterial phyla, 

221 518,579 reads were annotated to 275 bacterial family and 165,219 reads annotated to 246 species 

222 (Table S2).

223 The majority of bacterial OTUs identified in the leaf and root endosphere were also present in 

224 the rhizosphere. Moreover, 289 OTUs were detected solely in the aboveground tissues, which 

225 was a considerably small number and only 6.6% of all identified OTUs. Additionally, only 160 

226 and 69 OTUs were exclusively observed in leaves and roots, representing 12.4% and 4.6% of the 

227 leaf and root communities (Figure 2a). The percentage of OTUs shared between locations was 

228 33%, 17% and 9% for rhizosphere, root and leaf samples, respectively (Figure 2b3d).

229 The levels of microbial diversity differed significantly among compartments. Alpha diversity 

230 measured by the Shannon (H9) index was affected by compartments, but not by locations. 

231 Specifically, H9 decreased significantly from the soil to the root and leaf endospheres (Figure 3; 

232 Table 132).

233 Bacterial community composition

234 Across all samples, we detected a total of 34 distinct bacterial phyla, among which the top ten 

235 phyla comprised an average of > 98% bacteria abundance in all samples, and the top five 

236 (Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria and Acidobacteria) comprised an 

237 average of > 90% of the bacterial abundance (Figure 4). Bacterial community composition 

238 differed substantially between compartments and locations in relative abundance profiles at the 

239 phylum level (Table 1), and the same pattern was found at the OTU level as well (Figure 5). 

240 Samples from different compartments differed from one another in relation to the relative 

241 abundance of the five dominant phyla; specifically, rhizosphere bacterial communities were 

242 enriched for Acidobacteria; root endosphere samples had lowest abundance of Actinobacteria 

243 and leaf endosphere samples had highest abundance of Firmicutes, but depleted levels of 
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244 Proteobacteria and Bacteroidetes (Figure 4; Table 2).

245 The bacterial community composition differed significantly between compartments at the family 

246 level. Rhizosphere bacterial communities had higher abundances of Flavobacteriaceae and 

247 Comamonadaceae, while Oxalobacteraceae and Pseudomonadaceae were most abundant in the 

248 root endosphere and Caulobacteraceae and Pseudomonadaceae were enriched in the leaf 

249 endosphere (Figure 6).

250 Core bacterial OTUs in root and leaf endospheres

251 From the 1,284 OTUs in leaf endosphere, we identified 36 OTUs with > 0.70 relative frequency 

252 as core OTUs that collectively comprised about 80.28% of the leaf endophytic bacterial 

253 communities. The endosphere bacterial communities were dominated by a few bacterial phyla or 

254 orders including Alpha-, Beta-, Gammaproteobacteria, Actinobacteria, Firmicutes (Bacilli) and 

255 Bacteroidetes (Flavobacteria, Table 3).The top five OTUs in the leaf endosphere were 

256 Brevundimonas diminuta (Alphaproteobacteria), Exiguobacterium sibiricum (Bacilli), 

257 Pseudomonas sp. (OTU7, Gammaproteobacteria), OTU6 (Alcaligenaceae, Betaproteobacteria), 

258 and Pseudomonas viridiflava (Gammaproteobacteria, Figure 7a; Table S3).

259 Similarly, from the 1,543 OTUs, we identified 30 OTUs as core root endophytic bacteria, the 

260 four most abundant being OTU3 (Oxalobacteraceae, Betaproteobacteria), Pseudomonas sp. 

261 (OTU7), Pseudomonas viridiflava and Duganella sp. (OTU15, Betaproteobacteria, Figure 7b; 

262 Table S4). With the exception of three OTUs, all core root endophytic bacteria were present with 

263 =1.00 relative frequency, and these OTUs collectively comprised about 79.62% of the root 

264 endophytic bacterial communities.

265 Bacterial function prediction

266 In this study, 63 function groups were represented, indicating that any one of these groups was 

267 associated with at least one OTU identified from the samples. Overall, 1,269 of 4,902 OTUs 

268 (25.89%) were assigned to at least one function group, while 3,633 (74.11%) could not be 

269 assigned to any group. Additionally, several OTUs were assigned to multiple functional groups. 

