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Multi-gene analysis of the symbiotic and free-living 
dinoflagellate genus Symbiodinium

Symbiodinium, a large group of dinoflagellates, live in symbiosis with marine protists, 

invertebrate metazoans, and free-living in the environment. Symbiodinium are functionally 

variable and play critical energetic roles in symbiosis. Our knowledge of Symbiodinium has 

been historically constrained by the limited number of molecular markers available to study 

evolution in the genus. Here we compare six functional genes, representing three cellular 

compartments, in the nine known Symbiodinium lineages. Despite striking similarities among 

the single gene phylogenies from distinct organelles, none were evolutionarily identical. A 

fully concatenated reconstruction, however, yielded a well-resolved topology identical to the 

current benchmark nr28S gene. Evolutionary rates differed among cellular compartments and 

clades, a pattern largely driven by higher rates of evolution in the chloroplast genes of 

Symbiodinium clades D2 and I. The rapid rates of evolution observed amongst these 

relatively uncommon Symbiodinium lineages in the functionally critical chloroplast may 

translate into potential innovation for the symbiosis. The multi-gene analysis highlights the 

potential power of assessing genome-wide evolutionary patterns using recent advances in 

sequencing technology and emphasizes the importance of integrating ecological data with 

more comprehensive sampling of free-living and symbiotic Symbiodinium in assessing the 

evolutionary adaptation of this enigmatic dinoflagellate.
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Abstract

Symbiodinium, a large group of dinoflagellates, live in symbiosis with marine protists, 

invertebrate metazoans, and free-living in the environment. Symbiodinium are functionally 

variable and play critical energetic roles in symbiosis. Our knowledge of Symbiodinium has been 

historically constrained by the limited number of molecular markers available to study evolution 

in the genus. Here we compare six functional genes, representing three cellular compartments, in 

the nine known Symbiodinium lineages. Despite striking similarities among the single gene 

phylogenies from distinct organelles, none were evolutionarily identical. A fully concatenated 

reconstruction, however, yielded a well-resolved topology identical to the current benchmark 

nr28S gene. Evolutionary rates differed among cellular compartments and clades, a pattern 

largely driven by higher rates of evolution in the chloroplast genes of Symbiodinium clades D2 

and I. The rapid rates of evolution observed amongst these relatively uncommon Symbiodinium 

lineages in the functionally critical chloroplast may translate into potential innovation for the 

symbiosis. The multi-gene analysis highlights the potential power of assessing genome-wide 

evolutionary patterns using recent advances in sequencing technology and emphasizes the 

importance of integrating ecological data with more comprehensive sampling of free-living and 

symbiotic Symbiodinium in assessing the evolutionary adaptation of this enigmatic dinoflagellate.

Keywords: Multi-gene analysis, rarity, symbiosis, evolutionary rates, chloroplast, mitochondria, 

nuclear, Symbiodinium, dinoflagellate.

Introduction

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.267v1 | CC-BY 4.0 Open Access | received: 4 Mar 2014, published: 4 Mar 2014

P
re
P
ri
n
ts



Dinoflagellates in the genus Symbiodinium are essential components of coral reef 

ecosystems in their role as photosynthetic endosymbionts of a myriad of marine organisms 

belonging to at least five distinct phyla: Foraminifera, Porifera, Cnidaria, Mollusca, and 

Platyhelminthes (Trench, 1993). Perhaps best known for their relationship with scleractinian 

corals, Symbiodinium underpin the productivity and calcification that creates coral skeletons and 

the structures known as coral reefs that serve as habitat for the immense biodiversity these coastal 

ecosystems support. 

Research conducted during the last two decades has allowed extensive genotyping of 

endosymbiotic Symbiodinium in both the Western Atlantic and Indo-Pacific Oceans and across 

host taxa at a variety of spatial and temporal scales (reviewed in Coffroth & Santos, 2005; 

Franklin et al., 2012; Stat, Carter & Hoegh-Guldberg, 2006). Several recent studies have also 

begun to describe Symbiodinium diversity in free-living environments, including the water 

column (Manning & Gates, 2008; Pochon et al., 2010; Takabayashi et al., 2012), sediments 

(Pochon et al., 2010; Porto et al., 2008; Takabayashi et al., 2012), coral sand (Hirose et al., 

2008), coral rubble (Coffroth et al., 2006), on the surface of macroalgal beds (Porto et al., 2008; 

Venera-Ponton et al., 2010), and in fish feces (Castro et al., 2012; Porto et al., 2008). These 

studies have collectively led to the molecular classification of Symbiodinium into nine lineages, 

clades A through I (Table 1), most commonly delineated phylogenetically using the nuclear large 

subunit ribosomal D1-D3 region (nr28S) and the chloroplast large subunit ribosomal DNA 

domain V (cp23S). Clades D, F, and G have been further divided into sub-clades D1-D2, F2-F5, 

and G1-G2 using the same molecules, respectively (Hill et al., 2011; Pochon, LaJeunesse & 

Pawlowski, 2004; Pochon et al., 2006).

