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Random forest and similar Machine Learning techniques are already used to generate

spatial predictions, but spatial location of points (geography) is often ignored in the

modeling process. Spatial auto-correlation, especially if still existent in the cross-validation

residuals, indicates that the predictions are maybe biased, and this is suboptimal. This

paper presents a random forest for spatial predictions framework (RFsp) where buffer

distances from observation points are used as explanatory variables, thus incorporating

geographical proximity effects into the prediction process. The RFsp framework is

illustrated with examples that use textbook datasets and apply spatial and spatio-temporal

prediction to numeric, binary, categorical, multivariate and spatiotemporal variables.

Performance of the RFsp framework is compared with the state-of-the-art kriging

techniques using 5--fold cross-validation with refitting. The results show that RFsp can

obtain equally accurate and unbiased predictions as different versions of kriging.

Advantages of using RFsp over kriging are that it needs no rigid statistical assumptions

about the distribution and stationarity of the target variable, it is more flexible towards

incorporating, combining and extending covariates of different types, and it possibly yields

more informative maps characterizing the prediction error. RFsp appears to be especially

attractive for building multivariate spatial prediction models that can be used as

"knowledge engines" in various geoscience fields. Some disadvantages of RFsp are the

exponentially growing computational intensity with increase of calibration data and

covariates and the high sensitivity of predictions to input data quality. The key to the

success of the RFsp framework might be the training data quality 4 especially quality of

spatial sampling (to minimize extrapolation problems and any type of bias in data), and

quality of model validation (to ensure that accuracy is not effected by overfitting). For

many data sets, especially those with lower number of points and covariates and close-to-

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26693v2 | CC BY 4.0 Open Access | rec: 27 May 2018, publ: 27 May 2018



linear relationships, model-based geostatistics can still lead to more accurate predictions

than RFsp.
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Random forest and similar Machine Learning techniques are already used to generate spatial predictions,

but spatial location of points (geography) is often ignored in the modeling process. Spatial auto-correlation,

especially if still existent in the cross-validation residuals, indicates that the predictions are maybe biased, and

this is suboptimal. This paper presents a random forest for spatial predictions framework (“RFsp”) where

buffer distances from observation points are used as explanatory variables, thus incorporating geographical

proximity effects into the prediction process. The “RFsp” framework is illustrated with examples that

use textbook datasets and apply spatial and spatiotemporal prediction to numeric, binary, categorical,

multivariate and spatiotemporal variables. Performance of the RFsp framework is compared with the

state-of-the-art kriging techniques using 5–fold cross-validation with refitting. The results show that RFsp

can obtain equally accurate and unbiased predictions as different versions of kriging. Advantages of using

RFsp over kriging are that it needs no rigid statistical assumptions about the distribution and stationarity

of the target variable, it is more flexible towards incorporating, combining and extending covariates of

different types, and it possibly yields more informative maps characterizing the prediction error. RFsp

appears to be especially attractive for building multivariate spatial prediction models that can be used as

‘knowledge engines’ in various geoscience fields. Some disadvantages of RFsp are the exponentially growing

computational intensity with increase of calibration data and covariates, sensitivity of predictions to input

data quality and extrapolation problems. The key to the success of the RFsp framework might be the training

data quality — especially quality of spatial sampling (to minimize extrapolation problems and any type of

bias in data), and quality of model validation (to ensure that accuracy is not effected by overfitting). For

many data sets, especially those with fewer number of points and covariates and close-to-linear relationships,

model-based geostatistics can still lead to more accurate predictions than RFsp.
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INTRODUCTION39

Kriging and its many variants have been used as the Best Unbiased Linear Prediction technique for spatial40

points since the 1960’s (Isaaks and Srivastava, 1989; Cressie, 1990; Goovaerts, 1997). The number of41

published applications on kriging has steadily increased since 1980 and the technique is now used in a42

variety of fields, ranging from physical geography (Oliver and Webster, 1990), geology and soil science43

(Goovaerts, 1999; Minasny and McBratney, 2007), hydrology (Skøien et al., 2005), epidemiology (Moore44

and Carpenter, 1999; Graham et al., 2004), natural hazard monitoring (Dubois, 2005) and climatology45

(Hudson and Wackernagel, 1994; Hartkamp et al., 1999; Bárdossy and Pegram, 2013). One of the46

reasons why kriging has been used so widely is its accessibility to researchers, especially thanks to the47

makers of gslib (Deutsch and Journel, 1998), ESRI’s Geostatistical Analyst (www.esri.com), ISATIS48

(www.geovariances.com) and developers of the gstat (Pebesma, 2004; Bivand et al., 2008), geoR49

(Diggle and Ribeiro Jr, 2007) and geostatsp (Brown, 2015) packages for R.50

Since the start of the 21st century, however, there has been an increasing interest in using more51

computationally intensive and primarily data-driven algorithms. These techniques are also known under52

the name “machine learning”, and are applicable for various data mining, pattern recognition, regression53

and classification problems. One of the machine learning algorithms (MLA) that has recently proven to54

be efficient for producing spatial predictions is the random forest algorithm, first described in Breiman55
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(2001), and available in R through several packages such as randomForest (Liaw and Wiener, 2002) or56

the computationally faster alternative ranger (Wright and Ziegler, 2017). Several studies (Prasad et al.,57

2006; Hengl et al., 2015; Vaysse and Lagacherie, 2015; Nussbaum et al., 2018) have already shown58

that random forest is a promising technique for spatial prediction. Random forest, however, ignores the59

spatial locations of the observations and hence any spatial autocorrelation in the data not accounted for60

by the covariates. Modeling the relationship with covariates and spatial autocorrelation jointly using61

machine learning techniques is relatively novel and not entirely worked out. Using northing and easting62

as covariates in a random forest model may not help the prediction process as it leads to linear boundaries63

in the resulting map (obvious artifacts) which are directly related to the configuration of the sampling64

plan. A more sensible and robust use of geographical space is needed.65

In this paper we describe a generic framework for spatial and spatiotemporal prediction that is based66

on random forest and which we refer to as “RFsp”. With this framework we aim at including information67

derived from the observation locations and their spatial distribution into predictive modeling. We test68

whether RFsp, and potentially other tree-based machine learning algorithms, can be used as a replacement69

for geostatistical interpolation techniques such as ordinary and regression-kriging, i.e., kriging with70

external drift. We explain in detail (using standard data sets) how to extend machine learning to general71

spatial prediction, and compare the prediction efficiency of random forest with that of state-of-the-art72

kriging methods using 5–fold cross-validation with refitting the model in each subset (in the case of73

spatiotemporal kriging without refitting).74

A complete benchmarking of the prediction efficiency is documented in R code and can be obtained75

via the GitHub repository at https://github.com/thengl/GeoMLA. All datasets used in this paper76

are either part of an existing R package or can be obtained from the GitHub repository.77

METHODS AND MATERIALS78

Spatial Prediction79

Spatial prediction is concerned with the prediction of the occurence, quantity and/or state of geographical80

phenomena, usually based on training data, e.g., ground measurements or samples y(si), i = 1 . . .n, where81

si * D is a spatial coordinate (e.g., easting and northing), n is the number of observed locations and D is82

the geographical domain. Spatial prediction typically results in gridded maps or, in case of space-time83

prediction, animated visualizations of spatiotemporal predictions.84

Model-based spatial prediction algorithms commonly aim to minimize the prediction error variance85

σ2(s0) at a prediction location s0 under the constraint of unbiasedness (Christensen, 2001). Unbiasedness86

and prediction error variance are defined in terms of a statistical model Y = {Y (s), s * D} of the87

measurements y(si). In mathematical terms, the prediction error variance:88

σ2(s0) = E
�

�

Ŷ (s0)2Y (s0)
�2
�

(1)
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is to be minimized while satisfying the (unbiasedness) constraint:89

E
�

Ŷ (s0)2Y (s0)
�

= 0 (2)

where the predictor Ŷ (s0) of Y (s0) is typically taken as a function of covariates and the Y (si) which, upon90

substitution of the observations y(si), yields a (deterministic) prediction ŷ(s0).91

The spatial prediction process is repeated at all nodes of a grid covering D (or a space-time domain in92

case of spatiotemporal prediction) and produces three main outputs:93

1. Estimates of the model parameters (e.g., regression coefficients and variogram parameters), i.e., the94

model;95

2. Predictions at new locations, i.e., a prediction map;96

3. Estimate of uncertainty associated with the predictions, i.e., a prediction error variance map.97

In the case of multiple linear regression (MLR), model assumptions state that at any location in D the98

dependent variable is the sum of a linear combination of the covariates at that location and a zero-mean99

normally distributed residual. Thus, at the n observation locations we have:100

Y = XT ·β + ε (3)

where Y is a vector of the target variable at the n observation locations, X is an n× p matrix of covariates101

at the same locations and β is a vector of p regression coefficients. The stochastic residual ε is assumed to102

be independently and identically distributed. The paired observations of the target variable and covariates103

(y and X) are used to estimate the regression coefficients using, e.g., Ordinary Least Squares (Kutner104

et al., 2004):105

β̂ =
�

XT ·X
�21

·XT ·y (4)

once the coefficients are estimated, these can be used to generate a prediction at s0:106