270 We found that the metabolic functional structure of bacterial communities was quite different 

271 among samples from different plant compartments. Moreover, samples from the same plant 

272 compartments showed similar metabolic functional structures ((Figure 8). Samples from 

273 rhizosphere soil were distinct in that they contained abundant OTUs involved in nitrogen 

274 metabolic pathways, plastic degradation, and arsenate detoxification (Figure S2b), while root 

275 endosphere samples were more closely related to nitrogen and methanol (or methylal) metabolic 

276 pathways (Figure S2c). Interestingly, leaf samples differed from others in that they contained 

277 OTUs related to animal parasites, plants and human pathogens (Figure S2d).

278 Twenty-eight of the 60 core OTUs were functionally annotated, among which 22 were annotated 

279 by FAPROTAX and six according to previous studies. Quite a few OTUs were predicated being 

280 associated with the ability to reduce nitrate and ureolysis, while a few were classified as plant or 

281 human pathogens, and two might have been able to conduct methanol oxidation (Table S5-6).
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282 Discussion

283 Difference between plant compartments and sampling locations

284 We determined that bacterial communities associated with S. vulgaris were primarily influenced 

285 by plant compartments, where the alpha diversity was significantly decreased in the root and leaf 

286 endospheres compared with the rhizosphere soil (Figure 3; Table 132). These findings were 

287 consistent with observations from many plants such as Agave species (Coleman-Derr et al., 

288 2015), rice (Edwards et al., 2015) and poplar trees (Beckers et al., 2016). Our study and others 

289 provided evidence that soil is a potential reservoir for endophytic bacteria. Microbial diversity 

290 declines sequentially from the rhizosphere to roots and leaves, which suggests increasingly 

291 stronger competition among microorganisms as the habitat becomes more tightly defined (Müller 

292 et al., 2016).

293 The rhizosphere bacteria and those in the root and leaf endospheres were clearly distinct from 

294 one another. Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes dominated the 

295 rhizosphere and endosphere of S. vulgaris plants. However, the relative abundance of 

296 Proteobacteria and Firmicutes increased, while that of Acidobacteria decreased from the 

297 rhizosphere to the endosphere. These findings are consistent with observations from other plants 

298 such as rice (Edwards et al., 2015), maize (Liu et al., 2017), grapes (Zarraonaindia et al., 2015), 

299 agave (Coleman-Derr et al., 2015), Brassica stricta (Wagner et al., 2016), Oxyria digyna, and 

300 Saxifraga oppositifolia (Kumar et al., 2017). Taken together, these results indicate that there may 

301 be some factors that shape the structure of endophytic bacteria acting in different environments 

302 and host species. Bulgarelli et al. (2012) suggested that such factors included the 

303 physicochemical properties of plant cell walls and metabolites from active plant cells. Moreover, 

304 Bulgarelli et al. (2013) put forward a two-step selection model in which rhizodeposition and 

305 convergent host genotype-dependent selection drives the community shift in the rhizosphere and 

306 endophyte microbiota differentiation. Obviously, this plant selection process can explain the 

307 differentiation between the bacteriome in the endosphere and in soil.

308 We also found that bacterial communities associated with S. vulgaris were influenced by the 

309 sampling locations. This kind of influence lies in the difference between climate and soil 

310 physiochemical properties between locations. Moreover, S. vulgaris plants often differed 

311 between locations, which could also affect bacterial communities. Recent studies have 

312 demonstrated that plant host-specific traits, including broad morphological characteristics 

313 (Kembel et al., 2011) and specific genetic pathways and gene products (Horton et al., 2014; 

314 Lebeis et al., 2015), can have significant effects on microbiome composition and diversity.

315 Core bacterial OTUs in root and leaf endospheres

316 When only the profile of the endophytic bacterial OTUs was considered, there were great 

317 differences between locations (Figure 2). However, when the abundance of the OTUs was 

318 considered, S. vulgaris plants from different locations were found to share the same core OTUs 

319 in the leaf and root endospheres. These core OTUs accounted for much less than 20% of the total 

320 OTUs, but 80% of the abundance of the endophytic bacterial communities. These findings 

321 demonstrated that the core endophytic bacteriome was consistent across hosts of the same 

322 species grown in different locations, as has been observed in Arabidopsis (Bulgarelli et al., 2012; 
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323 Lundberg et al., 2012), grapes (Samad et al., 2017) and some other plant species (Kumar et al., 

324 2017).

