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Background. Advances in three-dimensional (3D) shape capture technology have made powerful shape

analyses, such as geometric morphometrics, more feasible. While the highly accurate micro-computed

tomography (¿CT) scanners have been the <gold standard,= recent improvements in 3D surface scanner

resolution may make this technology a faster, more portable, and cost-effective alternative. Several

studies have already compared the two scanning devices but all use relatively large specimens such as

human crania. Here we perform shape analyses on Australia9s smallest rodent species to test whether a

3D surface scanner produces similar results to a ¿CT scanner.

Methods. We captured 19 delicate mouse crania with a ¿CT scanner and a 3D surface scanner for

geometric morphometrics. We ran multiple Procrustes ANOVAs to understand how variation due to scan

device compared to other sources of variation such as biologically relevant sources and operator error.

We quantified operator error with morphological disparity and repeatability. Finally, we tested whether

the different scan datasets could detect intra-specific variation using cross-validation classification.

Shape patterns were visualized with Principal Component Analysis (PCA) plots.

Results. In all Procrustes ANOVAs, regardless of factors included, differences between individuals

contributed the most to total variation. This is also reflected in the way individuals disperse on the PCA

plots. Including only the symmetric component of shape increased the biological signal relative to

variation due to device and due to error. 3D scans create a higher level of operator error as evidenced by

a greater spread of their replicates on the PCA, a higher morphological disparity, and a lower

repeatability score. However, in the test for small intra-specific differences, the 3D scan and ¿CT scan

datasets performed identically.

Discussion. Compared to ¿CT scans, we find that even very low resolution 3D scans of very small

specimens are sufficiently accurate to capture variation at the level of interspecific differences. We also

make three recommendations for best use of low resolution data. First, we recommend analyzing the

symmetric component of shape to decrease signal from operator error. Second, using 3D scans

generates more random error due to increased landmarking difficulty, therefore be conservative in

landmark choice and avoid multiple operators. Third, using 3D scans introduces a source of systematic

error relative to ¿CT scans, therefore do not combine them when possible and especially in studies with

little variation. Our findings support increased use of low resolution 3D images for most morphological
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studies; they are likely applicable to low resolution scans of large specimens made in a medical CT

scanner, for example. As most vertebrates are relatively small, we anticipate our results to bolster more

researchers designing affordable large scale studies on small specimens with 3D surface scanners.
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18 Abstract

19 Background. Advances in three-dimensional (3D) shape capture technology have made 

20 powerful shape analyses, such as geometric morphometrics, more feasible. While the highly 

21 accurate micro-computed tomography (¿CT) scanners have been the <gold standard,= recent 

22 improvements in 3D surface scanner resolution may make this technology a faster, more 

23 portable, and cost-effective alternative. Several studies have already compared the two scanning 

24 devices but all use relatively large specimens such as human crania. Here we perform shape 

25 analyses on Australia9s smallest rodent species to test whether a 3D surface scanner produces 

26 similar results to a ¿CT scanner. 

27 Methods. We captured 19 delicate mouse crania with a ¿CT scanner and a 3D surface scanner 

28 for geometric morphometrics. We ran multiple Procrustes ANOVAs to understand how variation 

29 due to scan device compared to other sources of variation such as biologically relevant sources 

30 and operator error. We quantified operator error with morphological disparity and repeatability. 

31 Finally, we tested whether the different scan datasets could detect intra-specific variation using 

32 cross-validation classification. Shape patterns were visualized with Principal Component 

33 Analysis (PCA) plots. 

34 Results. In all Procrustes ANOVAs, regardless of factors included, differences between 

35 individuals contributed the most to total variation. This is also reflected in the way individuals 

36 disperse on the PCA plots. Including only the symmetric component of shape increased the 

37 biological signal relative to variation due to device and due to error. 3D scans create a higher 

38 level of operator error as evidenced by a greater spread of their replicates on the PCA, a higher 

39 morphological disparity, and a lower repeatability score. However, in the test for small intra-

40 specific differences, the 3D scan and ¿CT scan datasets performed identically. 
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41 Discussion. Compared to ¿CT scans, we find that even very low resolution 3D scans of very 

42 small specimens are sufficiently accurate to capture variation at the level of interspecific 

43 differences. We also make three recommendations for best use of low resolution data. First, we 

44 recommend analyzing the symmetric component of shape to decrease signal from operator error. 

45 Second, using 3D scans generates more random error due to increased landmarking difficulty, 

46 therefore be conservative in landmark choice and avoid multiple operators. Third, using 3D 

47 scans introduces a source of systematic error relative to ¿CT scans, therefore do not combine 

48 them when possible and especially in studies with little variation. Our findings support increased 

49 use of low resolution 3D images for most morphological studies; they are likely applicable to 

50 low resolution scans of large specimens made in a medical CT scanner, for example. As most 

51 vertebrates are relatively small, we anticipate our results to bolster more researchers designing 

52 affordable large scale studies on small specimens with 3D surface scanners.