Here, we present a multi-gene analysis of Symbiodinium comparing: 1) individual and 

concatenated phylogenies of six markers that include the nr28s, a benchmark gene for clade 
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analyses, and 2) the rates of evolution of two selected genes from three organelles (nucleus, 

mitochondria and chloroplast) across all known clades and sub-clades (Table 2). Individual and 

concatenated phylogenies were analyzed to test the hypothesis that organelles have evolved 

differently among clades and that a six-gene concatenated tree increases the resolution of the 

current nr28S tree. We then applied pair-wise relative substitution rate analyses in each marker to 

characterize compartment-specific differences in evolutionary rates among Symbiodinium clade 

and gene organelle.

Materials and Methods

DNA samples

Thirty-four DNA samples encompassing all known Symbiodinium clades (A-I) and sub-

clades (F2-F5; D1-D2; G1-G2) were selected for phylogenetic analyses (Table 2). These samples 

included fifteen axenic Symbiodinium cultures belonging to five clades/sub-clades (A, B, D, E, 

and F5), seventeen samples originally isolated from symbiotic soritid foraminiferans (Pochon et 

al., 2007; Pochon & Gates, 2010) belonging to six Symbiodinium clades/sub-clades (C, D2, F2-

F4, G1, H, and I), and two samples extracted from the symbiotic bioeroding sponge genus Cliona 

and belonging to Symbiodinium sub-clade G2 (see Bo et al., 2011; Hill et al., 2011). Additionally, 

three cultured dinoflagellates, Gymnodinium simplex [CCMP 419], Pelagodinium beii [Siano et 

al., 2010], and Polarella glacialis [CCMP 1383] were used as outgroups in our analyses 

following Pochon et al. (2012).

Genes Selection, DNA extraction and Sequencing

Six genes from three organelles were chosen for phylogenetic analyses. These include two 

nuclear genes 1) large subunit 28S ribosomal DNA D1-D3 region [nr28S] and 2) elongation 

factor 2 [elf2]; two chloroplast genes 3) large subunit 23S ribosomal DNA domain V [cp23S] and 
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4) the coding region of the photosystem II protein D1 [psbA]; and two mitochondrial genes 5) 

cytochrome oxidase I [coI] and 6) cytochrome B [cob]. Sequences for analysis were gathered 

from 26 samples obtained from a previous study (Pochon et al., 2012), nine DNA samples were 

extracted and partially analyzed in other studies (Pochon et al., 2007; Pochon & Gates, 2010) 

and further sequenced here to cover all genes using the primers and PCR cycling conditions 

described in Pochon et al. (2012), and two DNA samples were extracted from sponge tissues of 

the genus Cliona (courtesy of C. Schoenberg) and sequenced for all genes following Pochon et 

al. (2012) (see Table 2). The psbA gene was not reported in Pochon et al. (2012) and was PCR 

amplified in this study using the forward primer psbA_1.0 (5’-

CWGTAGATATTGATGGWATAAGAGA-3’) located at the 5’ end of the coding region and the 

reverse primer psbA_3.0 (5’-TTGAAAGCCATTGTYCTTACTCC-3’) located approximately 

700 bp downstream from the 5’ end and using standard thermocycling conditions with an 

annealing temperature of 52C. All sequences were obtained by direct sequencing, except for 

nr28S and cp23S sequences, which were cloned prior to sequencing in Pochon et al. (2012), and 

a single sequence per sample included in the present study. In all cases, the variability between 

cloned sequences of any given sample was minimal (e.g., see Figure S1 of Pochon et al., 2012), 

ranging between 0 and 4bp difference (data not shown). However, sequences showing the 

shortest branch length in each sample were selected (data not shown). In cases where several 

sequences showed the same short branch length, one sequence was randomly chosen among them 

and included in the analysis.

Phylogenetic analyses

DNA sequences were inspected and assembled using Sequencher v4.7 (Gene Codes 

Corporation, Ann Arbor, MI, USA) and manually aligned with BioEdit v5.0.9 sequence 

alignment software (Hall, 1999). Thirteen distinct DNA alignments were generated: six 
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alignments corresponding to individual gene alignments, one fully concatenated alignment of all 

six genes (ALL Concat), and six partially concatenated alignments including all possibilities of 

five genes each (i.e., each alignment excluded one of the six gene candidates). Concatenated 

alignments were created using the 'join sequence files' option in TREEFINDER v12.2.0 (Jobb, 

von Haeseler & Strimmer, 2004). elf2 was included in these analyses despite two missing samples 

(see samples #27 and #30; Table 2), which were coded as missing data in all concatenated 

alignments. GenBank accession numbers for all investigated sequences are shown in Table 2.