325 The dominating phyla or order, including Alpha-, Beta-, and Gammaproteobacteria, 

326 Actinobacteria, Firmicutes (Bacilli) and Bacteroidetes (Flavobacteria) also tend to dominate the 

327 endophytic bacteriomes of other plants reviewed by Hardoim et al.(2015), Müller et al. (2016) 

328 and Finkel et al. (2017).

329 The core OTUs in leaves belonged to 19 families (Table S3), while those in roots belonged to 10 

330 families (Table S4). We compared these dominant families with those reported in previous 

331 studies. Dominant families in S. vulgaris roots substantially overlapped with those reported as a 

332 core set of Arabidopsis thaliana, Salicornia europaea and Helianthus annuus: Oxalobacteraceae 

333 and Flavobacteriaceae were found as core members of the root microbiome in six studies, while 

334 Comamonadaceae were observed as core taxa of the root microbiome in seven different studies. 

335 In relation to leaf endophytic bacteria, A. thaliana shared the abundant leaf taxa at the family 

336 level, while Sequoia sempervirens and Sequoia dendrongiganteum shared few leaf taxa with S. 

337 vulgaris (Table 4). The comparison indicated that although the host effect on the structure of 

338 endophytic bacteria communities was strong, taxa similarity could be observed at the phylum, 

339 order or even the family level.

340 In leaf and root bacterial communities of S. vulgaris, there were several dominant genera; 

341 namely, Brevundimonas, Pseudomonas, Exiguobacterium, Sphingomonas, Flavobacterium, 

342 Rhizobium, Massilia, and Duganella. Among these, Pseudomonas and Rhizobium have been 

343 thoroughly investigated as plant-associated genera. Pseudomonas are known to occupy 

344 numerous ecological niches, including the rhizospheres and endospheres of many plants. For 

345 instance, 21 Pseudomonas strains were isolated from the roots of Populus deltoides (Jun et al., 

346 2015), and 12 Pseudomonas strains showed promising growth-promoting effects when applied to 

347 lettuce in the field (Cipriano et al., 2016). Massilia and Duganella are Burkholderiales, which are 

348 well known for their biodegradative capacities and antagonistic properties toward multiple soil-

349 borne fungal pathogens (Benítez & Gardener, 2009; Chebotar et al., 2015). Finally, the genus 

350 Flavobacterium comprises a significant fraction of endophytic microbiomes in a broad range of 

351 plant species, indicating a specialized capacity to proliferate in plant environments and 

352 suggesting a role in plant function (Kolton et al., 2016).

353 We also identified some cold-resistant bacteria as core bacterial OTUs in root and leaf 

354 endospheres of S. vulgaris. These bacteria included Sphingomonas aerolata, Sphingomonasfaeni, 

355 Exiguobacterium sibiricum and OTU 3. Isolates of two Sphingomonas species (S. aerolata and S. 

356 faeni) showed psychrotolerant traits (Busse et al., 2003). Exiguobacterium sibiricum is one of 14 

357 known Exiguobacterium spp. (Vishnivetskaya et al., 2009). Strains of this species isolated from 

358 the Siberian permafrost could grow well at low temperature (e.g., 4°C) and had remarkable 

359 tolerance to repeated freeze-thawing cycles (Vishnivetskaya et al., 2007). OTU3 

360 (Oxalobacteraceae), which may have been from members of the Duganella, Rugamonas or 

361 Janthinobacterium genus, was highly abundant in root samples (Figure 7b; Table S4). 

362 Janthinobacterium lividum was observed in the endosphere of two native perennial plants, 

363 Oxyria digyna and Saxifraga oppositifolia, in three Arcto-Alpine regions (Kumar et al., 2017). 

364 Janthinobacterium spp. were reported to be thriving in extreme cold, dry, and high solar 

365 ultraviolet (UV) radiation environments and to manifest strong antimicrobial activity (Koo et al., 
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366 2016)( and references inthere). When our plants were collected in April of 2016, in Shennogjia, 

367 we found that S. vulgaris was one of the weeds that emerges in early spring, and that the daily 

368 minimum temperature was often below 10°C (Figure S1). Therefore, it is not surprising that the 

369 cold-resistant bacteria are present in the endosphere of S. vulgaris plants in this region, and it is 

370 possible that they could facilitate host growth under cold conditions.