ŷ(s0) = xT
0 · β̂ (5)

with associated prediction error variance:107

σ2(s0) = var [ε(s0)] ·
�

1+xT
0 ·

�

XT ·X
�21

·x0

�

(6)
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here, x0 is a vector with covariates at the prediction location and var [ε(s0)] is the variance of the stochastic108

residual. The latter is usually estimated by the mean squared error (MSE):109

MSE =

n

∑
i=1

(yi 2 ŷi)
2

n2 p
(7)

The prediction error variance given by Eq. (6) is smallest at prediction points where the covariate110

values are in the center of the covariate (‘feature’) space and increases as predictions are made further111

away from the center. They are particularly large in case of extrapolation in feature space (Kutner et al.,112

2004). Note that the model defined in Eq. (3) is a non-spatial model because the observation locations113

and spatial-autocorrelation of the dependent variable are not taken into account.114

Kriging115

Kriging is a technique developed specifically to employ knowledge about spatial autocorrelation in mod-116

eling and prediction (Matheron, 1969; Christensen, 2001; Oliver and Webster, 2014). Most geostatistical117

models assume that the target variable Y at some geographic location s can be modeled as the sum of a118

deterministic mean (µ) and a stochastic residual (ε) (Goovaerts, 1997; Cressie, 2015):119

Y (s) = µ(s)+ ε(s) (8)

Assuming a constant trend (µ(s) = µ for all s * D), the best linear unbiased prediction (BLUP) of120

y(s0) is given by the ordinary kriging (OK) prediction (Goovaerts, 1997):121

ŷOK(s0) = w(s0)
T ·y (9)

where w(s0)
T is a vector of kriging weights wi(s0), i = 1, . . .n that are obtained by minimizing the122

expected squared prediction error under an unbiasedness condition (i.e., the weights are forced to sum to123

one).124

The associated prediction error variance, i.e., the OK variance, is given by (Webster and Oliver, 2001,125

p.183):126

σ2
OK(s0) = var

�

Y (s0)2 Ŷ (s0)
�

=C(s0,s0)2w(si)
T ·C0 2ϕ, (10)

where C0 is an n-vector of covariances between Y (s0) and the Y (si) and where ϕ is a Lagrange multiplier.127

If the distribution of the target variable is not Gaussian, a transformed Gaussian approach (Diggle and128

Ribeiro Jr, 2007, §3.8) and/or generalized linear geostatistical model approach (Brown, 2015) is advised.129

For example, the Box-Cox family of transformations is often recommended for skewed data (Diggle and130
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Ribeiro Jr, 2007):131

YT =

ù

ú

û

(Y η 21)/η0 if η �= 0

log(Y ) if η = 0,
(11)

where η is the Box-Cox transformation parameter and YT is the transformed target variable. The prediction132

and prediction error variance for log-normal simple kriging (µ known and η = 0) are obtained using133

(Diggle and Ribeiro Jr, 2007, p.61):134

ŷ(s0) = exp
�

ŷT (s0)+0.5 ·σ2
T (s0)

�

(12)

σ2(s0) = exp
�

2 · ŷT (s0)+σ2
T (s0)

�

·
�

exp
�

σ2
T (s0)

�

21
�

(13)

where ŷT (s0) and σ2
T (s0) are the kriging prediction and the kriging variance on the transformed scale. In135

other cases back-transformation can be much more difficult and may require complex approximations.136

Alternatively, back-transformations can be achieved using a spatial stochastic simulation approach (Diggle137

and Ribeiro Jr, 2007, Section 3.10). In this approach a very large number of realizations of the transformed138

variable are obtained using conditional simulation, each realization is back-transformed using the inverse139

of the transformation function, and summary statistics (e.g. mean, variance, quantiles) of the back-140

transformed realizations are computed.141

The advantages of kriging are (Webster and Oliver, 2001; Christensen, 2001; Oliver and Webster,142

2014):143

• it takes a comprehensive statistical model as a starting point and derives the optimal prediction for144

this assumed model in a theoretically sound way;145

• it exploits spatial autocorrelation in the variable of interest;146

• it provides a spatially explicit measure of prediction uncertainty.147

A natural extension of MLR and OK is to combine the two approaches and allow that the MLR residual148

of Eq. (3) is spatially correlated. This boils down to “Regression Kriging” (RK), “Universal Kriging”149

(UK) and/or “Kriging with External Drift” (KED) (Goldberger, 1962; Goovaerts, 1997; Christensen,150

2001; Hengl et al., 2007a). UK and KED implementations are available in most geostatistical software151

packages (e.g., geoR and gstat) and estimate the trend coefficients and interpolate the residual in an152

integrated way, while in RK the regression and kriging are done separately. The main steps of RK are:153

1. Select and prepare candidate covariates, i.e., maps of environmental and other variables that are154

expected to be correlated with the target variable.155

2. Fit a multiple linear regression model using common procedures, while avoiding collinearity and156

ensuring that the MLR residuals are sufficiently normal. If required use different type of GLM157
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(Generalized Linear Model) to account for distribution of the target variable. If covariates are158

strongly correlated it may be advisable to convert these first to principal components.159

3. Derive regression residuals at observation locations and fit a (residual) variogram.160

4. Apply the MLR model at all prediction locations.161

5. Krige the MLR residuals to all prediction locations.162

6. Add up the results of steps 4 and 5.163

7. Apply a back-transformation if needed.164

The RK algorithm has been very successful over the past decades and is still the mainstream geo-165

statistical technique for generating spatial predictions (Li and Heap, 2011). However, there are several166

limitations of ordinary and/or regression-kriging:167

1. Kriging assumes that the residuals are normally distributed. This can often be resolved with a168

transformation and back-transformation, but not always. Model-based geostatistics has, at the169

moment, only limited solutions for zero-inflated, Poisson, binomial and other distributions that170

cannot easily be transformed to normality.171

2. Kriging assumes that the residuals are stationary, meaning that these must have a constant mean (e.g.172

zero), constant variance. Often, isotropy is also assumed, meaning that the spatial autocorrelation173

only depends on distance, but this can be relaxed by a coordinate transformation.174

3. Kriging also assumes that the variogram is known without error, i.e. it ignores variogram estimation175

errors (Christensen, 2001, p.286–287). This can be avoided by taking a Bayesian geostatistical176

approach, but this complicates the analysis considerably (Diggle and Ribeiro Jr, 2007).177

4. Most versions of kriging assume that the relation between dependent and covariates is linear,178

although some flexibility is offered by including transformed covariates.179

5. In case of numerous possibly correlated covariates, it is very tedious to find a plausible trend model180

(see, e.g. Nussbaum et al. (2018)). Interactions among covariates are often difficult to accommodate,181

and usually lead to an explosion of the number of model parameters.182

6. Kriging can, in the end, be computationally demanding, especially if the number of observations183

and/or the number of prediction locations is large.184

Random forest185

Random forest (RF) (Breiman, 2001; Prasad et al., 2006; Biau and Scornet, 2016) is an extension of186

bagged trees. It has been primarily used for classification problems and several benchmarking studies187

have proven that it is one of the best machine learning techniques currently available (Cutler et al., 2007;188

Boulesteix et al., 2012; Olson et al., 2017).189
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Figure 1. Schematic difference between (a) Kriging with External Drift as implemented in the geoR

package, and (b) random forest for spatial prediction. Being a mainly data-driven algorithm, random

forest requires only limited input from the user, while model-based geostatistics requires that user

specifies initial variogram parameters, anisotropy modeling, possibly transformation of the target variable

and covariates and choice of a link function.
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In essence, RF is a data-driven statistical method. The mathematical formulation of the method is190

rather simple and instead of putting emphasis on formulating a statistical model (Fig. 1), emphasis is191

put on iteratively training the algorithm, using techniques such as bagging, until a “strong learner” is192

produced. Predictions in RF are generated as an ensemble estimate from a number of decision trees based193

on bootstrap samples (bagging). The final predictions are the average of predictions of individual trees194

(Breiman, 2001; Prasad et al., 2006; Biau and Scornet, 2016):195

θ̂ B(x) =
1

B
·

B

∑
b=1

t7b (x), (14)

where b is the individual bootstrap sample, B is the total number of trees, and t7b is the individual learner,196

i.e., the individual decision tree:197

t7b (x) = t(x;z7b1, . . . ,z
7
bK), (15)

where z7bk (k = 1 . . .K) is the k-th training sample with pairs of values for the target variable (y) and198

covariates (x): z7bi = (xk,yk).199

RF, as implemented in the ranger package, has several parameters that can be fine-tuned. The most200

important parameters are (Probst and Boulesteix, 2017):201

• mtry — number of variables to possibly split at in each node.202

• min.node.size — minimal terminal node size.203

• sample.fraction — fraction of observations to sample in each tree.204

• num.trees — number of trees.205

The number of trees in RF does not really need to be fine-tuned, it is recommended to set it to a206

computationally feasible large number (Lopes, 2015; Probst and Boulesteix, 2017).207

Uncertainty of predictions in random forest208

The uncertainty of the predictions of random forest for regression-type problems can be estimated using209

several approaches:210

• The Jackknife-after-Bootstrap method (see e.g. Wager et al. (2014)).211

• The U-statistics approach of Mentch and Hooker (2016).212

• The Monte Carlo simulations (both target variable and covariates) approach of Coulston et al.213