Each DNA alignment was analyzed independently under both Maximum-likelihood (ML) 

and Bayesian environments. Best-fit models of evolution were estimated for each alignment (see 

Table S1) using Modeltest v3.7 (Posada & Crandall, 1998). ML analyses were carried out using 

PhyML v3.0 (Guindon et al., 2009), and the reliability of internal branches was assessed using 

100 bootstraps with subtree pruning-regrafting branch swapping. Bayesian tree reconstructions 

with posterior probabilities were inferred using MrBayes v3.2 (Ronquist et al., 2012), using the 

same model of DNA evolution as for the ML analyses. Four simultaneous Markov chains were 

run for 1,000,000 generations with trees sampled every 10 generations, with 50,000 initial trees 

discarded as ‘‘burn-in”, based on visual inspections. Concatenated alignments were run under ML 

and Bayesian environments as described above, with the alignments partitioned so that the 

specific model of evolution corresponded to each gene fragment.

Topological tests, rate calculations, and statistical analyses.

To compare the topology of the various trees, approximately unbiased (AU) topological 

congruency tests (Shimodaira, 2002) were performed using site likelihood calculation in RaxML 

v7.2.5 (Stamatakis, 2006), followed by AU tests using CONSEL (Shimodaira & Hasegawa, 

2001) with default scaling and replicate values. elf2 was excluded from the single gene analyses 
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due to missing data (samples #27 and #30; Table 2), but was included in the concatenated 

analyses (see above).

In order to determine evolutionary rates among Symbiodinium lineages for each of the six 

investigated genes, relative-rate tests (RRT) were performed using the program RRTREE v1.1 

(Robinson-Rechavi & Huchon, 2000). Clades and sub-clades were compared in a pair-wise 

fashion with G. simplex as the outgroup. Relative rates of evolution (K-scores from RRTREE 

analysis above) were compared among clades and among cellular organelles using a two way 

ANOVA, followed by post hoc analysis with Tukey’s Honestly Significant Difference (THSD) 

test.

Results

DNA alignments for the six investigated genes ranged between 473 (elf2) and 1,057 bp 

(coI). Individual phylogenies were generated (Figure 1), and each was compared to the topology 

obtained with the nr28S gene, which is the current molecular taxonomic benchmark for the clade-

level classification of Symbiodinium (Hill et al., 2011; Pochon & Gates, 2010; Pochon et al., 

2012). Overall, the cladal relationships were remarkably similar among the genes investigated, 

particularly the basal positions of clades A, D, E and G, and the derived positions of clades B, C, 

F, H, and I. Symbiodinium clades were relatively well resolved in the nuclear and chloroplastic 

genes, but not the mitochondrial genes, which placed clades C, F, and H in completely unresolved 

monophyletic groups (see Figure 1E-1F). However, with the exception of nr28S, the relationships 

amongst clades were weakly supported for all markers, especially in the higher parts of the trees, 

and this was particularly evident for psbA where relationships between clades B, C, D, F, G, H, 

and I were completely unresolved (Figure 1D). Furthermore, the relationships between sub-clades 

within clades D, F, and G showed contrasting results. Well-supported monophyly of all sub-

clades was only observed in the nr28S gene (Figure 1A). Notably however, clade G sub-clades 

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.267v1 | CC-BY 4.0 Open Access | received: 4 Mar 2014, published: 4 Mar 2014

P
re
P
ri
n
ts



(G1 and G2) formed a monophyletic group across all genes. In contrast, the monophyly of clade 

F and clade D sub-clades was only resolved with nr28S  (Figure 1A) and nr28S and cob (Figure 

1A, 1F), respectively. All Symbiodinium strains belonging to the same sub-clade grouped together 

across all genes, with two noteworthy exceptions. First, the four samples of sub-clade F5 (#14-

16) separated into two groups in cob (Figure 1F). Second, sample #24 (Table 2) of sub-clade D2 

diverged significantly to the root of the tree in cp23S (Figure 1C).