371 Bacterial function prediction

372 Corresponding to the structural differences between plant compartments, bacterial communities 

373 from different compartments also differed relative to functional grouping. This functional 

374 fraction based on the plant microenvironment has also been observed in other plants, including 

375 Espeletia species in an Andean high-mountain ecosystem (Ruiz-Pérez et al., 2016). Similar to 

376 PICRUST (Langille et al., 2013) and Geochip (He et al., 2010), FAPROTAX classifies bacterial 

377 function based on metabolomic traits. Moreover, FAPROTAX adds annotations according to the 

378 ecological relationship between bacteria and eukaryotes (plants, animal and humans). Thus, we 

379 may see that more human, animal and plant pathogens were harbored in the S. vulgaris leaf 

380 endosphere than that in the other compartments (Fig 7, Table S536). However, care should be 

381 taken when drawing this conclusion because the properties of pathogenicity may depend on 

382 many factors, including plant and microbial genotype, microbial numbers, and quorum sensing 

383 or environmental conditions (Hardoim et al., 2015).

384 There were abundant OTUs involved in nitrogen metabolic pathways, including ureolysis and 

385 nitrate reduction. Six endophytic bacteria belonging to four genera (Pseudomonas, 

386 Flavobacterium, Rhizobium and Xanthomonas) isolated from burley tobacco had strong abilities 

387 to reduce nitrate and nitrite, and they are also observed in the S. vulgaris endospheres. These 

388 endophytic bacteria can be used to reduce tobacco-specific nitrosamines (TSNA), which are 

389 carcinogens found in the tobacco plant (Zhu et al., 2004). The six endophytic bacteria may have 

390 a close affinity to bacteria involved in nitrogen metabolic pathways, and we may isolate 

391 endophytic bacteria from these four genera and investigate whether they were related to nitrogen 

392 metabolic pathways in future studies.

393 The FAPROTAX annotates the dominant endophytes B. diminuta and R. leguminosarum as plant 

394 pathogens; however, some studies offer evidence suggesting that they may also be beneficial to 

395 host plants. Singh et al. (2016) applied B. diminuta to rice and found it helped reduce arsenic 

396 accumulation, and that it produced IAA to obtain soluble phosphate and promote the growth of 

397 rice. Moreover, R. leguminosarum biovar. Phaseoli isolated from sludge-treated soil was found 

398 to form root nodules in white clover (Trifolium repens) (Chaudri et al., 1992; Chaudri et al., 

399 1993). Purchase et al. (1997) found that R. leguminosarum were resistant to heavy metals, 

400 especially to cadmium, and that they could effectively conduct nitrogen fixation. In addition, 

401 Chabot et al. (1996) showed that R. leguminosarum promoted the growth of maize and lettuce 

402 via phosphate solubilization. 

403 When studying the plant bacteriome, it is important to know whether a certain bacterium has 

404 plant growth-promoting traits (PGPT), such as the ability to produce indole acetic acid (IAA), 

405 hydrogen cyanide, siderophore, and ACC deaminase, the ability to fix nitrogen or solubilize 

406 phosphate, and antifungal activity. Because large culture collections are available for controlled 

407 experimentation, the function of plant-associated bacteria is becoming more accessible, and it is 
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408 anticipated that databases focusing on the PGPT diversity of plant bacteria will soon be 

409 available.