(2016).214

• The Quantile Regression Forests (QRF) method (Meinshausen, 2006).215
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The approaches by Wager et al. (2014) and Mentch and Hooker (2016) estimate standard errors of the216

expected values of predictions, used to construct confidence intervals, while the approaches of Coulston217

et al. (2016) and Meinshausen (2006) estimate prediction intervals. Our primary interest in this article is218

the approach of Meinshausen (2006) as it can be used to produce maps of prediction error.219

The Quantile Regression Forests (QRF) algorithm estimates the quantiles of the distribution of the220

target variable at prediction points. Thus, the 0.025 and 0.975 quantile may be used to derive the lower221

and upper limits of a symmetric 95 % prediction interval. It does so by first deriving the random forest222

prediction algorithm in the usual way. While this is done with decision trees, as explained above, it223

ultimately boils down to a weighed linear combination of the observations:224

ŷ(s0) =
n

∑
i=1

αi(s0) · y(si) (16)

in QRF, this equation is used to estimate the cumulative distribution Fs0
of Y (s0), conditional to the225

covariates, simply by replacing the observations y(si) by an indicator transform:226

F̂s0
(t) =

n

∑
i=1

αi(s0) ·1y(si)ft (17)

where 1y(si)ft is the indicator function (i.e., it is 1 if the condition is true and 0 otherwise). Any quantile q227

of the distribution can then be derived by iterating towards the threshold t for which F̂s0
(t) = q. Since the228

entire conditional distribution can be derived in this way, it is also easy to compute the prediction error229

variance. For details of the algorithm, and a proof of the consistency, see Meinshausen (2006).230

Note that in RF and QRF the prediction and associated prediction interval are derived purely using231

feature space and bootstrap samples. Geographical space is not included in the model as in ordinary and232

regression-kriging.233

Random forest for spatial data (RFsp)234

RF is in essence a non-spatial approach to spatial prediction in a sense that sampling locations and general235

sampling pattern are ignored during the estimation of MLA model parameters. This can potentially236

lead to sub-optimal predictions and possibly systematic over- or under-prediction, especially where the237

spatial autocorrelation in the target variable is high and where point patterns show clear sampling bias. To238

overcome this problem we propose the following generic “RFsp” system:239

Y (s) = f (XG,XR,XP) (18)

where XG are covariates accounting for geographical proximity and spatial relations between observations240
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(to mimic spatial correlation used in kriging):241

XG = (dp1,dp2, . . . ,dpN) (19)

where dpi is the buffer distance (or any other complex proximity upslope/downslope distance, as explained242

in the next section) to the observed location pi from s and N is the total number of training points.243

XR are surface reflectance covariates, i.e. usually spectral bands of remote sensing images, and XP are244

process-based covariates. For example, the Landsat infrared band is a surface reflectance covariate,245

while the topographic wetness index and soil weathering index are process-based covariates. Geographic246

covariates are often smooth and reflect geometric composition of points, reflectance-based covariates can247

carry significant amount of noise and tell usually only about the surface of objects, and process-based248

covariates require specialized knowledge and rethinking of how to represent processes. Assuming that the249

RFsp is fitted only using the XG, the predictions would resemble OK. If all covariates are used (Eq.18),250

RFsp would resemble regression-kriging.251

Geographical covariates252

One of the key principles of geography is that “everything is related to everything else, but near things253

are more related than distant things” (Miller, 2004). This principle forms the basis of geostatistics, which254

converts this rule into a mathematical model, i.e., through spatial autocorrelation functions or variograms.255

The key to making RF applicable to spatial statistics problems hence lies also in preparing geographical256

measures of proximity and connectivity between observations, so that spatial autocorrelation is accounted257

for. There are multiple options for quantifying proximity and geographical connection (Fig. 2):258

1. Geographical coordinates s1 and s2, i.e., easting and northing.259

2. Euclidean distances to reference points in the study area. For example, distance to the center and260

edges of the study area, etc.261

3. Euclidean distances to sampling locations, i.e., distances from observation locations. Here one262

buffer distance map can be generated per observation point or group of points. These are also263

distance measures used in geostatistics.264

4. Downslope distances, i.e., distances within a watershed: for each sampling point one can derive265

upslope/downslope distances to the ridges and hydrological network and/or downslope or upslope266

areas (Gruber and Peckham, 2009). This requires, on top of using a Digital Elevation Model, a267

hydrological analysis of the terrain.268

5. Resistance distances or weighted buffer distances, i.e., distances of the cumulative effort derived269

using terrain ruggedness and/or natural obstacles.270

The package gdistance, for example, provides a framework to derive complex distances based on271

terrain complexity (van Etten, 2017). Here additional input to compute complex distances are the Digital272
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Elevation Model (DEM) and DEM-derivatives, such as slope (Fig. 2b). SAGA GIS (Conrad et al., 2015)273

offers a wide diversity of DEM derivatives that can be derived per location of interest.274

Figure 2. Examples of distance maps to some location in space (yellow dot) based on different

derivation algorithms: (a) simple Euclidean distances, (b) complex speed-based distances based on the

gdistance package and Digital Elevation Model (DEM) (van Etten, 2017), and (c) upslope area derived

based on the DEM in SAGA GIS (Conrad et al., 2015). Case study: Ebergötzen (Böhner et al., 2006).

In this paper we only use Eucledean buffer distances (to all sampling points) to improve RFsp275

predictions, but our code could be adopted to include other families of geographical covariates (as276

shown in Fig. 2). Note also that RF tolerates high number of covariates and multicolinearity (Biau and277

Scornet, 2016), hence multiple types of geographical covariates (Euclidean buffer distances, upslope and278

downslope areas) can be used at the same time.279

Model performance criteria280

When comparing performance of RFsp vs. OK and RK, we use the following performance criteria (Fig. 3):281

1. Average RMSE based on cross-validation (CV), model R-square based on CV residuals and282

Concordance Correlation Coefficient — this quantifies the average accuracy of predictions i.e.283

amount of variation explained.284

2. Average ME based on CV — this quantifies average bias in predictions.285

3. Spatial autocorrelation in CV residuals — this quantifies local spatial bias in predictions.286

4. Standard deviation of z-scores — this quantifies the reliability of estimated prediction error vari-287

ances.288

The RMSE and ME are derived as:289

RMSE =

�

1

m

m

∑
j=1

(ŷ(s j)2 y(s j))2

ME =
1

m

m

∑
j=1

(ŷ(s j)2 y(s j))
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Figure 3. Schematic examples of standard mapping performance criteria used for evaluation of spatial

prediction algorithms and their interpretation: (a) predicted vs. observed plot, (b) standardized accuracy

vs. standard deviation of the z-scores, (c) “accuracy plots” (after Goovaerts (1999)), and (d) variogram of

the target variable and the cross-validation residuals. MSE = Mean Squared residual Error. In principle,

all plots and statistics reported in this paper are based on the results of n–fold cross-validation.

where ŷ(s j) is the predicted value of y at cross-validation location s j, and m is the total number of290

cross-validation points. The amount of variation explained by the model is derived as:291

R2 =

�

12
SSE

SST

�

% (20)

where SSE is the sum of squared errors at cross-validation points and SST is the total sum of squares.292

A coefficient of determination close to 1 indicates a perfect model, i.e., 100 % of variation has been293

explained by the model.294

In addition to R–square, we also derive Lin’s Concordance Correlation Coefficient (CCC) (Steichen295
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and Cox, 2002):296

ρc =
2 ·ρ ·σŷ ·σy

σ2
ŷ +σ2

y +(µŷ 2µy)2
(21)

where ŷ are the predicted values and y are actual values at cross-validation points, µŷ and µy are predicted297

and observed means and ρ is the correlation coefficient between predicted and observed values. CCC298

correctly quantifies how far the observed data deviate from the line of perfect concordance (1:1 line in299

Fig. 3a). It is usually equal to or somewhat lower than R–square, depending on the amount of bias in300

predictions.301

The error of estimating the variance of prediction errors can likewise be quantified via the z-score302

(Bivand et al., 2008):303

zscore(s j) =
ŷ(s j)2 y(s j)

σ(s j)
(22)

the z-score are expected to have a mean equal to 0 and variance equal to 1. If the z-score variance is304

substantially smaller than 1 then the model overestimates the actual prediction uncertainty. If the z-score305

variance is substantially greater than 1 then the model underestimates the prediction uncertainty.306

Note that, in the case of QRF, the method does not produce σ(s j) but quantiles of the conditional307

distribution. As indicated before, the variance could be computed from the quantiles. However, since308

this would require computation of all quantiles at a sufficiently high discretization level, prediction error309

standard deviation σ(s j) can also be estimated from the lower and upper limits of a 68.27 % prediction310

interval:311

σQRF(s j)j
ŷq=0.841(s j)2 ŷq=0.159(s j)

2
(23)

This formula assumes that the prediction errors are symmetrical at each new prediction location,312

which might not always be the case.313

RESULTS314

Meuse data set (regression, 2D, no covariates)315

In the first example, we compare the performance of a state-of-the-art model-based geostatistical model,316

based on the implementation in the geoR package (Diggle and Ribeiro Jr, 2007), with the RFsp model as317

implemented in the ranger package (Wright and Ziegler, 2017). For this we consider the Meuse data set318

available in the sp package:319

> library(sp)

> demo(meuse, echo=FALSE)
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We focus on mapping zinc (Zn) concentrations using ordinary kriging (OK) and RFsp. The assumption320

is that concentration of metals in soil is controlled by river flooding and carrying upstream sediments. To321

produce model and predictions using OK we use the package geoR. First, we fit the variogram model322

using the likfit function:323

> library(geoR)

--------------------------------------------------------------

Analysis of Geostatistical Data

For an Introduction to geoR go to http://www.leg.ufpr.br/geoR

geoR version 1.7-5.2 (built on 2016-05-02) is now loaded

--------------------------------------------------------------

> zinc.geo <- as.geodata(meuse["zinc"])

> ini.v <- c(var(log1p(zinc.geo$data)),500)

> zinc.vgm <- likfit(zinc.geo, lambda=0, ini=ini.v, cov.model="exponential")

kappa not used for the exponential correlation function

---------------------------------------------------------------

likfit: likelihood maximisation using the function optim.

likfit: Use control() to pass additional

arguments for the maximisation function.