In order to increase the phylogenetic signal and assess which of the individual markers 

best reflects the most well resolved evolutionary history of Symbiodinium, a series of gene 

concatenation analyses were conducted. In total, seven distinct concatenated alignments were 

analyzed, including one fully concatenated alignment of all six genes (ALL Concat) consisting of 

a total length of 4,703 bp, and six partially concatenated alignments ranging in length from 3,646 

bp (ALL except coI) and 4,230 bp (ALL except elf2), and including all possibilities of five genes 

each (see Methods). Phylogenetic analysis of the fully concatenated dataset (ALL Concat, Figure 

S1) resulted in a highly resolved Symbiodinium tree with identical topology to nr28S gene, but 

with much stronger phylogenetic signal as evidenced by a significant increase in statistical 

support at all nodes (Figure S1). Other concatenated alignments yielded weaker nodes support 

and unstable cladal relationships globally (data not shown).

Approximately unbiased (AU) topological congruency tests (Shimodaira, 2002) were 

used to verify whether any of the distinct phylogenies resulted in statistically identical topologies. 

First, pair-wise comparisons of single gene phylogenies (Figure 1) resulted in significant p-values 

(p<0.05) in all cases, indicating that the different genes have not followed identical evolutionary 

trajectories (see Table S2A). Second, concatenated topologies tested against single gene 

topologies, also resulted in significant p-values in all instances (data not shown). Third, pair-wise 

comparisons of single gene phylogenies to the concatenated topologies, revealed that the two 

longest genes, coI and nr28S, resulted in 5 and 6 significant topological comparisons, 
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respectively (see Table S2B). Despite the relatively smaller size of nr28S (920bp) compared to 

coI (1057bp), nr28S was the only marker yielding a statistically identical topology to the fully 

concatenated topology (ALL Concat). The nr28S topology, however, was not identical to the best 

topology of the concatenated alignment excluding the nr28S gene fragment (see ALL except 

nr28S in Table S2B). Similarly, pair-wise comparisons of concatenated topologies revealed that 

significant p-values (p<0.05) were only observed against the ‘ALL except nr28S’ topology (Table 

S2B). 

The variable branch lengths observed in the six phylograms (Figure 1) are directly 

proportional to the amount of character change; hence the longest branches are indicative of 

increased evolutionary rates of any given Symbiodinium strain. In most cases, increased rates of 

Symbiodinium clades/sub-clades appeared to be gene-specific rather than a character state 

maintained across all markers. K-scores from relative rate tests were coupled with ANOVA to 

compare the relative rates of evolution among the clades and organelles (Fig. 2) examining all 

clades across the three makers. There was no significant interaction of clade and organelle 

(F16,175=1.57, p=0.081), indicating that the pattern of changes in rates of evolution among clades 

were similar across organelles. However, organelles differed in their relative rates of evolution 

(F2,175=248.9, p=0.0001), driven by rapid rates in the chloroplastic and nuclear compartments in 

comparison to the mitochondrial compartment (Fig. 2A), with the most rapid rates found in the 

chloroplastic markers due the high evolutionary rates of clade I and sub-clade D2 (see Figure 1C 

and 1D). Additionally, there was a significant differences between Clades (F8,175=3.87, p=0.0003) 

driven by the slow rates of clade A, and the rapid rates of Clade I (Fig. 2B)

Discussion 

Multi-gene analysis supports nr28S as a benchmark lineage marker

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.267v1 | CC-BY 4.0 Open Access | received: 4 Mar 2014, published: 4 Mar 2014

P
re
P
ri
n
ts



Our knowledge of Symbiodinium evolution has historically been constrained by the 

limited number of phylogenetic markers that have been applied to this group. To date, less than 

15 DNA loci have been used to examine Symbiodinium diversity in a phylogenetic context 

(LaJeunesse & Thornhill, 2011; Pochon et al., 2012; Rowan & Powers, 1992; Sampayo, Dove & 

LaJeunesse, 2009; Takabayashi, Santos & Cook, 2004; Takishita et al., 2003; van Oppen et al., 

2001), and evolutionary relationships among all existing Symbiodinium lineages have never been 

inferred using more than two concatenated genes (Pochon & Gates, 2010). This study is the first 

to perform a multi-gene analysis using six markers representing three cellular organelles and 

integrating biological samples from all known clades and selected sub-clades that encompass the 

genus Symbiodinium. In spite of the overall similarity among the trees for each nuclear, 

chloroplastic and mitochondrial gene (Figure 1), their topologies were statistically different 

(Table S2). This reflects within and among clade differences inherent to the individual markers. 

Most notably being the unstable positions of clades D, E, F5 and H, as well as weak support for 

among clade relationships observed in most markers investigated. Long-branch attraction 

artifacts (Felsenstein, 1985) most likely accounted for the placement of sub-clade D2 (sample 

#24) at the root of the tree in the chloroplast 23S topology, and for the monophyly of samples #7, 

8, 13, and 14 in the cob topology. While the markers investigated here are conserved genes that 

have a priori limited utility for finer scale (i.e., within clade) analysis, each contains a unique set 

of characteristics, including variable cladal resolution and/or evolutionary rates (e.g., see samples 

#2 and #3 in coI or samples #7, 8, 13, 14 in cob), hence each marker has the potential to address 

different questions. These differences thus support our previous conclusion that no one gene fits 

all of the taxonomic questions being asked in the genus Symbiodinium (Pochon et al., 2012). 