410 Conclusions

411 Bacterial 16S rRNA gene data obtained from rhizosphere soil and root and leaf endosphere 

412 samples in four S. vulgaris populations in a subtropical mountainous area revealed significant 

413 structural and functional differences between bacterial communities from different plant 

414 compartments and populations. However, similar endophytic communities formed from a shared 

415 core set of bacteria were acquired, despite a distance of over 100 km and an elevation range of 

416 1,20031,800 m. As expected, we observed heavy metal-resistant, phosphate-solubilizing and 

417 nitrogen-fixing bacteria, such as B. diminuta and R. leguminosarum, in S. vulgaris at relatively 

418 high abundance. However, the presence of cold-resistant bacteria was unexpected. The presence 

419 of these kind of bacteria might be important to the ability of S. vulgaris to adapt to harsh 

420 environments. Future studies should be conducted to isolate these endophytes in S. vulgaris 

421 plants and test their function in vitro and in vivo.
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Figure 1(on next page)

The map of four sampling locations in Shennongjia, Hubei Province, China
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Figure 2(on next page)

Venn diagrams of shared OTUs (number of OTUs) across three compartments of Senecio

vulgaris plants and four sampling locations.

L=leaf endosphere, R=root endosphere, RS=rhizosphere; 134 represent the four sampling

locations.
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Figure 3(on next page)

Estimated Shannon index (H9) in the bacterial communities of each compartment of

Senecio vulgaris plants and sampling location
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Figure 4(on next page)

Phylum-level relative abundance plots of the bacterial communities associated with

each compartment of Senecio vulgaris plants and sampling location.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26701v1 | CC BY 4.0 Open Access | rec: 14 Mar 2018, publ: 14 Mar 2018



PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26701v1 | CC BY 4.0 Open Access | rec: 14 Mar 2018, publ: 14 Mar 2018



Figure 5(on next page)

Nonmetric multidimensional scaling (NMDS) plots for Bray3Curtis distances of the

bacterial communities associated with each compartment of Senecio vulgaris plants and

sampling location.
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Figure 6(on next page)

Family-level relative abundance plots of bacterial communities associated with each

compartment of Senecio vulgaris plants and sampling locations
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Figure 7(on next page)

Relative frequency versus relative abundance of core bacterial operational taxonomic

units (OTUs) in the root and leaf endospheres of Senecio vulgaris plants

OTUs: 1=Brevundimonas diminuta, 2=Exiguobacterium sibiricum, 3=Pseudomonas spp.,

4=an undefined species from Alcaligenaceae, 5=Pseudomonas viridiflava, 6=an undefined

species from Oxalobacteraceae, and 7=Duganella spp.
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Figure 8(on next page)

Functional community structure of bacterial communities associated with each

compartment of Senecio vulgaris plants and sampling locations

L = leaf endosphere, R=root endosphere, RS=rhizosphere; 1-4 represent the four sampling

locations.
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Table 1(on next page)

Effect of plant compartments and sampling locations on diversity and structure of

bacterial communities in rhizo- and (leaf or root) endosphere of Senecio vulgaris plants

***P <0:001; **P <0:01; *P <0:05.
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(a) Two 3 way ANOVA test (Shannon index as independent variable)

Factor Sum.Sq Df F.value P.value

Location 3.65 3 2.47 0.07* 

Compartment 206.06 2 209.40 0.001 ***

Location: Compartment 1.47 6 0.50 0.81 

Residuals 22.14 45

(b) Permutational ANOVAs (relative abundance of the top 10 phyla as independent variable)

Location 0.13 3 2.28 0.016*

Compartment 0.77 2 19.76 0.001***

Location: Compartment 0.20 6 1.74 0.022*

Residual 0.88 45

1

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26701v1 | CC BY 4.0 Open Access | rec: 14 Mar 2018, publ: 14 Mar 2018



Table 2(on next page)

Results of the multiple comparisons of diversity and relative abundance of the top five

phyla of bacterial community from different compartments of Senecio vulgaris plants