For further details see documentation for optim.

likfit: It is highly advisable to run this function several

times with different initial values for the parameters.

likfit: WARNING: This step can be time demanding!

---------------------------------------------------------------

likfit: end of numerical maximisation.

where lambda=0 indicates transformation by natural logarithm (positively skewed response). Once we324

have estimated the variogram model, we can generate predictions, i.e., the prediction map using (Eq.12):325

> locs <- meuse.grid@coords

> zinc.ok <- krige.conv(zinc.geo, locations=locs, krige=krige.control(obj.m=zinc.vgm))

krige.conv: model with constant mean

krige.conv: performing the Box-Cox data transformation

krige.conv: back-transforming the predicted mean and variance

krige.conv: Kriging performed using global neighbourhood

note here that geoR back-transforms the values automatically (Eq.12) preventing the user from having to326

find the correct unbiased back-transformation (Diggle and Ribeiro Jr, 2007), which is a recommended327

approach for less experienced users.328

We compare the results of OK with geoR vs. RFsp. Since no other covariates are available, we329

use only geographical (buffer) distances to observation points. We first derive buffer distances for each330

individual point, using the buffer function in the raster package (Hijmans and van Etten, 2017):331

> grid.dist0 <- GSIF::buffer.dist(meuse["zinc"], meuse.grid[1], as.factor(1:nrow(meuse)))

which derives a gridded map for each observation point. The spatial prediction model is defined as:332
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Figure 4. Comparison of predictions based on OK as implemented in the geoR package (a) and random

forest (b) for zinc concentrations of the Meuse dataset: predicted concentrations in log-scale (a–c),

standard deviation of the prediction errors for OK and RF methods (d–f; for RF based on the ranger

package) and correlation plots based on the 5–fold cross-validation for OK and RFsp (g–h). RF with

coordinates as covariates is only shown to demonstrate artifacts.
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> dn0 <- paste(names(grid.dist0), collapse="+")

> fm0 <- as.formula(paste("zinc ~ ", dn0))

i.e., in the formula zinc ~ layer.1 + layer.2 + ... + layer.155 which means that the target333

variable is a function of 155 covariates. Next, we overlay points and covariates to create a regression334

matrix, so that we can tune and fit a ranger model, and generate predictions:335

> library(geoR)

> ov.zinc <- over(meuse["zinc"], grid.dist0)

> rm.zinc <- cbind(meuse@data["zinc"], ov.zinc)

> m.zinc <- ranger(fm0, rm.zinc, quantreg=TRUE, num.trees=150)

> m.zinc

Ranger result

Type: Regression

Number of trees: 150

Sample size: 155

Number of independent variables: 155

Mtry: 98

Target node size: 4

Variable importance mode: none

OOB prediction error (MSE): 64129.11

R squared (OOB): 0.5240641

> zinc.rfd <- predict(m.zinc, grid.dist0@data)

quantreg=TRUE allows to derive the lower and upper quantiles i.e. standard error of the predictions336

(Eq. 23). The out-of-bag validation R squared (OOB), indicates that the buffer distances explain about337

52 % of the variation in the response.338

Given the different approaches, the overall pattern of the spatial predictions (maps) by OK and RFsp339

are surprisingly similar (Fig. 4). RFsp seems to smooth the spatial pattern more than OK, which is340

possibly a result of the averaging of trees in random forest. Still, overall correlation between OK and341

RFsp maps is high (r = 0.97). Compared to OK, RFsp generates a more contrasting map of standard342

errors with clear hotspots. Note in Fig. 4, for example, how the single isolated outlier in the lower right343

corner is depicted by the RFsp prediction error map. Also note that, using only coordinates as predictors344

results in blocky artifacts (Fig. 4; c) and we do not recommended using them for mapping purposes.345

The CV results show that OK is more accurate than RFsp: R-square based on 5–fold cross-validation346

is about 0.60 (CCC=0.76) for OK and about 0.41 (CCC=0.55) for RFsp. Further analysis shows that in347

both cases there is no remaining spatial autocorrelation in the residuals (Fig. 5b). Hence, both methods348

have fully accounted for the spatial structure in the data. Both RFsp and OK seem to under-estimate349

the actual prediction error (σ(z) =1.48 vs. σ(z) =1.28); in this case OK yields slightly more accurate350

estimates of prediction error standard deviations.351

Extension of RFsp with additional covariates means just adding further rasters to the buffer distances.352

For example, for the Meuse data set we may add global surface water occurrence (Pekel et al., 2016) and353

the LiDAR-based digital elevation model (DEM, http://ahn.nl) as potential covariates explaining354
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See also Fig. 3 for explanation of plots.
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zinc concentration (it is assumed that the main source of zinc in this case is the river that occasionally355

floods the area):356

> meuse.grid$SWO <- readGDAL("Meuse_GlobalSurfaceWater_occurrence.tif")$band1[meuse.grid@grid.index]

> meuse.grid$AHN <- readGDAL("ahn.asc")$band1[meuse.grid@grid.index]

> grids.spc <- GSIF::spc(meuse.grid, as.formula("~ SWO + AHN + ffreq + dist"))

Converting ffreq to indicators...

Converting covariates to principal components...

next, we fit the model using both thematic covariates and buffer distances:357

> fm1 <- as.formula(paste("zinc ~ ", dn0, " + ", paste(names(grids.spc@predicted), collapse = "+")))

> ov.zinc1 <- over(meuse["zinc"], grids.spc@predicted)

> rm.zinc1 <- cbind(meuse@data["zinc"], ov.zinc, ov.zinc1)

> m1.zinc <- ranger(fm1, rm.zinc1, mtry=130)

m1.zinc

Ranger result

Type: Regression

Number of trees: 500

Sample size: 155

Number of independent variables: 161

Mtry: 130

Target node size: 2

Variable importance mode: impurity

OOB prediction error (MSE): 48124.16

R squared (OOB): 0.6428452

RFsp including additional covariates results in somewhat smaller MSE than RFsp with buffer distances358

only. There is indeed a small difference in spatial patterns between RFsp spatial predictions derived using359

buffer distances only (Fig. 4) and all covariates (Fig. 6): some covariates, especially flooding frequency360

class and distance to the river, help with predicting zinc concentrations. Nevertheless, it seems that buffer361

distances are most important for mapping zinc i.e. more important than surface water occurrence, flood362

frequency, distance to river and elevation for producing the final predictions. This is also confirmed by363

the variable importance table below:364

> xl <- as.list(ranger::importance(m1.zinc))

> print(t(data.frame(xl[order(unlist(xl), decreasing=TRUE)[1:10]])))

[,1]

PC1 2171942.4

layer.54 835541.1

PC3 545576.9

layer.53 468480.8

PC2 428862.0

layer.118 424518.0

PC4 385037.8

layer.55 368511.7

layer.155 340373.8

layer.56 330771.0
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which shows that, for example, points 54 and 53 are the two most influential observations, even more365

important than covariates (PC2–PC4) for predicting zinc concentration.366

(a) (b)

Figure 6. Comparison of predictions produced using random forest and covariates only (a), and random

forest with covariates and buffer distances combined (b). Compare with Fig. 4.
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Swiss rainfall dataset data set (regression, 2D, with covariates)367

Another interesting dataset for comparison of RFsp with linear geostatistical modeling is the Swiss rainfall368

dataset used in the Spatial Interpolation Comparison (SIC 1997) exercise, described in detail in Dubois369

et al. (2003). This dataset contains 467 measurements of daily rainfall in Switzerland on the 8th of May370

1986. Possible covariates include elevation (DEM) and the long term mean monthly precipitation for May371

based on the CHELSA climatic images (Karger et al., 2017) at 1 km.372

Using geoR, we can fit an RK model:373

> sic97.sp = readRDS("sic97.rds")

> swiss1km = readRDS("swiss1km.rds")

> ov2 = over(y=swiss1km, x=sic97.sp)

> sel.d = which(!is.na(ov2$DEM))

> sic97.geo <- as.geodata(sic97.sp[sel.d,"rainfall"])

> sic97.geo$covariate = ov2[sel.d,c("CHELSA_rainfall","DEM")]

> sic.t = ~ CHELSA_rainfall + DEM

> rain.vgm <- likfit(sic97.geo, trend = sic.t, ini=c(var(log1p(sic97.geo$data)),8000),

fix.psiA = FALSE, fix.psiR = FALSE)

---------------------------------------------------------------

likfit: likelihood maximisation using the function optim.

likfit: Use control() to pass additional

arguments for the maximisation function.