53

54 Introduction

55 An organism9s shape reveals many facets of its biology, including its evolution, ecology, and 

56 functional morphology. In the past three decades, geometric morphometrics has revolutionized 

57 the field of shape research with better analysis and visualization of shape complexity (Rohlf & 

58 Marcus 1993; Zelditch et al. 2012). As imaging technology continues to advance, three-

59 dimensional (3D) data have become extremely common in geometric morphometric studies, 

60 especially in the cases in which 2D data poorly represent the actual 3D object (Buser et al. 2017; 

61 Cardini 2014; Fruciano 2016; Reig 1996). 3D capture methods include very high resolution yet 

62 high cost and time-intensive options like micro-computed tomography (¿CT) scanning. In 

63 contrast, 3D surface scanning offers lower acquisition costs and faster scanning, but has the 
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64 disadvantage of generally lower resolution, which limits its use on very small specimens (Fig. 1). 

65 For confident use of surface scans in small specimens, it is therefore important to assess the 

66 measurement error introduced by choosing a 3D surface scanner for geometric morphometrics.

67

68 Most vertebrates would be considered small, for example about two thirds of mammals are 

69 below 10kg (Weisbecker & Goswami 2010), which would translate to small skeletal specimens. 

70 Therefore, morphometric studies proposing large sample sizes must be very well funded to use a 

71 ¿CT scanner or have a low-cost option, such as a 3D surface scanner. Previous studies have 

72 compared ¿CT scans to 3D surface scans, however, these were all done in large animals, 

73 primarily primates (Badawi-Fayad & Cabanis 2007; Fourie et al. 2011; Katz & Friess 2014; 

74 Robinson & Terhune 2017; Sholts et al. 2010; Slizewski et al. 2010). While these studies found 

75 low error and high repeatability in 3D surface scans similar to ¿CT scans, there was a suggestion 

76 that higher error occurred in the sample9s smaller specimens (Badawi-Fayad & Cabanis 2007; 

77 Fourie et al. 2011). Other recent studies have conducted 3D geometric morphometric studies on 

78 small vertebrate skulls but nearly all have relied exclusively on ¿CT scanning (Cornette et al. 

79 2013; Evin et al. 2011). The only exception we are aware of is Munoz-Munoz et al. (2016), 

80 which successfully used photogrammetry 3 a technique combining 2D photographs into a 3D 

81 model 3 to analyze domestic mouse skulls (Mus musculus domesticus, C Linnaeus, 1758). 

82 Photogrammetry, like 3D surface scanning, is a low-cost alternative to ¿CT and comes with its 

83 own trade-offs in time and scan resolution (Katz & Friess 2014). Compared to the new 

84 generation of blue light surface scanners, photogrammetry requires more time for image 

85 acquisition and for file processing (Katz & Friess 2014). A previous study on a single macaque 

86 specimen reported inconsistent levels of error across operators and scanners, which contributed 
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87 to the lack of general pattern for differences across scanners/resolutions (Shearer et al. 2017). 

88 However, using an interspecific dataset, Fruciano et al. (2017) reported higher repeatability for 

89 the higher resolution scans and 2.07-11.26% of total variance due to scan type (depending on 

90 device, operator and landmark set combination). We expect that small specimens would 

91 exacerbate any variation due to device and the interaction of device with other factors, such as 

92 landmark choice and operator. More work comparing these different methods 3 ¿CT scanning, 

93 3D surface scanning, and photogrammetry 3 will allow researchers to make an informed 

94 decision. For example, for those with time constraints in museum collections, a fast 3D surface 

95 scanner may be the best option if the resolution is suitable for specimen size. 

96

97 The lower resolution of 3D surface scanners may increase both random and systematic 

98 measurement error, which is exacerbated by small specimens because operators may have more 

99 difficulty identifying landmark locations (Arnqvist & Martensson 1998; Fruciano 2016). 

100 Random error increases variance without changing the mean; this <noise= dilutes biologically 

101 informative patterns and, in principle, decreases statistical power (Arnqvist & Martensson 1998; 

102 Fruciano 2016). By contrast, systematic error is non-randomly distributed, thus changing the 

103 mean and introducing bias to the data (Arnqvist & Martensson 1998; Fruciano 2016). Error 

104 assessment can be done with repeated measures of the same individuals (e.g. Fruciano et al. 

105 2017; Munoz-Munoz & Perpinan 2010; Robinson & Terhune 2017) or by comparison to a <gold 

106 standard= or ideal representation of the specimens (Fruciano 2016; Slizewski et al. 2010; 

107 Williams & Richtsmeier 2003) such as can be achieved with a high resolution ¿CT scan. 

108 Repeated measure designs can uncover this systematic error, for example, if one 3D capture 

109 method differs from another in a specific, non-random, pattern (Fruciano 2016; Fruciano et al. 
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110 2017). Furthermore, designs including repeated measures of the same individuals allow 

111 partitioning of variance into components, quantifying error due to scan type as compared to 

112 biologically-relevant sources of variation such as asymmetry (Fruciano 2016; Klingenberg et al. 