***P <0:001; **P <0:01; *P <0:05
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(a) Shannon index

Comparison pair Estimate Std. Error t. value

Root endosphere-Leaf endosphere -0.17 0.23 -0.72 

Rhizosphere -Leaf endosphere 3.95 0.23 17.12 ***

Rhizosphere - Root endosphere 4.11 0.23 17.85 ***

(b) Acidobacteria

Root endosphere-Leaf endosphere 0.00 0.00 0.67 

Rhizosphere -Leaf endosphere 0.03 0.00 11.78 ***

Rhizosphere - Root endosphere 0.03 0.00 11.26 ***

(c) Actinobacteria

Root endosphere-Leaf endosphere -0.07 0.01 -5.71*** 

Rhizosphere -Leaf endosphere 0.01 0.01 0.43 

Rhizosphere - Root endosphere 0.07 0.01 6.23*** 

(d) Bacteroidetes

Root endosphere-Leaf endosphere 0.09 0.02 5.18*** 

Rhizosphere -Leaf endosphere 0.09 0.02 5.46 ***

Rhizosphere - Root endosphere 0.01 0.02 0.35 

(e) Firmicutes

Root endosphere-Leaf endosphere -0.12 0.03 -3.55** 

Rhizosphere -Leaf endosphere -0.13 0.03 -3.74**

Rhizosphere - Root endosphere -0.01 0.03 -0.19 

(f) Proteobacteria

Root endosphere-Leaf endosphere 0.14 0.04 3.41 **

Rhizosphere -Leaf endosphere -0.06 0.04 -1.57 

Rhizosphere - Root endosphere -0.20 0.04 -4.98*** 
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Table 3(on next page)

The bacterial taxa dominating in the endosphere of Senecio vulgaris plants *

*This table summarized the taxa information of the core OTUs in endosphere of S.vulgaris plants, details of

the core OTUs can be seen in Table S2-3; /=unidentified taxa
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1

Phylum Class Order Family Genus

In leaves and roots

Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Chryseobacterium

Flavobacterium

Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas

Gammaproteobacteria Enterobacteriales Enterobacteriaceae /

Pseudomonadales Pseudomonadaceae Pseudomonas

Only in leaves

Actinobacteria / Corynebacteriales Corynebacteriaceae Corynebacterium

Mycobacteriaceae Mycobacterium

Micrococcales Brevibacteriaceae Brevibacterium

Micrococcaceae Kocuria

Propionibacteriales Propionibacteriaceae Propionibacterium

Firmicutes Bacilli Bacillales Bacillaceae Bacillus

Family_XII Exiguobacterium

Staphylococcaceae Staphylococcus

Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Brevundimonas

Rhizobiales Bradyrhizobiaceae Bosea

Bradyrhizobium

Rhizobiaceae Ensifer

Betaproteobacteria Burkholderiales Alcaligenaceae /

Comamonadaceae Pelomonas

Variovorax

Oxalobacteraceae /

Duganella

Massilia

Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter

Only in roots

Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Rhizobium

Sphingomonadales Sphingomonadaceae Sphingobium

Betaproteobacteria Burkholderiales Comamonadaceae Acidovorax

Methylophilales Methylophilaceae Methylophilus

Methylotenera

Gammaproteobacteria Xanthomonadales Xanthomonadaceae Stenotrophomonas
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Table 4(on next page)

Dominant bacterial families in the root and leaf endosphere of Senecio vulgaris plants

reported as core members in previous studies

a Dominant family in root endosphere of S. vulgaris, bDominant family in leaf endosphere of S.

vulgaris (Figure 6). : corresponds to bacterial families present as core members. Arabidopsis

thaliana, Barely and Rice are based on Müller et al. and references inthere (2016); Vitis spp.

based on Samad et al. (2017); Oxyria digyna and Saxifraga oppositifolia based on Kumar et

al. (2017); Populus tremula, and Populus alba based on Beckers et al. (2016); Salicornia

europaea based on Zhao et al. (2016); Helianthus annuus based on Leff et al. (2016);

Sequoia sempervirens and Sequoia dendrongiganteum based on Carrell & Frank (2015).
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1

Root endosphere Leaf endosphere

Famliy
A. thaliana Barely Rice

Vitis 

spp.

O. digyna, 

S. oppositifolia

P. tremula,

P. alba
S. europaea H. annuus A. thaliana

 P. 

tremula, P. 

alba

S. sempervirens, 

S. giganteum

Caulobacteraceaea, b : : : :
Pseudomonadaceaea, b : : : : : : :
Sphingomonadaceaea, b : : : : : :

Oxalobacteraceaea, b : : : : : : : :
Flavobacteriaceaea, b : : : : : : :
Comamonadaceaea, b : : : : : : : :

Rhizobiaceaea : : : : : : :
Enterobacteriaceaea : : : :
Methylophilaceaea : :

Xanthomonadaceaea : : : :
Alcaligenaceaeb : : :

Family_XIIb

Bacillaceaeb : :
Propionibacteriaceaeb
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