For further details see documentation for optim.

likfit: It is highly advisable to run this function several

times with different initial values for the parameters.

likfit: WARNING: This step can be time demanding!

---------------------------------------------------------------

likfit: end of numerical maximisation.

> rain.vgm

likfit: estimated model parameters:

beta0 beta1 beta2 tausq sigmasq phi psiA psiR

" 166.7679" " 0.5368" " -0.0430" " 277.3047" "5338.1627" "8000.0022" " 0.7796" " 5.6204"

Practical Range with cor=0.05 for asymptotic range: 23965.86

likfit: maximised log-likelihood = -2462

where likfit is the geoR function for fitting residual variograms and which produces a total of 8 model374

coefficients: three regression coefficients (beta), nugget (tausq), sill (sigmasq), anisotropy ratio (psiA)375

and range (psiR). The rainfall data is highly anisotropic so optimizing variogram modeling through376

likfit is important (by default, geoR implements the Restricted Maximum Likelihood approach for377

estimation of variogram parameters, which is often considered the most reliable estimate of variogram378

parameters Lark et al. (2006)). The trend model:379

sic.t = ~ CHELSA_rainfall + DEM

defines covariate variables. The final RK predictions can be generated by using the krige.conv function:380
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> locs2 = swiss1km@coords

> KC = krige.control(trend.d = sic.t,

trend.l = ~ swiss1km$CHELSA_rainfall + swiss1km$DEM,

obj.model = rain.vgm)

> rain.uk <- krige.conv(sic97.geo, locations=locs2, krige=KC)

krige.conv: model with mean defined by covariates provided by the user

krige.conv: anisotropy correction performed

krige.conv: Kriging performed using global neighbourhood
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Figure 7. Comparison of predictions (a–b) and standard errors (c–d) produced using RK and RFsp for

the Swiss rainfall data set (SIC 1997). Correlation plots for RK (e) and RFsp (f) based on 5–fold

cross-validation. For more details about the dataset refer to Dubois et al. (2003).

The results of spatial prediction using RK and RFsp are shown in Fig. 7. The cross-validation381

results show that in this case RFsp is nearly as accurate as RK with a cross-validation R-square of 0.78382

(CCC=0.89) vs. 0.82 (CCC=0.91). What is striking from the Fig. 7d, however, is the high contrast of the383
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RFsp prediction error standard deviation map, which shows a positive correlation with the values (i.e.384

errors are higher in areas where rainfall values are higher), but then also depicts specific areas where385

it seems that the RF continuously produces higher prediction errors. The RK prediction error standard386

deviation map is much more homogeneous (Fig. 7c), mainly because of the stationarity assumption. This387

indicates that the RF prediction error map is potentially more informative than the UK error map. It could388

be used to depict local areas that are significantly more heterogeneous and complex and that require,389

either, denser sampling networks or covariates that better represent local processes in these areas.390

The cross-validation results confirm that the prediction error standard deviations estimated by ranger391

and RK are both relatively similar to the actual errors. Both RFsp and RK somewhat under-estimate392

actual errors (σ(z) =1.16; also visible from Fig. 7 and Fig. 5). In this case, fitting of the variogram and393

generation of predictions in geoR takes only a few seconds, but generation of buffer distances is more394

computationally intensive and is in this case the bottleneck of RFsp.395
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Ebergötzen data set (binomial and multinomial variables, 2D, with covariates)396

As Random Forest is a generic algorithm, it can also be used to map binomial (occurrence-type) and397

multinomial (factor-type) responses. These are considered to be “classification-type” problems in398

Machine Learning. Mostly the same algorithms can be applied as to regression-type problems, hence the399

R syntax is almost the same. In traditional model-based geostatistics, factor type variables can potentially400

be mapped using indicator kriging (Solow, 1986; Hengl et al., 2007b), but the process of fitting variograms401

per class, and especially for classes with few observations only, is cumbersome and unreliable.402

Consider for example the Ebergötzen data set which contains 3670 ground observations of soil type,403

and which is one of the standard datasets used in predictive soil mapping (Böhner et al., 2006):404

> library(plotKML)

> data(eberg)

We can test predicting the probability of occurrence of soil type “Parabraunerde” (according to the405

German soil classification; Chromic Luvisols according to the World Reference Base classification) using406

a list of covariates and buffer distances:407

> eberg$Parabraunerde <- ifelse(eberg$TAXGRSC=="Parabraunerde", "TRUE", "FALSE")

> data(eberg_grid)

> coordinates(eberg) <- ~X+Y

> proj4string(eberg) <- CRS("+init=epsg:31467")

> gridded(eberg_grid) <- ~x+y

> proj4string(eberg_grid) <- CRS("+init=epsg:31467")

> eberg_spc <- spc(eberg_grid, ~ PRMGEO6+DEMSRT6+TWISRT6+TIRAST6)

Converting PRMGEO6 to indicators...

Converting covariates to principal components...

> eberg_grid@data <- cbind(eberg_grid@data, eberg_spc@predicted@data)

For ranger, Parabraunerde is a classification-type of problem with only two classes.408

We next prepare the training data by overlaying points and covariates:409

> ov.eberg <- over(eberg, eberg_grid)

> sel <- !is.na(ov.eberg$DEMSRT6)

> eberg.dist0 <- GSIF::buffer.dist(eberg[sel,"Parabraunerde"], eberg_grid[2], as.factor(1:sum(sel)))

> ov.eberg2 <- over(eberg[sel,"Parabraunerde"], eberg.dist0)

> eb.dn0 <- paste(names(eberg.dist0), collapse="+")

> eb.fm1 <- as.formula(paste("Parabraunerde ~ ", eb.dn0, "+", paste0("PC", 1:10, collapse = "+")))

> ov.eberg3 <- over(eberg[sel,"Parabraunerde"], eberg_grid[paste0("PC", 1:10)])

> rm.eberg2 <- do.call(cbind, list(eberg@data[sel,c("Parabraunerde","TAXGRSC")], ov.eberg2, ov.eberg3))

so that predictions can be made from fitting the following model:410

> eb.fm1

Parabraunerde ~ layer.1 + layer.2 + layer.3 + layer.4 + layer.5 +

...

layer.912 + PC1 + PC2 + PC3 + PC4 + PC5 + PC6 + PC7 + PC8 +

PC9 + PC10
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Parabraunerde class (RF)
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Figure 8. Predicted distribution for the Parabraunerde occurence probabilities (the Ebergötzen data set)

produced using buffer distances combined with other covariates. Dots indicate observed occurrence

locations (TRUE) for the class, crosses indicate non-occurrence locations (FALSE). Predictions reveal a

hybrid spatial pattern that reflects both geographical proximity (samples) and relationship between soil

class and landscape (covariate or feature space).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 9. Predicted soil type occurrence probabilities (a–k) for the Ebergötzen data set (German soil

classification system) using buffer distance to each class and a stack of covariates representing parent

material, hydrology and land cover.
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where layer.* are buffer distances to each individual point, and PC* are principal components based on411

gridded covariates. This will become a hyper-parametric model as the total number of covariates exceeds412

the number of observations. The fitted RF model shows:413

> m1.Parabraunerde <- ranger(eb.fm1, rm.eberg2[complete.cases(rm.eberg2),],

importance = "impurity", probability = TRUE)

> m1.Parabraunerde

Ranger result

Type: Probability estimation

Number of trees: 500

Sample size: 829

Number of independent variables: 922

Mtry: 30

Target node size: 10

Variable importance mode: impurity

OOB prediction error: 0.1536716

in this case the Out-of-Bag prediction error indicates a mean squared error of 0.15, which corresponds to a414

classification accuracy of >85 %. Note that we specify that we aim at deriving probabilities of the class of415

interest by setting probability = TRUE. The output map (Fig. 8) shows again a hybrid pattern: buffer416

distances to points have an effect at some locations, but this varies from area to area. Overall the most417

important covariates are PCs 1, 7, 8 and 3. Also note that binomial variable can be modeled with ranger as418

classification and/or regression-type (0/1 values) of problem — these are mathematically equivalent and419

should results in the same predictions i.e. predicted probabilities should matches regression predictions.420

In a similar way we can also map all other soil types (Fig. 9). The function GSIF::autopredict421

wraps all steps described previously into a single function:422

> soiltype <- GSIF::autopredict(eberg["TAXGRSC"], eberg_grid, auto.plot=FALSE)

Generating buffer distances...

Converting PRMGEO6 to indicators...

Converting LNCCOR6 to indicators...

Converting covariates to principal components...

Fitting a random forest model using 'ranger'...