113 2002; Klingenberg & McIntyre 1998). 

114

115 In this study, we quantify the error introduced by studying specimens of a size at the very lower 

116 limits of surface scanner resolution. This situation could also arise when using relatively large 

117 specimens, which are nonetheless at the lower limit of a medical CT scanner9s resolution for 

118 example.  We test whether the complex shape of very small specimens can be adequately 

119 captured using an HDI109 3D surface scanner with a stated resolution of 80 ¿m as compared to a 

120 ¿CT scanner with a resolution of 28 ¿m. To do so, we use the delicate mouse (Pseudomys 

121 delicatulus, J Gould, 1842), one of the smallest rodents in the world with a 55-75 mm head-and-

122 body length (Breed & Ford 2007). The miniscule P. delicatulus crania (~20mm) are at the edge 

123 of the HDI109 3D surface scanner9s range thus providing an extreme test of this scanning 

124 method (Fig. 1, Fig. 2). 

125

126 Methods

127 Data collection

128 We selected 19 adult individuals, male and female, of Pseudomys delicatulus from the 

129 Queensland Museum in Brisbane, Australia (specimen numbers and sexes in Additional File 1: 

130 Table S1). The cranium from each individual was scanned at the Centre for Advanced Imaging at 

131 the University of Queensland in a ¿CT scanner (Siemens Inveon PET/CT scanner). The scanner 

132 was operated at 80 KV energy, 250 µA intensity with 540 projections per 360°, a medium-high 
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133 magnification with bin 2 was applied, and 2000 ms exposure time. The samples were scanned at 

134 a nominal isotropic resolution of 28 ¿m. The data were reconstructed using a Feldkamp 

135 conebeam back-projection algorithm provided by an Inveon Acquisition workstation from 

136 Siemens (IAW version 2.1). Surface models were obtained using Mimics Research version 20.0. 

137

138 Each cranium was also scanned by 3D LMI9s HDI109 blue light surface scanner with a 

139 resolution of 80 ¿m. For brevity, we will refer to this method as 3D scanning. For this method, 

140 the cranium was placed on a rotary table providing the scanner with 360 views. To capture the 

141 entire shape, the cranium was scanned in three different orientations: one ventral view with the 

142 cranium resting on the frontals and two dorsal views with the cranium tipped to each side, resting 

143 on an incisor, auditory bulla, and zygomatic arch. To assist others in replicating our HDI109 3D 

144 surface scanning on small specimens, we have included a Standard Operating Procedure with our 

145 settings (Additional File 2: Supplementary Methods).

146

147 We duplicated the digital file for each unique individual-scan method combination three times 

148 such that each individual was represented by 6 replicates, giving a total sample of 114 replicates 

149 (Fig. 2a). Each replicate was landmarked in Viewbox version 4.0 (dHAL software, Kifissia, 

150 Greece; www.dhal.com; Polychronis et al. 2013). To capture shape, we placed 58 fixed 

151 landmarks, 145 sliding semi-landmarks, and 86 sliding patch points (3D meshes defined by 

152 semi-landmark borders) for a total of 289 points (Fig. 3, Additional File 3: Table S2). We used 

153 the template feature in Viewbox to semi-automate the placement of semi-landmark curves and to 

154 fully automate the placement of patch points. Our landmark design covered most important 

155 biological structures except for the zygomatic arch (Fig. 3); we avoided this fine structure 
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156 because dehydration and loss of support from surrounding muscles during skeletonization almost 

157 certainly causes specimen preparation error (Schmidt et al. 2010; Yezerinac et al. 1992). 

158

159 Data analysis

160 The landmark coordinates for all 114 replicates were aligned using a generalized Procrustes 

161 superimposition implemented in the R package geomorph (v. 3.0.5) (Adams 2016; Adams & 

162 Otarola-Castillo 2013). Superimposition of each set of landmark coordinates removes differences 

163 in size, position, and orientation, leaving only shape variation (Rohlf & Slice 1990). Semi-

164 landmarks and patches were permitted to slide along their tangent directions to minimize 

165 Procrustes distance between replicates (Gunz et al. 2005). The resulting Procrustes tangent 

166 coordinates were used as shape variables in all subsequent shape analyses. All our statistical 

167 analyses were performed either in R (v. 3.3.3) using the R packages geomorph (v. 3.0.5) (Adams 

168 2016; Adams & Otarola-Castillo 2013) and Morpho (v. 2.5.1) (Schlager 2017) or using MorphoJ 

169 (v. 1.06d) (Klingenberg 2011).

170

171 First, asymmetry is a known source of variation within a sample (Klingenberg et al. 2002), so we 

172 tested for it with MorphoJ9s general Procrustes ANOVA function and subsequently removed it 

173 (Fig. 2b). Isolating symmetric shape has been done in other 3D surface scanner studies where 

174 operator and device error have been of the same magnitude as asymmetric error (Fruciano et al. 