Our fully concatenated analysis, incorporating all investigated genes and totaling 4,703 bp, 

resulted in a highly resolved phylogeny that was statistically identical to the nr28S gene, a gene 

used as the benchmark for assigning Symbiodinium lineages (Figure S1; Table S2). The fact that 
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the concatenated nuclear, chloroplastic, and mitochondrial genes display overall similar 

evolutionary histories, suggests that the molecular taxonomy of the currently recognized 

Symbiodinium clades using nr28S is robust (Pochon et al., 2006; Pochon & Gates, 2010), and 

that the points of clade differentiation are ancient, allowing for a concerted evolution of these 

conserved genes across genomes. These new results support a sequential evolution of 

Symbiodinium clades A/E/G1-G2/D1-D2/I/B/F2-F5/H/C, from most ancestral to most derived, 

respectively. It appears that there is a level of constraint in the system, with recombination likely 

being a rare event (Santos & Coffroth, 2003), a feature that maintains separation among lineages.

Compartment specific evolution and link to environmental preference/prevalence 

Dinoflagellates are characterized by several genetic distinguishing features, including 

large genome size, and complex structure and gene regulation (Barbrook et al., 2010; Hackett et 

al., 2004; Howe, Nisbet & Barbrook, 2008). One prominent feature is the large number of genes 

that have relocated from the ancestral organellar genome to the nucleus, resulting in a significant 

reduction in plastid and mitochondrondrial genomes. For example, the few genes that remain in 

the plastid of peridinin-containing dinoflagellates are primarily the core subunits of the 

photosystem (including cp23S), and the cytochrome b6f and ATP synthase complex (about 16 

genes including psbA) (Hackett et al., 2004). Similarly, the mitochondrial genome of 

dinoflagellates has been reduced to three protein-coding genes (coI, coIII, and cob), but also 

contains a large number of non-functional fragments separated by repetitive non-coding DNA 

(Barbrook et al., 2010; Waller & Jackson, 2009). Despite the fact that the six Symbiodinium 

genes investigated here are only a very small subset of the Symbiodinium genome, they are 

physically separated in three cellular compartments, each with distinct evolutionary constraints 

and potential. For example, our comparisons of evolutionary rates between markers revealed that 

the differences among cellular compartments was primarily driven by the dissimilarity in the 
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rates of evolution in cp23S and psbA in Symbiodinium lineages D2 and I (Fig.1; Fig. 2). 

A possible explanation is that the increased evolutionary rates reflect rarity and adaptation 

to marginal habitats. It has been posited that rare taxa are important in driving evolutionary 

trajectories and innovations (Holt, 1997). Rarity in terms of small population size and isolation 

can drive high rates of adaptation and speciation (e.g. peripheral speciation; Mayr, 1963), as 

mutations in rare species are more likely to accumulate in the periphery of the founding 

population’s habitat where rare species may be subjected to persistent directional selection in the 

absence of gene flow, as they colonize new areas (Garcia-Ramos & Kirkpatrick, 1997). Such a 

scenario is supported by the fact that lineages D2 and I have only been documented on few 

occasions (Carlos et al., 1999; Pochon et al., 2007; Pochon & Gates, 2010), despite numerous 

Symbiodinium surveys conducted over the last 20 years in both the Western Atlantic and Indo-

Pacific Oceans targeting a diversity of host taxa, as well as free-living communities, and crossing 

a variety of spatial and temporal scales (reviewed in Coffroth & Santos, 2005; Stat, Carter & 

Hoegh-Guldberg, 2006). In addition, Symbiodinium D2 and I have only been detected in the 

Hawaiian Archipelago and Micronesia (Guam and Palau), some of the most isolated island 

groups in the world and areas known for harboring high levels of endemism in marine 

biodiversity (Hughes, Bellwood & Connolly, 2002; Pauley, 2003). Both lineages have been 

suspected to either be free-living because of the manner in which the sample was isolated (Carlos 

et al., 1999), or recently ingested free-living strains due to their apparent rarity in nature (Pochon 

& Gates, 2010).

The high rates of evolution in chloroplastic genes in Symbiodinium sub-clade D2 and 

clade I might also reflect a relatively recent transition from free-living to symbiotic lifestyles. 