Generating predictions...

in this case buffer distances are derived to each class, which is less computationally intensive than deriving423

distances to each individual observation locations because there are typically much fewer classes than424

observations. Although deriving buffer distances to each individual observation location provides certainly425

more detail, in the case of factor-type variables, RF might benefit well from only the distances to classes.426

In summary, spatial prediction of binary and factor-type variables is straightforward with ranger,427

and buffer distances can be incorporated in the same way as for continuous-numerical variables. In428

geostatistics, handling categorical dependent variables is more complex, where the GLGM with link429

functions and/or indicator kriging would need to be used, among others requiring that variograms are430

fitted per class.431
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NRCS data set (weighted regression, 3D)432

In many cases training data sets (points) come with variable measurement errors or have been collected433

with a sampling bias. If information about the data quality of each individual observation is known, then434

it also makes sense to use this information to produce a more balanced spatial prediction model. Package435

ranger allows this via the argument case.weights — observations with larger weights will be selected436

with higher probability in the bootstrap, so that the output model will be (correctly) more influenced by437

observations with higher weights.438

Consider for example the soil point data set prepared as a combination of (a) the National Cooperative439

Soil Survey (NCSS) Characterization Database, and (b) National Soil Information System (NASIS) points440

(Ramcharan et al., 2018). The NCSS soil points contain laboratory measurements of soil clay content,441

while the NASIS points contain only soil texture classes determined by hand (from which also clay content442

can be derived), hence with much higher measurement error:443

> carson <- read.csv(file="data/NRCS/carson_CLYPPT.csv")

> carson1km <- readRDS("data/NRCS/carson_covs1km.rds")

> coordinates(carson) <- ~ X + Y

> proj4string(carson) = carson1km@proj4string

> carson$DEPTH.f = ifelse(is.na(carson$DEPTH), 20, carson$DEPTH)

The number of NASIS points is much higher (ca. 5×) than that of the NCSS points, but the NCSS444

observations are about 3× more accurate. We do not actually know what the exact measurement errors445

for each observation so we take a pragmatic approach and set the weights in the modeling procedure446

proportional to the quality of data:447

> str(carson@data)

'data.frame': 3418 obs. of 8 variables:

$ X.1 : int 1 2 3 4 5 6 8 9 10 11 ...

$ SOURCEID : Factor w/ 3230 levels "00CA693X017jbf",..: 1392 1393 3101 3102 ...

$ pscs : Factor w/ 25 levels "ASHY","ASHY OVER CLAYEY",..: 19 7 16 16 16 16 16 7 20 20 ...

$ CLYPPT : int 20 64 27 27 27 27 27 64 20 20 ...

$ CLYPPT.sd: int 8 16 6 6 6 6 6 16 8 8 ...

$ SOURCEDB : Factor w/ 2 levels "NASIS","NCSS": 1 1 1 1 1 1 1 1 1 1 ...

$ DEPTH : int NA NA NA NA NA NA NA NA NA NA ...

$ DEPTH.f : num 20 20 20 20 20 20 20 20 20 20 ...

where CLYPPT is the estimated clay fraction (m%) of the fine earth, and CLYPPT.sd is the reported448

measurement error standard deviation associated to each individual point (in this case soil horizon). We449

can build a weighted RF spatial prediction model using:450

> rm.carson <- cbind(as.data.frame(carson), over(carson["CLYPPT"], carson1km))

> fm.clay <- as.formula(paste("CLYPPT ~ DEPTH.f + ", paste(names(carson1km), collapse = "+")))

> pars.carson <- list(num.trees=150, mtry=25, case.weights=1/(rm.carson.s$CLYPPT.sd^2))

> m.clay <- ranger(fm.clay, rm.carson, unlist(pars.carson))

in this case we used 1/∆σ2
y , i.e., inverse measurement variance as case.weights so that points that were451

measured in the lab will receive much higher weights.452
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(a) (b)

(c) (d)

Figure 10. RF predictions (a–b) and prediction error standard deviations (c–d) for clay content with and

without using measurement errors as weights. Study area around Lake Tahoe, California USA. Point data

sources: National Cooperative Soil Survey (NCSS) Characterization Database and National Soil

Information System (NASIS) (Ramcharan et al., 2018).

Fig. 10b shows that, in this specific case, the model without weights seems to predict somewhat higher453

values, especially in the extrapolation areas. Also the prediction error standard deviations seems to be454

somewhat smaller (ca. 10 %) for the unweighted regression model. This indicates that using measurement455

errors in model calibration is important and one should not avoid specifying this in the model, especially456

if the training data is heterogeneous.457

The National Geochemical Survey data set, multivariate case (regression, 2D)458

Because RF is a decision tree-based method, this opens a possibility to model multiple variables within a459

single model, i.e., by using type of variable as a covariate. This means that prediction values will show460

discrete jumps, depending on which variable type is used. The general form of such model is:461

Y (s) = f
�

Ytype,Ctype,XG,XR,XP

�

(24)
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where Ytype is the variable type, i.e., chemical element, Ctype specifies the sampling or laboratory method462

used, and X are the covariates from Eq.(18).463

Consider for example the National Geochemical Survey database that contains over 70,000 sampling464

points spread over the USA (Grossman et al., 2004). Here we use a subset of this dataset with 2858465

points with measurements of Pb, Cu, K and Mg covering the US states Illinois and Indiana. Some useful466

covariates to help explain the distribution of elements in stream sediments and soils have been previously467

prepared (Hengl, 2009) and include:468

> geochem <- readRDS("geochem.rds")

> usa5km <- readRDS("usa5km.rds")

> str(usa5km@data)

'data.frame': 16000 obs. of 6 variables:

$ geomap : Factor w/ 17 levels "6","7","8","13",..: 9 9 9 9 9 9 9 9 9 9 ...

$ globedem : num 266 269 279 269 269 271 284 255 253 285 ...

$ dTRI : num 0.007 0.007 0.008 0.008 0.009 ...

$ nlights03: num 6 5 0 5 0 1 5 13 5 5 ...

$ dairp : num 0.035 0.034 0.035 0.036 0.038 ...

$ sdroads : num 0 0 5679 0 0 ...

where geomap is the geological map of the USA, globedem is elevation, dTRI is the density of industrial469

pollutants (based on the the pan-American Environmental Atlas of pollutants), nlights03 is the lights at470

night image from 2003, dairp is the density of traffic based on main roads and railroads and sdroads is471

distance to main roads and railroads.472

Since the task is to build a single model using a list of chemical elements, we need to combine all473

target variables into a single regression matrix. In R this can be achieved by using:474

> geochem <- spTransform(geochem, CRS(proj4string(usa5km)))

> usa5km.spc <- spc(usa5km, ~geomap+globedem+dTRI+nlights03+dairp+sdroads)

Converting geomap to indicators...

Converting covariates to principal components...

> ov.geochem <- over(x=geochem, y=usa5km.spc@predicted)

> df.lst <- lapply(c("PB_ICP40","CU_ICP40","K_ICP40","MG_ICP40"),

function(i){cbind(geochem@data[,c(i,"TYPEDESC")], ov.geochem)})

next, we rename columns that contain the target variable:475

> t.vars = c("PB_ICP40","CU_ICP40","K_ICP40","MG_ICP40")

> df.lst = lapply(t.vars, function(i){cbind(geochem@data[,c(i,"TYPEDESC")], ov.geochem)})

> names(df.lst) = t.vars

> for(i in t.vars){colnames(df.lst[[i]])[1] = "Y"}

> for(i in t.vars){df.lst[[i]]$TYPE = i}

so that all variables (now called Y) can be combined into a single regression matrix:476

> rm.geochem = do.call(rbind, df.lst)

> str(rm.geochem)

29/47

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.26693v2 | CC BY 4.0 Open Access | rec: 27 May 2018, publ: 27 May 2018



'data.frame': 11432 obs. of 25 variables:

$ Y : num 9 10 10 9 16 14 8 15 11 9 ...

$ TYPE : chr "PB_ICP40" "PB_ICP40" "PB_ICP40" "PB_ICP40" ...