175 2017). Variation due to asymmetry is more impacted by operator error because of its smaller 

176 effect sizes compared to variation among individuals (Fruciano 2016; Fruciano et al. 2017; 

177 Klingenberg et al. 2010; Leamy & Klingenberg 2005). This suggests that low resolution studies 

178 on asymmetry would be negatively impacted. For this reason, we performed all subsequent 
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179 analyses on the symmetric shape component. We then performed a PCA on the symmetric shape 

180 variables to visualize the variation between individuals, within scan method replicates, and 

181 between scan method replicates. As an exploratory analysis, PCA can help intuitively visualize 

182 both random error (greater spread of one scan method replicate compared to the other) and 

183 systematic error (repeated pattern of one scan method shifting relative to another). However, 

184 further analyses are necessary to quantify these sources of error. 

185

186 Second, our replicate design allowed us to assess whether an operator digitizing one type of scan 

187 was more variable in landmark placement than when digitizing scans from the other device (Fig. 

188 2c). We did so by computing the Procrustes variance for each individual/device combination. In 

189 geomorph, Procrustes variances are calculated for each set of observations (i.e. replicates) as the 

190 sum of the diagonal elements of the set9s covariance matrix divided by the number of 

191 observations (Adams 2016; Zelditch et al. 2012). We computed Procrustes variance for each 

192 combination of individual and device so that Procrustes variance reflects only variation due to 

193 digitization. We then compared Procrustes variance between devices using a box plot and the 

194 permutational procedure implemented in geomorph. Next we quantified digitization consistency 

195 by computing repeatability (i.e. the intraclass correlation coefficient using the Procrustes 

196 ANOVA mean squares) for each device as suggested by Fruciano (2016). This value is normally 

197 comprised between 0 and 1, with values close to 1 indicating much larger variation due to the 

198 factor used in computing the Procrustes ANOVA (in our case, variation among individuals) 

199 compared to residual variation (in our case, variation among digitizations). In other words, 

200 comparing repeatability between devices gives a similar information to the one obtained by the 

201 box plots of Procrustes variance but on a more easily interpretable scale from 0 to 1.
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202

203 Finally, we investigated whether there is a difference between devices in a commonly used shape 

204 analysis: the detection and correct classification of sexual dimorphism (Fig. 2c). We began with 

205 a Procrustes ANOVA in R on the symmetric component for the subset of individuals with sex 

206 information (n = 11 distinct individuals; n = 66 replicates). This allowed us to gauge the 

207 magnitude of the effect of sexual dimorphism compared to other sources of variation, as well as 

208 test for significant differences in mean shape between males and females. Then with Morpho, we 

209 averaged the shape of each replicate triad for each device, performed a between group PCA 

210 using sex as group and then a cross-validation of classification accuracy (Schlager 2017).

211

212 Results

213 Analyses of shape variation

214 Our Procrustes ANOVA results indicate that variation among individuals (%Var = 47.4) 

215 contributes the most, with asymmetry (fluctuating and directional), device, and operator error 

216 contributing the remainder, in order of greatest to least (Table 1).  The %Var values indicate that 

217 directional asymmetry contributes a similar amount of variation as other sources of non-

218 biological variation and that fluctuating asymmetry accounts for much less than digitization error 

219 and variation between devices (Table 1). This means that using analyses of asymmetry using a 

220 combination of ¿CT and 3D surface scans would likely be unreliable in specimens the size of 

221 delicate mice or for specimens scanned at a similarly low resolution. Furthermore, since 

222 digitization error is large compared to the components of asymmetric variation, even a single 

223 device yet low resolution study of asymmetry would likely be unreliable unless appropriate 

224 arrangements are made to reduce error (Fruciano 2016). 
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225

226 The Procrustes ANOVA on the symmetric component of shape reports the individual shape 

227 representing biological variation is 73.3% (Table 2). Differences between scan devices represent 

228 14.5% and the residuals encompassing differences among replicates or operator error represent 

229 12.2% of total variance (Table 2). Thus, our Procrustes ANOVA shows that most of the variation 

230 is represented by biological variation but the significance of the variation due to device may 

231 indicate systematic error. 

232

233 The PCA of our symmetric dataset revealed that the first 3 principal components (PCs) account 

234 for 47.1% of total variation (PC1 = 26.4%, PC2 = 11.9%, PC3 = 8.9%, n = 114) (Fig. 4). Each of 

235 the remaining PCs accounted for 5% or less of total variation therefore we only considered the 

236 first three. Positive values along PC1 correspond to a larger braincase relative to the rostrum 

237 (Fig. 5a). Positive values along PC2 correspond to a wider frontal bone (Fig. 5b). Finally, 

238 positive values along PC3 correspond to a more convex, dorsally-curved ventral surface (Fig. 

239 5c). 