These habitats are extremely different in nature and composition, with free-living environments 

exhibiting high levels of environmental variability and unpredictability, while symbiotic habitats 

are relatively more predictable being spatially constrained and influenced by the biology of the 
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host. These environmental differences undoubtedly drive the very different morphologies of 

Symbiodinium found in these two habitats, with free-living Symbiodinium flagellated and motile, 

and symbiotic Symbiodinium encysted and immotile. In terms of evolutionary trajectories, such 

differences in environment must exert a profound influence. Symbiodinium strains evolving 

predominantly in symbiosis must have adapted particular biochemistry and chloroplastic 

functions in an environment that bears little or no resemblance to a free-living setting. Previous 

studies on the transition between symbiotic and free-living habitat show that changes in 

evolutionary rate occur in bacteria that have transitioned from free-living to a symbiotic lifestyle 

and mutualism (Lutzoni & Pagel, 1997; Moran, 1996). In addition, in some ectomycorrhizal 

assemblages, changes in evolutionary rate correspond to reversing from symbiotic to free-living 

lifestyle (Hibbett, Gilbert & Donoghue, 2000). Further, rapid and extreme environmental changes 

may favor the survival of rare and transitioning species, as their existing phenotypic diversity 

may contain traits pre-adapted to a changing environment (Holt, 1997). 

Additional work is needed to further explore the implications of transitions between the 

symbiotic and free-living state, with a goal of gaining a more comprehensive understanding of 

the dynamics and mechanisms behind the different evolutionary trajectories observed in the 

chloroplastic compartment of the rare Symbiodinium strains highlighted here. Additionally, the 

increasing use of next-generation sequencing for characterizing entire Symbiodinium genomes 

(e.g., Barbrook et al., 2014) is an exciting avenue that provides unprecedented opportunities for 

the investigation of novel markers and paves the way for much more comprehensive 

phylogenomics studies to come. 
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Figure 1

Single-gene phylogenies of Symbiodinium using two genes from three organelles

Best Maximum likelihood (ML) topologies for Symbiodinium clades and sub-clades A to I 

based on the nuclear genes (A) nr28S and (B) elf2, the chloroplastic genes (C) cp23S and 

(D) psbA, and the mitochondrial genes (E) coI and (F) cob. Numbers in brackets refer to the 

Symbiodinium strains detailed in Table 2. Numbers at nodes represent the ML bootstrap 

pseudoreplicate (BP) values (underlined numbers; 100 BP performed) and Bayesian 

posterior probabilities (BiPP). Black dots represent nodes with 100% BP and BiPP of 1.0. 

Nodes without numbers correspond to BP and BiPP lower than 70% and 0.8, respectively. 

Nodes displaying BP lower than 50% were manually collapsed. The phylograms were rooted 

using the dinoflagellates Gymnodinium simplex, Pelagodinium beii, and/or Polarella glacialis. 

GenBank accession numbers are given in Table 2. Note: All clades are represented, except 

for clade E in the elf2 phylogeny.
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Figure 2

Comparison of relative rates of evolution among Symbiodinium organelles and clades

Plot of mean relative rates of evolution (mean± sem) across the (A) three organelles and (B) 

nine clades. Lower case, italicized letters above the bars represent post hoc THSD tests with 

significant differences between (A) the three organelles and (B) between clades (groups of 

three bars). Sample sizes are shown at the base of each bar, except clade F, where for each 

bar n=20.
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Table 1(on next page)

The nine clades (A-I) and eight sub-clades (D1-D2, F2-F5, and G1-G2) that constitute 

the genus Symbiodinium, with selected literature highlighting the habitat 

prevalence/preference of each lineage.
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Clade/Sub-clade Habitat Preferences/Prevalence References

A Cnidaria LaJeunesse, 2001; Reimer et al., 2006; Stat, Morris & Gates, 2008

Mollusca
Baillie, Belda-Baillie & Maruyama, 2000; Ishikura et al., 2004; LaJeunesse et al., 

2010

Plathyelminthes Baillie, Belda-Baillie & Maruyama, 2000

Water column Manning & Gates, 2008; Pochon et al., 2010; Takabayashi et al., 2012

Sediment Pochon et al., 2010; Porto et al., 2008; Takabayashi et al., 2012

Reef sand/rubbles Coffroth et al., 2006; Hirose et al., 2008

Macroalgal beds Porto et al., 2008

Fish feces Castro & Sanchez, 2012; Porto et al., 2008

B Cnidaria Coffroth, Santos & Goulet, 2001; LaJeunesse, 2001; Santos, Taylor & Coffroth, 2001

Mollusca LaJeunesse, 2002

Porifera Hunter, LaJeunesse & Santos, 2007

Water column Manning & Gates, 2008; Pochon et al., 2010; Takabayashi et al., 2012