...

where the TYPE column carries the information of the type of variable. To this regression matrix we can477

fit a RF model of the shape:478

> fm.g

Y ~ PC1 + PC2 + PC3 + PC4 + PC5 + PC6 + PC7 + PC8 + PC9 + PC10 +

PC11 + PC12 + PC13 + PC14 + PC15 + PC16 + PC17 + PC18 + PC19 +

PC20 + PC21 + TYPECU_ICP40 + TYPEK_ICP40 + TYPEMG_ICP40 +

TYPEPB_ICP40 + TYPEDESCSOIL + TYPEDESCSTRM.SED.DRY +

TYPEDESCSTRM.SED.WET + TYPEDESCUNKNOWN

where PC* are the principal components derived from covariates, TYPECU_ICP40 is an indicator variable479

defining whether the variable is Cu, TYPEK_ICP40 is an indicator variable for K, TYPEDESCSOIL is480

an indicator variable for soil sample (362 training points in total), and TYPEDESCSTRM.SED.WET is an481

indicator variable for stream sediment sample (2233 training points in total).482

The RF fitted to these data gives:483

> rm.geochem.e <- rm.geochem.e[complete.cases(rm.geochem.e),]

> m1.geochem <- ranger(fm.g, rm.geochem.e, importance = "impurity")

> m1.geochem

Ranger result

Type: Regression

Number of trees: 500

Sample size: 11148

Number of independent variables: 29

Mtry: 5

Target node size: 5

Variable importance mode: impurity

OOB prediction error (MSE): 1462.767

R squared (OOB): 0.3975704

To predict values and generate maps we need to specify (a) type of chemical element, and (b) type of484

sampling medium at the new predictions locations:485

> new.usa5km = usa5km.spc@predicted@data

> new.usa5km$TYPEDESCSOIL = 0

> new.usa5km$TYPEDESCSTRM.SED.DRY = 0

> new.usa5km$TYPEDESCSTRM.SED.WET = 1

> new.usa5km$TYPEDESCUNKNOWN = 0

> for(i in t.vars){

new.usa5km[,paste0("TYPE",i)] = 1

for(j in t.vars[!t.vars %in% i]){ new.usa5km[,paste0("TYPE",j)] = 0 }

x <- predict(m1.geochem, new.usa5km)

usa5km@data[,paste0(i,"_rf")] = x$predictions

}
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(a) (b)

(c) (d)

Figure 11. Predictions (a–d) produced for four chemical elements (wet stream sediments) from the

National Geochemical Survey using a single multivariate RF model. The study area covers the US States

Illinois and Indiana. The spatial resolution of predictions is 5 km. Crosses indicate sampling locations.

The results of the prediction are shown in Fig. 11. From the produced maps, we can see that the spatial486

patterns of the four elements are relatively independent (apart from Pb and Cu which seem to be highly487

cross-correlated), even though they are based on a single RF model. Note that, just by switching the488

TYPEDES we could produce predictions for a variety of combinations of sampling conditions and chemical489

elements.490

A disadvantage of running multivariate models is that the data size increases rapidly and hence also491

the computing intensity. For a comparison, the National Geochemical Survey comprises hundreds of492

chemical elements hence the total size of training points could easily exceed several millions. In addition,493

computation of model diagnostics such as variable importance becomes difficult as all variables are494

included in a single model — ranger indicates an overall R-square of 0.40, but not all chemical elements495

can be mapped with the same accuracy. On the other hand, it appears that extension from univariate to496

multivariate spatial predictions models is fairly straightforward and can be compared to various co-kriging497

techniques used in the traditional geostatistics (Pebesma, 2004). Note also that an R package already498
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exists —IntegratedMRF (Rahman et al., 2017) — which takes multiple output responses, and which499

could probably be integrated with RFsp.500

Daily precipitation Boulder (CO) data set (regression, 2D+T)501

In the last example we look at extending 2D regression based on RFsp to spatiotemporal data, i.e., to502

a 2D+T case. For this we use a time series of daily precipitation measurements obtained from https:503

//www.ncdc.noaa.gov for the period 2014–2017 for the area around Boulder Colorado (available via504

github repository). We can load the data by:505

> co_prec = readRDS("data/st_prec/boulder_prcp.rds")

> str(co_prec)

'data.frame': 176467 obs. of 16 variables:

$ STATION : Factor w/ 239 levels "US1COBO0004",..: 64 64 64 64 64 64 64 64 64 64 ...

$ NAME : Factor w/ 233 levels "ALLENS PARK 1.5 ESE, CO US",..: 96 96 96 96 96 96 96 96 96 96 ...

$ LATITUDE : num 40.1 40.1 40.1 40.1 40.1 ...

$ LONGITUDE: num -105 -105 -105 -105 -105 ...

$ ELEVATION: num 1567 1567 1567 1567 1567 ...

$ DATE : Factor w/ 1462 levels "2014-11-01","2014-11-02",..: 7 13 21 35 46 67 68 69 70 75 ...

$ PRCP : num 0 0.16 0 0 0 0.01 0.02 0.02 0.02 0.01 ...

> co_locs.sp = co_prec[!duplicated(co_prec$STATION),c("STATION","LATITUDE","LONGITUDE")]

> coordinates(co_locs.sp) = ~ LONGITUDE + LATITUDE

> proj4string(co_locs.sp) = CRS("+proj=longlat +datum=WGS84")

Even though the monitoring network consists of only 225 stations, the total number of observations506

exceeds 170,000. To represent ‘distance’ in the time domain, we use two numeric variables — cumulative507

days since 1970 and Day of the Year (DOY):508

> co_prec$cdate = floor(unclass(as.POSIXct(as.POSIXct(paste(co_prec$DATE), format="%Y-%m-%d")))/86400)

> co_prec$doy = as.integer(strftime(as.POSIXct(paste(co_prec$DATE), format="%Y-%m-%d"), format = "%j"))

variable doy is important to represent seasonality effects while cumulative days are important to represent509

long term trends. We can now prepare a spatiotemporal regression matrix by combining geographical510

covariates, including time and additional covariates available for the area:511

> co_grids <- readRDS("data/st_prec/boulder_grids.rds")

> names(co_grids)

[1] "elev_1km" "PRISM_prec"

where is elev_1km is the elevation map for the area, and PRISM_prec is the long-term precipitation map512

based on the PRISM project (http://www.prism.oregonstate.edu/normals/). Next, we also add513

buffer distances and bind all station and covariates data into a single matrix:514

> co_grids <- as(co_grids, "SpatialPixelsDataFrame")

> co_locs.sp <- spTransform(co_locs.sp, co_grids@proj4string)

> sel.co <- over(co_locs.sp, co_grids[1])

> co_locs.sp <- co_locs.sp[!is.na(sel.co$elev_1km),]
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> grid.distP <- GSIF::buffer.dist(co_locs.sp["STATION"], co_grids[1], as.factor(1:nrow(co_locs.sp)))

> ov.lst <- list(co_locs.sp@data, over(co_locs.sp, grid.distP), over(co_locs.sp, co_grids))

> ov.prec <- do.call(cbind, ov.lst)

> rm.prec <- plyr::join(co_prec, ov.prec)

Joining by: STATION

> rm.prec <- rm.prec[complete.cases(rm.prec[,c("PRCP","elev_1km","cdate")]),]

Next, we define a spatiotemporal model as:515

> fmP <- as.formula(paste("PRCP ~ cdate + doy + elev_1km + PRISM_prec +", dnP))

In other words, daily precipitation is modeled as a function of the cumulative day, day of the year,516

elevation, long-term annual precipitation pattern and geographical distances to stations. Further modeling517

of the spatiotemporal RFsp is done the same way as with the previous 2D models:518

> m1.prec <- ranger(fmP, rm.prec, importance = "impurity", num.trees = 150, mtry = 180)

> m1.prec

Ranger result

Type: Regression

Number of trees: 150

Sample size: 157870

Number of independent variables: 229

Mtry: 180

Target node size: 5

Variable importance mode: impurity

OOB prediction error (MSE): 0.0052395

R squared (OOB): 0.8511794

> xlP.g <- as.list(m1.prec$variable.importance)

> print(t(data.frame(xlP.g[order(unlist(xlP.g), decreasing=TRUE)[1:10]])))

[,1]

cdate 93.736193

doy 87.087606

PRISM_prec 2.604196

elev_1km 2.568251

layer.145 2.029082

layer.219 1.718599

layer.195 1.531632

layer.208 1.517833

layer.88 1.510936

layer.90 1.396900

This shows that, distinctly, the most important covariate for predicting daily precipitation from this519

study area is: time i.e. cumulative and/or day of the year. The importance of cdate might not be miss-520

understood as a strong trend in the sense that the average amount of rainfall increases over time or the like.521

The covariate cdate allows the RFsp model to fit different spatial patterns for each day underpinning that522
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the observed rainfall is different from day to day. Note that, because 1–2 covariates dominate the model, it523

is also important to keep mtry high (e.g. > p/2 where p is the number of independent variables), because524

a standard value for mtry could result in time being systematically missed from selection.525

In traditional model-based geostatistics, there are not that many worked-out examples of spatiotem-526

poral kriging of daily precipitation data (i.e. zero-inflated variable models). Geostatisticians treat daily527

precipitation as a censored variable (Bárdossy and Pegram, 2013), or cluster values e.g. in geographical528

space first (Militino et al., 2015). Initial geostatistical model testing for this data set indicates that neither529

of the covariates used above is linearly correlated with precipitation (with R-square close to 0), hence530

we use spatiotemporal ordinary Kriging as a rather naı̈ve estimator providing a geostatistical “baseline”531

which could be improved with a more thorough modeling sensibly dealing with zero-inflation and the532

heavy skewness of the observed variable. Non-linear model based spatiotemporal statistical approaches533

that in general can deal with this type of random fields are e.g. models based on copulas (Erhardt et al.,534

2015; Gräler, 2014) The results of fitting a spatiotemporal sum-metric model variogram using the gstat535

package functionality (Gräler et al., 2016):536

> empStVgm <- variogramST(PRCP~1, stsdf, tlags = 0:3)