240

241 The plot of PC1 and PC2 supports the results from the symmetric Procrustes ANOVA in that 

242 most of the visible variation is between clusters of each individual9s replicates. Indeed, 

243 regardless of scanning device, replicates from the same individual cluster together (Fig. 4a). For 

244 most individuals, replicates occupy non-overlapping morphospaces except for those around the 

245 crowded mean shape (Fig. 4a). Within each individual9s morphospace, ¿CT replicates usually 

246 form a tighter cluster than the 3D replicates (Fig. 4a). This pattern suggests that using ¿CT scans 

247 introduces less random error than using 3D scans. Furthermore, within an individual, 3D scan 
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248 replicates tend to cluster closer to other 3D replicates while ¿CT scan replicates tend to cluster 

249 closer to other ¿CT replicates (Fig. 4a). This supports the interpretation for a systematic 

250 difference between scan method shape means reported the Procrustes ANOVA9s significant scan 

251 variation component (Table TK). Indeed, for most individuals, 3D scan replicates score higher 

252 than their ¿CT scan replicates on both PC1 and PC2. This suggests the systematic error may be 

253 driven by 3D scans overestimating both braincase volume and frontal bone width relative to ¿CT 

254 scans (Fig. 4a, Fig. 5a,b). 

255

256 Overall, plots of the scores along the first two components mirror and provide intuitive 

257 visualization to the patterns observed in the analyses using Procrustes ANOVA. The plot of PC1 

258 and PC3 highlights another possible systematic difference between 3D and ¿CT scans (Fig. 4b). 

259 The PC3 axis displaces ¿CT replicates from 3D replicates such that individuals no longer occupy 

260 distinct morphospaces (Fig. 4b). On the PC3 axis, ¿CT scan replicates consistently score higher, 

261 which corresponds to a more dorsally curved ventral surface relative to 3D scan replicates (Fig. 

262 4b, Fig. 5c). Along with PC1 and PC2, PC39s result strengthens the signal for a general pattern 

263 of a difference in the degree of surface curvature captured by 3D and ¿CT scanners, which could 

264 be contributing to the systematic error reported by the Procrustes ANOVA (Table 2). In 

265 summary, despite a small but morphologically significant source systematic error, both the 

266 Procrustes ANOVA and the PCA report that most variation comes from a biological signal, the 

267 differences between individuals. 

268

269 Analyses of variance and error
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270 To compare the digitization error in each scanning device dataset, we calculated the Procrustes 

271 variance among the replicate triads of each individual. We found that Procrustes variance is 

272 significantly (p<0.001) higher in 3D scans (1.34x10-4) than ¿CT (4.81x10-5) scans (Fig. 6). This 

273 means that digitizations are more variable in 3D scans than in ¿CT which is consistent with 

274 decreased clustering in 3D scans relative to ¿CT scans in the PCAs (Fig. 4). 

275

276 The repeatability scores for each scan dataset mirrored the Procrustes variance results but with a 

277 more intuitive number on a 0-1 scale. We found that the ¿CT scan dataset had a repeatability of 

278 0.927 and the 3D scan data had a repeatability of 0.814 (Table 3). This means operators have an 

279 easier time repeating their digitizations (i.e. landmark placements) with ¿CT scans than with 3D 

280 scans. 

281

282 Analyses with a biological example: sexual dimorphism

283 A subset of our dataset had sex information (n = 11; f = 7, m = 4), allowing us to perform a test 

284 on whether using different scan devices to detect a very subtle intra-specific signal produces 

285 different results. Our symmetric Procrustes ANOVA on individuals, sex, and device found that 

286 differences between individuals is still the largest component (Table 4; Rsq = 0.691) with 

287 variation due to device (Rsq = 0.172) and sex/residuals (Rsq = 0.137) contributing similar 

288 amounts. Variation due to device is larger than variation due to sex, which suggests that 3D 

289 scans and ¿CT scans should not be combined for similar analyses. However, the between group 

290 PCAs do not suggest marked sexual dimorphism to begin with plots (Fig. 7). Therefore, the 

291 subtly of this biological signal could be the main reason for the relatively low contribution of sex 

292 to total variation. Finally, we performed a cross-validation test on the between group PCAs to 
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293 assess which scan dataset can more reliably identify sexes based on shape (Table 5). The results 

294 show that in this case, 3D scans and ¿CT scans perform identically (overall classification 

295 accuracy = 64%). 

296  

297 Discussion

298 In this study, we contrasted very high resolution ¿CT scans with their extreme opposite: 3D 

299 surface scans of very small specimens. Our low versus high resolution datasets allowed us to 

300 assess whether the low resolution scans still allow defensible investigations of biological shape 

301 variation. We found that despite the low quality of the 3D scans, sufficient amounts of biological 

302 variation are present to perform, at the very least, interspecific comparisons. In datasets with 

303 only very slight intra-specific differences does the ability to distinguish biological signal from 

304 error9s <noise= occur. For example, the subtle sexual dimorphism in our small sample was only 

305 just detected. However, we present three considerations to make before using low resolution 

306 datasets. First, we found that we needed to remove the signal from asymmetry to investigate 

307 shape variation more confidently. This makes low resolution datasets a poor choice for studies 

308 on asymmetry. Second, using 3D scans creates more random error due to increased landmarking 

309 difficulty, therefore care should be taken in landmark choice, and possibly landmarking software 

310 and operator choice. Digitization error may also be reduced by taking averages of repeated 

311 measurements (Arnqvist & Martensson 1998; Fruciano 2016). Third, using 3D scans also 

312 introduces a source of systematic error relative to ¿CT scans, therefore we recommend not 

313 combining them whenever possible (see also Fruciano et al. 2017), and especially in studies on 

314 small intra-specific variation. In summary, with a few precautions listed above, we expect that 
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315 for studies with similarly sized skulls or similarly low resolution scans, the variation due to error 

316 will be sufficiently low for successful detection of interspecific shape differences.