Sediment Pochon et al., 2010; Porto et al., 2008; Takabayashi et al., 2012

Reef rubbles Coffroth et al., 2006

Macroalgal beds Porto et al., 2008

Fish feces Castro & Sanchez, 2012; Porto et al., 2008

C Foraminifera Pochon et al., 2001, 2006, 2007; Pochon, JaJeunesse & Pawlowski, 2004

Cnidaria Coffroth & Santos, 2005; LaJeunesse, 2005; Sampayo et al., 2007; Wagner et al., 2011

Mollusca
Baillie, Belda-Baillie & Maruyama, 2000; Ishikura et al., 2004; LaJeunesse et al., 

2010

Plathyelminthes Baillie, Belda-Baillie & Maruyama, 2000

Water column Manning & Gates, 2008; Pochon et al., 2010; Takabayashi et al., 2012

Sediment Pochon et al., 2010; Porto et al., 2008; Takabayashi et al., 2012

Macroalgal beds Porto et al., 2008; Venera-Ponton et al., 2010

D1 Cnidaria Brown et al., 2000; Correa & Baker, 2009; Jones et al., 2008  

Mollusca Ishikura et al., 2004; LaJeunesse et al., 2010

Water column Manning & Gates, 2008; Takabayashi et al., 2012
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D2 Foraminifera Pochon et al., 2007; Garcia-Cuetos, Pochon & Pawlowski, 2006

Porifera Carlos et al., 2001

E Cnidaria LaJeunesse & Trench, 2000; LaJeunesse, 2001

Water column Carlos et al., 2001; Gou et al., 2003; Santos, 2004

F2 Foraminifera Pochon et al., 2001, 2006, 2007; Pochon & Gates, 2010

Cnidaria Rodriguez-Lanetty, Cha & Song, 2002

F3 Foraminifera Pochon et al., 2001, 2006, 2007; Pochon & Gates, 2010

F4 Foraminifera Pochon et al., 2001, 2006, 2007; Pochon & Gates, 2010

F5 Foraminifera Pochon et al., 2001, 2006, 2007; Pochon & Gates, 2010

G1 Foraminifera Pochon et al., 2001, 2006, 2007; Pochon & Gates, 2010

G2 Cnidaria Bo et al., 2011; van Oppen et al., 2005

Porifera Schoenberg & Loh, 2005; Schoenberg et al., 2008; Hill et al., 2011

Water column Takabayashi et al., 2012

Sediment Takabayashi et al., 2012

Fish feces Castro & Sanchez, 2012

H Foraminifera Pochon et al., 2001, 2006, 2007; Pochon & Gates, 2010

Water column Manning & Gates, 2008

I Foraminifera Pochon & Gates, 2010
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Table 2(on next page)

Description of Symbiodinium samples, host origin, and GenBank accession numbers of 

all DNAs used in this study.
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Sample# Cladea ITS2b Host origin Isolate IDc nr28S elf2 cp23S psbA coI cob