317

318 Measurement error and 3D scan reliability

319 Systematic error between the two scan devices is shown by consistent displacement patterns in 

320 the PCA. Indeed, across all three PC axes, the scans differ in how they measure concavity around 

321 the braincase, frontal, and ventral surface. This systematic pattern could suggest that the 3D 

322 scanner technology errs on adding volume to the digital specimen relative to the ¿CT scan but it 

323 could also be the other way around with the ¿CT scan distorting the images. Furthermore, even 

324 when using the symmetric component of shape, the percent of variation contributed by scan 

325 device is quite substantial at about 14.5%. Because scan device contributes this much to variation 

326 and because systematic error between scan device exists, researchers expecting very small 

327 variation due to biological sources would be advised not to combine 3D scan and ¿CT scan 

328 datasets. However, overall each individual9s 3D and ¿CT replicates almost always occupied 

329 distinct areas of the morphospace, supporting their comparability for most morphometric studies. 

330

331 While the two scan methods are usually comparable, using the low resolution 3D scans 

332 introduces more digitization error than the higher resolution ¿CT scans, which likely reflects 

333 increased user error due to lower resolution in 3D scans. This increased random error is reflected 

334 in both the larger point clouds of 3D replicates relative to ¿CT replicates in the PCAs as well as 

335 the higher morphological disparity and lower repeatability score of 3D scans. As expected, we 

336 found that the low resolution 3D scans were more difficult to landmark because key cranial 

337 features such as sutures and smaller processes were less distinct (Fig. 1 versus Fig. 3). 
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338 Nevertheless, our 3D scan repeatability score of 0.82 appears consistent with the literature: it is 

339 much lower than 3D scanned human-sized skulls 3 above 0.95 (Badawi-Fayad & Cabanis 2007; 

340 Fourie et al. 2011) but it is within the range of 3D scanned macropodoids (e.g., kangaroos) 3 

341 0.78-0.98, depending on device and landmark choice (Fruciano et al. 2017). This trend of 

342 decreasing repeatability with decreasing body size may reflect measurement error becoming a 

343 larger percentage of overall size (Robinson & Terhune 2017). Relatedly, recent work has shown 

344 that unreliable landmarks, or those with greater variability in placement, significantly decrease 

345 repeatability (Fruciano et al. 2017). This may be especially true for small specimens, for which 

346 small variations from the landmark location represent a larger percentage of their overall size. 

347

348 This study did not look at multiple operator error which can be considerable, particularly if 

349 difficult landmarks are included (Fruciano et al. 2017). If inter-operator error were combined 

350 with the resolution-driven measurement error found here, it is possible that biological signal 

351 would diminish to a degree that could not support even interspecific comparisons.

352

353 Measurement error compared to biological variation

354 The challenge of any quantitative measurement study is to minimize measurement error 

355 introduced from various sources (in our case, device, resolution, and observer) relative to the 

356 <true= signal of biological variation. In the case of inter-observer error, which is one 

357 measurement error source, several studies suggest that interspecific variation overwhelms inter-

358 observer such that it does not pose an issue with the correct interpretation of results (Robinson & 

359 Terhune 2017).

360
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361 In our test on the detectability of sexual dimorphism relative to scan device, we showed that 

362 while variation contributed by each was similar (and that from scan device slightly higher), both 

363 scan datasets detected a small sexually dimorphic pattern and they performed equally. This 

364 suggests that 3D scans may even be acceptable for detecting some intra-specific patterns. This 

365 was a small sample (n = 11) therefore further study with larger datasets would improve 

366 confidence for using 3D scans for intra-specific studies. Nevertheless, it is promising that 3D 

367 scans and ¿CT scans performed similarly even at such a small sample size. 

368

369 Choosing a digitization method: 3D surface scanning versus ¿CT versus photogrammetry

370 With many options for digitizing 3D specimens available, decisions on the acquisition mode 

371 must consider price, scanning time, processing time, portability, and scan resolution. The one-off 

372 investment of a relatively high resolution 3D surface scanner such as the HDI109 provided a 

373 model portable enough to take on airplanes and has fast scanning and processing times. Our 

374 model took 10 minutes from starting the scan to the finished surface file, but note that larger 

375 specimens requiring multiple sub-scans will take longer. These fast acquisition times are an asset 

376 in collection efforts that rely on expensive and time-limited museum travel. For example, one of 

377 us (AEM) digitized over 100 individuals in one week using the same scanning protocol. 

378 However, the quality and speed of scanning varies by model; for example, other 3D surface 

379 scanners could take over 45 minutes to capture one specimen and may also require more effort to 

380 process scans (Katz & Friess 2014). 

381

382 Compared to 3D surface scanners, ¿CT scanners provide much higher resolution, which in this 

383 study translated into less measurement error. However, uCT facilities are not widely accessible, 
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384 not mobile, and tend to be more expensive. Depending on the facility, ¿CT scanning involves 

385 transport to the facility, scanning either by the operator, processing scans into image stacks, and 

386 finally loading scans into specialized (and frequently high-cost) software to do the 3D 

387 reconstruction. These reconstructions can be time consuming especially if the cranium needs to 

388 be separated from the mandibles. Finally, specimens need to be loaned from their collections for 

389 uCT acquisition, which requires specimen transport and curator permission and is particularly 

390 difficult when large numbers of specimens from distant locations need to be scanned.  

391

392 This study did not investigate photogrammetry, which is another and increasingly popular 

393 method for digitizing 3D shape. This method uses software to align 2D photographs taken from 

394 many different views into a 3D file. Photogrammetry is much cheaper and more portable than 3D 

395 surface scanning since it only requires a camera of suitable resolution and very affordable photo-

396 alignment software like Agisoft PhotoScan (Agisoft LLC, St. Petersburg, Russia; 

397 www.agisoft.com). The trade-offs are that in our experience, photogrammetry takes at least three 

398 times longer to acquire the photos, it involves higher risk of human error or inconsistency during 

399 photography, and it requires an order of magnitude more time to align the photos into a 3D 

400 digital file. While photo-alignment can be done at convenience after photography, the greater 

401 time required to capture enough photos may be a deciding factor for researchers with time 

402 limitations in museum collections. As for scan resolution, photogrammetry may perform better 

403 than 3D surface scanners in some cases (Fourie et al. 2011) or at least provide an acceptable 

404 alternative (Katz & Friess 2014; Muñoz0Muñoz et al. 2016). 

405

406
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407 Conclusions

408 In summary, the best 3D capture method will vary based on the study9s design, expected effect 

409 size for the biological variation of interest, and the researcher9s limitations on time, money, and 

410 travel. In addition to image resolution requirements, it is wise to assess the time it will take to 

411 capture and process each specimen as well as portability needs. Here, we have shown that a 3D 

412 surface scanner can provide an acceptable alternative to a ¿CT scanner for assessing biological 

413 signal of 3D shape even in small specimens that are at the limits of 3D scanner resolution. 

414 Furthermore, as previously suggested (e.g., Fruciano 2016), exploratory pilot studies of 

415 measurement error are advisable when practically possible. We recommend a preliminary test on 

416 multiple devices 3 including surface scanners 3 of how levels of error compare to biological 

417 signal and whether there is substantial systematic error. Doing so may provide a defensible 

418 alternative to an expensive and time consuming large-scale acquisition of ¿CT scans. 

419
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Figure 1

Low resolution 3D surface scans of delicate mouse crania.

(A) Dorsal view. (B) Lateral view. (C) Ventral view. See Figure 3 to compare with the much

higher resolution of ¿CT scans. All crania are rendered in Viewbox v. 4.0.
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Figure 2

Methods flow diagram highlighting the relationship between our questions and our

analyses.

(A) All delicate mouse (Pseudomys delicatulus) crania were sourced from the Queensland

Museum in Brisbane, Australia. Landmarks (LMs) capture homologous points, semi-landmarks

(semi-LMs) capture curves between landmarks, and patch points capture surfaces between

landmarks and semi-landmarks. (B - D) These sections of questions and associated figure and

table numbers summarize how we organize the paper, particularly the Results, into three

sets of related analyses.
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Figure 3

Positions of landmarks for geometric morphometric analyses.

Locations of fixed landmarks (black points), sliding semi-landmarks (red points) and sliding

surface patches (purple points) on a ¿CT scanned individual. (A) Dorsal view of the cranium.

(B) Lateral view. (C) Ventral view. Definitions are given in Table S2.
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Figure 4

Exploratory PCA plots of shape variation showing differences among individuals, scan

devices, and replicates of the same scan device.

A) PC1 versus PC2 and B) PC1 versus PC3. Each individual has a unique color shared by all of

its 6 replicates. Each replicate9s point is labeled for its scan device, either <CT= for ¿CT

scanned or <3D= for 3D surface scanned. Each axis reports the total variance explained by

that principal component: 26.4% for PC1, 11.9% for PC2, and 8.9% for PC3.
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Figure 5

3D warp-grids for the three most important principal components, showing minimum

and maximum shapes for each PC.

The left hand cranium shows the minimum negative value for the PC and the right hand cranium shows the

maximum positive value. (A) Positive values along PC1 (26.4% variance) correspond to a larger braincase

relative to the rostrum. (B) Positive values along PC2 (11.9% variance) correspond to a wider frontal bone.