1 C C1 Amphisorus hemprichii 2359X [S] JN558040 JN557869 JN557969 JN557844 JN557891 JN557943

2 C90 Sorites sp. 1355X [S] JN558045 JN557871 JN557975 JN557846 JN557893 JN557945

3 C91 Sorites sp. 2467X [S] JN558048 JN557872 JN557978 JN557847 JN557894 JN557946

4 C15 Amphisorus hemprichii 2361X [S] JN558042 JN557870 JN557972 JN557845 JN557892 JN557944

5 H H1 Sorites sp. 2382X [S] JN558051 JN557873 JN557981 JN557848 JN557895 JN557947

6 H1a Sorites sp. 2350X [S] JN558053 JN557874 JN557984 JN557849 JN557896 JN557948

7 F2 F2 Sorites sp. 206J [S] JQ247043  JQ277946 JQ247052  JQ277935 JQ277957  JQ277979

8 F2a Sorites sp. 215J [S] JQ247044  JQ277947 JQ247053  JQ277936 JQ277958  JQ277980

9 F3 F3.2 Amphisorus hemprichii 2551X [S] JQ247046  JQ277949 JQ247055  JQ277938 JQ277960  JQ277982

10 F3.1a Amphisorus hemprichii 3455X [S] JQ247045  JQ277948 JQ247054  JQ277937 JQ277959  JQ277981

11 F4 F4.1 Sorites sp. 5121X [S] JQ247047  JQ277950 JQ247056  JQ277939 JQ277961  JQ277983

12 F4.8 Sorites sp. 2692X [S] JQ247048  JQ277951 JQ247057  JQ277940 JQ277962  JQ277984

13 F5 F5.1 Meandrina meandrites RT-133 [C] JN558063 JN557876 JN557996 JN557851 JN557898 JN557950

14 F5.1d Sinularia sp. Sin [C] JN558069 JN557877 JN558000 JN557852 JN557899 JN557951

15 F1 Montipora verrucosa Mv [C] JN558066 JN557875 JN557997 JN557850 JN557897 JN557949

16 F5.2g Montastraea faveolata Mf [C] JN558072 JN557878 JN558004 JN557853 JN557900 JN557952

17 B B1 Plexaura kuna 704 [C] JN558057 JN557879 JN557991 JN557854 JN557901 JN557953

18 B2 Eunicea flexuosa Pflex [C] JN558060 JN557880 JN557993 JN557855 JN557902 JN557954

19 B19a Plexaura kuna 703 [C] JN558055 JN557881 JN557987 JN557856 JN557903 JN557955

20 I I1 Sorites sp. OHU7 [S] FN561559  JQ277955 FN561563 JQ277944 JQ277966 JQ277988

21 I2 Sorites sp. OHU3 [S] FN561560  JQ277956 FN561564 JQ277945 JQ277967 JQ277989

22 D1 D1 Acropora sp. A001 [C] JN558075 JN557882 JN558007 JN557857 JN557904 JN557956

23 D1a unknown anenome Ap02  [C] JN558078 JN557883 JN558010 JN557858 JN557905 JN557957

24 D2 D1.1 Marginopora vertebralis 2485X [S] JQ247049  JQ277952 JQ247058  JQ277941 JQ277963  JQ277985

25 D1.2 Haliclona koremella HK [C] JN558081 JN557884 JN558013 JN557859 JN557906 JN557958

26 G1 G2 Marginopora vertebralis 2479X [S] JN558089 JN557885 JN558019 JN557860 JN557907 JN557959
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27 G2b Marginopora vertebralis 3590X [S] JN558088 N/A JN558017 JN557861 JN557908 JN557960

28 G2 G2.1* Cliona orientalis OR2 [S] JQ247050  JQ277953 JQ247059 JQ277942 JQ277964 JQ277986

29 G2.2* Cliona orientalis RN3 [S] JQ247051  JQ277954 JQ247060 JQ277943 JQ277965 JQ277987

30 E E1 Anthopleura 

elegantissima

RT-383 [C] JN558084 N/A JN558015 JN557862 JN557909 JN557961

31 A A2_1 Bartholomea annulata RT-23 [C] JN558097 JN557887 JN558029 JN557864 JN557911 JN557963

32 A2_2 Gorgonia ventallina RT-89 [C] JN558100 JN557888 JN558032 JN557865 JN557912 JN557964

33 A3 Pseudoplexaura porosa 725 [C] JN558091 JN557889 JN558021 JN557866 JN557913 JN557965

34 A13 Plexaura kuna 708 [C] JN558094 JN557886 JN558027 JN557863 JN557910 JN557962

Outgroup1 G. simplex N/A N/A CCMP419 

[C]

JN558103 JN557890 JN558033 JN557867 JN557914 JN557966

Outgroup2 P. beii N/A N/A PB-1 [C] JN558106 N/A N/A N/A JN557915 JN557967

Outgroup3 P. glacialis N/A N/A CCMP1383 

[C]

JN558108 N/A JN558036 JN557868 JN557916 JN557968

aLetters A to H refer to the Symbiodinium clades, and lineages D1-D2, F2-F5, and G1-G2 are the Symbiodinium sub-clades. bAlpha-numeric names 

correspond to Symbiodinium ITS-2 rDNA molecular taxonomy sensu Pochon et al. (2007). Letters correspond to the Symbiodinium clades, and numbers 

correspond to a specific ITS-2 sequence. All samples are genetically distinct, except for Symbiodinium A2, which was found in two distinct cultures and 

referred here to as A2_1 and A2_2. Types D1.1 and D1.2 corresponds to the symbionts of the foraminifer M. vertebralis and the sponge Haliclona koremella, 

respectively (see Pochon et al. 2007 for details), and were previously described as belonging to Symbiodinium sub-clade D1 (Garcia et al. 2005; Pochon et al. 

2006), but reclassified here as sub-clade D2. Sub-clade D1 contains Symbiodinium strains that are commonly associated with Scleractinian corals, such as 

symbiont ITS2 types D1 and D1a (Stat and Gates 2011). Types G2 and G2b belong to sub-clade G1 as shown in Pochon et al. 2012; *Indicates new ITS-2 

sequences; novel types G2.1 and G2.2 belong to sub-clade G2 following Hill et al. (2011).  cSamples ID are followed by [C] if DNA was extracted from a 

culture, or [S] if extracted from a symbiotic host. All GenBank accession numbers starting with the letters ‘JQ’ were obtained in the present study.
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