(C) Positive values along PC3 (8.9% variance) correspond to a more dorsally-curved ventral surface.
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Figure 6

Morphological disparity -- as measured by shape variation among replicate scan triads --

by scanning device reflects operator error.

This box plot summarizes the morphological disparity (also known as the Procrustes

variance) among the three replicates of an individual for each scan type. The mean

Procrustes variance for 3D scans was 1.34x10-4 and 4.81x10-5 for ¿CT scans. This is a

significant difference (p<0.001)
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Figure 7

Intra-specific variation as shown by PCAs of 3D and ¿CT scan datasets colored by sex.

PCA provides an exploratory visualization of shape variation between males and females in

our subsample with sex information (n=11). Males (n=4) are plotted in light silver and

females (n=7) are plotted in dark gold. Results from the cross-validation test can be found in

Table 5.
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Table 1(on next page)

General Procrustes ANOVA on sources of shape variation including asymmetry.

The %Var column of this Procrustes ANOVA demonstrates the relative contribution of each

factor to overall variation. It is calculated from the sum of squares for each factor divided by

the total sum of squares for all factors.
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Df SS MS %Var F Pr(>F)

Individual   7740 0.06188221 7.9951E-

06

47.4 11.12     

<.0001

Side       400 0.0255547 6.38868E-

05

19.6 88.89    

<.0001

Ind * Side   7200 0.00517466 7.187E-07 4.0 0.55 1

Device   15770 0.02065404 1.3097E-

06

15.8 4.79     

<.0001

Res / Rep    63080 0.01723758 2.733E-07 13.2

1

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26696v1 | CC BY 4.0 Open Access | rec: 14 Mar 2018, publ: 14 Mar 2018



Table 2(on next page)

Procrustes ANOVA on the sources of shape variation using the symmetric component of

shape.

The R-squared column of this Procrustes ANOVA demonstrates the relative contribution of

each factor to overall variation. The shape variation of this dataset is visualized in Figures 4

and 5.
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Df SS MS Rsq F Z

Pr

(>F)

ind 18 0.062014315 0.00344524 0.73269356 25.31699532 21.2972812 0.001

ind:

dev 19 0.01228211 0.00064643 0.14511204 4.75020269 23.624144 0.001

Resi-

duals 76 0.010342389 0.000136084

Total 113 0.084638816

1
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Table 3(on next page)

Comparison of operator error in 3D scan and ¿CT scan datasets using Procrustes

ANOVAs and repeatability scores.

The repeatability score is a value that reflects the ease of digitizing in a repeated measure

study design. It is calculated from the Procrustes ANOVA using formulas for the intra-class

correlation coefficient. The Procrustes ANOVAs were found by subsetting the dataset by scan

device and performing separate generalized Procrustes and bilateral symmetry alignments.

(A) Results from the ¿CT-only dataset. (B) Results from the 3D-only dataset.
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A

Df SS MS Rsq F Z Pr(>F) Repeatability

¿CT_ind 18 0.034310829 0.001906157 0.92599563 26.41573276 18.27750829 0.001 0.927

Residuals 38 0.002742077 7.22E-05

Total 56 0.037052906

B

Df SS MS Rsq F Z Pr(>F) Repeatability

3D_ind 18 0.035295179 0.001960843 0.822025177 9.750741438 15.83823468 0.001 0.814

Residuals 38 0.00764168 0.000201097

Total 56 0.042936859

1
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Table 4(on next page)

Symmetric Procrustes ANOVA with sex as a factor to assess relative contribution of

intra-specific variation to overall shape variation.

This Procrustes ANOVA allows comparison of the relative contribution to total variation from

sex and from scan device (R-squared column).
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  df          SS   MS       Rsq   F      P 

Ind 8600 0.03179244 3.6968E-06 0.6914 4.43    <.0001

Device     9460 0.00790042 8.351E-07 0.1718 5.03   <.0001

Sex/Res   37840 0.00628842 1.662E-07 0.1368

Total 55900 0.04598128

1
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Table 5(on next page)

Between group PCA classification test to assess whether one scan device dataset

performs better at identifying sexes based on shape.

This analysis averages shape among replicates, computes a between-group PCA separately

for ¿CT and 3D datasets, and runs a cross-validation classification test. The results indicate

whether one type of scan dataset is more successful at classifying males versus females

based on the shape variation present in the dataset. It also returns a kappa statistic; a kappa

value over 0.20 indicates <fair= agreement between the two datasets. Shape variation

visualized by sex can be seen in Figure 7.
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Cross-validated classification results in 
frequencies

CT f m 3D f m

f 5 2 f 5 2

m 2 2 m 2 2

Cross-validated classification results in %

CT f m 3D f m

f 71 29 f 71 29

m 50 50 m 50 50

Overall classification 

accuracy (%)

CT 64

3D 64

Kappa statistic 

CT 0.214

3D 0.214

1
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