> smmFit <- fit.StVariogram(empStVgm, vgmST("sumMetric",

+ space=vgm(0.015, "Sph", 60, 0.01),

+ time=vgm(0.035, "Sph", 60, 0.001),

+ joint=vgm(0.035, "Sph", 30, 0.001),

+ stAni=1),

+ lower=c(0,0.01,0, 0,0.01,0, 0,0.01,0, 0.05),

+ control=list(parscale=c(1,1e3,1, 1,1e3,1, 1,1e3,1, 1)))

shows the following model coefficients: (1) space — pure nugget of 0.003, (2) time — spherical model537

with a partial sill of 0.017, a range of 65.69 hours and a nugget of 0.007, and (3) joint — a nugget free538

spherical model with sill 0.009 and a range of 35 km and with spatiotemporal anisotropy of about 1539

km/hour (Fig. 12).540

Figure 12. Empirical, and fitted metric (for comparison) and sum-metric spatiotemporal variogram

models for daily precipitation data using the spatiotemporal kriging functionality of the gstat package

(Gräler et al., 2016).
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Figure 13. Spatiotemporal predictions of daily rainfall in mm for four days in February using the RFsp

and krigeST methods: RFsp predictions (a–d), krigeST predictions (e–h), standard deviation of prediction

errors for RFsp (i–l), and krigeST (m–p).
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The spatiotemporal kriging predictions can be further produced using the krigeST function using541

e.g.:542

> predST <- krigeST(PRCP~1, stsdf[,818:833], STF(co_grids, time = stsdf@time[823:828]),

+ smmFit, nmax = 15, computeVar = TRUE)

which assumes ordinary spatiotemporal kriging model PRCP~1 with sum-metric model smmFit and search543

radius of 15 most correlated points in space and time. The cross-validation results (Leave-One-Station-544

Out) for RFsp approach and krigeST indicate that there is no significant difference between using RFsp545

and krigeST function: RMSE is about 0.0694 (CCC=0.93) for krigeST and about 0.0696 (CCC=0.93)546

for RFsp. RFsp relies on covariates such as PRISM_prec (PRISM-based precipitation) and elev_1km547

(elevation), so that their patterns are also visible in the predictions (Fig. 13a–d), while krigeST is solely548

based on the observed precipitation.549

Note also from Fig. 13(i–l) that some hot spots in the prediction error maps for RFsp from previous550

days might propagate to other days, which indicates spatiotemporal connection between values in the551

output predictions. Even though both methods results in comparable prediction accuracy, RFsp seems to552

be able to reflect more closely influence of relief and impact of individual stations on predictions, and553

map prediction errors with higher contrast.554

DISCUSSION555

Summary results556

We have defined a RFsp framework for spatial and spatiotemporal prediction of sampled variables as a557

data-driven modeling approach that uses three groups of covariates inside a single method:558

1. geographical proximity to and composition of the sampling locations,559

2. covariates describing past and current physical, chemical and biological processes,560

3. spectral reflectances as direct observation of surface or sub-surface characteristics.561

We have tested the RFsp framework on real data. Our tests indicate that RFsp often produces similar562

predictions as OK and/or RK and does so consistently, i.e., proven through repeated case studies with563

diverse distributions and properties of the target variable. In the case of zinc prediction for the Meuse564

data set, the accuracy for RFsp is somewhat smaller than for OK (Fig. 5a). In this case, RFsp with buffer565

distances as the only covariates evidently smoothed out predictions more distinctly than kriging. As the566

data size increases and as more covariate layers are added, RFsp often leads to satisfactory RMSE and ME567

at validation points, while showing no spatial autocorrelation in the cross-validation residuals (Fig. 5b–c).568

This makes RFsp interesting as a generic predictor for spatial and spatiotemporal data, comparable to569

state-of-the-art geostatistical techniques already available in the packages gstat and/or geoR.570

While the performance indicators show that the RFsp predictions are nearly as good as those of OK571

and RK, it is important to note the advantages of RFsp vs. traditional regression-kriging:572
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1. There is no need to define an initial variogram, nor to fit a variogram (except to check that cross-573

validation residuals show no spatial autocorrelation). There are no 1st and 2nd order stationarity574

requirements (Goovaerts, 1997).575

2. Trend model building, which is mostly done manually for kriging, is dealt with automatically in the576

case of RFsp.577

3. There is no need to define a search radius as in the case of kriging.578

4. There is no need to specify a transformation of the target variable or do any back-transformation.579

There is no need to deal with all interactions and non-linearities. Interactions in the covariates are580

dealt with naturally in a tree-based method and do not need to be manually included in the linear581

trend as in kriging.582

5. Spatial autocorrelation and correlation with spatial environmental factors is dealt with at once583

(single model in comparison with RK where regression and variogram models are often fitted584

separately), so that also their interactions can be modeled at once.585

6. Variable importance statistics show which individual observations and which covariates are most586

influential. Decomposition of R2 as often used for linear models (Groemping, 2006) neglects model587

selection and does not straightforwardly apply to kriging.588

Hence, in essence, random forest requires much less expert knowledge, which has its advantages but589

also disadvantages as the system can appear to be a black-box without a chance to understand whether590

artifacts in the output maps are result of the artifacts in input data or model limitations. Other obvious591

advantages of using random forests are:592

• Information overlap (multicollinearity) and over-parameterization, caused by using too many593

covariates, is not a problem for RFsp. In the first example we used 155 covariates to model with594

155 points, and this did not lead to biased estimation because RF has built-in protections against595

overfitting. RF can be used to fit models with large number of covariates, even more covariates596

than observations can be used.597

• Sub-setting of covariates is mostly not necessary; in the case of model-based geostatistics, over-598

parameterization and/or overlap in covariates is a more serious problem as it can lead to biased599

predictions.600

• RF is resistant to noise (Strobl et al., 2007).601

• Geographical distances can be extended to more complex distances such as watershed distance602

along slope lines and or visibility indices, as indicated in the Fig. 2.603

In the case of spatiotemporal data, RF seems to have ability to adjust predictions locally in space and604

time. Equivalent in kriging would be to use separate models for each day for example. In the precipitation605

case study, spatiotemporal kriging, we did not consider the issue of zero-inflation (censored variables)606
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and have assumed a stationary field in space and time (means might vary from day to day though, but607

the covariance structure is the same over the entire study period). This is an obvious issue for different608

types of rainfall: small scale short heavy summer events, vs. widespread enduring winter precipitation, so609

again RFsp here shows some advantages with much less assumptions and problems with the zero-inflated610

nature of the data.611

Some important drawbacks of RF, on the other hand, are:612

• Predicting values beyond the range in the training data (extrapolation) is not recommended as it can613

lead to even poorer results than if simple linear models are used. In the way the spatiotemporal614

RFsp model is designed, this also applies to temporal interpolation e.g. to fill gaps in observed615

timeseries.616

• RF will lead to biased predictions when trained with data sets that are sampled in a biased way617

(Strobl et al., 2007). To get a more realistic measure of the mapping accuracy, stricter cross-618

validation techniques such as the spatial declustering (Brenning, 2012), as implemented in the mlr619

package (Bischl et al., 2016) or similar, might be necessary.620

• Size of the produced models is much larger than for linear models, hence the output objects are621

large.622

• Models are optimized to reproduce the data of the training set, not to explain a spatial or spatiotem-623

poral dependence structure.624

• Estimating RF model parameters and predictions is computationally intensive.625

• Derivation of buffer distances is computationally intensive and storage demanding.626

We do not recommend using buffer distances as covariates with RFsp for a large number of training627

points e.g. k 1000 since the number of maps that need to be produced could blow up the production628

costs, and also computational complexity of such models would become cumbersome.629

On the other hand, because exceptionally simple neural networks can be used to represent inherently630

complex ecological systems, and because computing costs are exponentially decreasing, it can be said that631

most of the generic Machine Learning techniques are in fact ‘cheap’ and have quickly become mainstream632

data science methods (Lin et al., 2017). Also, we have shown that buffer distances do not have to be633

derived to every single observation point — for factors it turned out that deriving distances per class634

worked quite well. For numeric variables, values can be split into 10–15 classes (from low to high) and635

then again distances can be only derived to low and high values. In addition, limiting the number and636

complexity of trees in the random forest models (Latinne et al., 2001), e.g., from 500 to 100 often leads to637

minimum losses in accuracy (Probst and Boulesteix, 2017), so there is certainly room for reducing size638

and complexity of ML models without significantly loosing on accuracy.639

Is there still need for kriging?640

Given the comparison results we have shown previously, we can justifiably ask whether there is still a need641

for model-based geostatistics at all? Surely, fitting of spatial autocorrelation functions, i.e., variograms642
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will remain a valuable tool, but it does appear from the examples above that RFsp is more generic and643

more flexible for automation of spatial predictions than any version of kriging. This does not mean that644

students should not bother with learning principles of kriging and geostatistics. In fact, with RFsp we need645

to know geostatistics more than ever, as these tools will enable us to generate more and more analyses,646

and hence we will also need to boost our interpretation skills. So, in short, kriging as a spatial prediction647

technique might be redundant, but solid knowledge of geostatistics and statistics in general is important648

more than ever. Also with RFsp, we still needed to fit variograms for cross-validation residuals and derive649

occurrence probabilities etc. All this would have been impossible without understanding principles of650

spatial statistics, i.e., geostatistics.651

Figure 14. Illustration of the extrapolation problem of Random Forest. Even though Random Forest is

more generic than linear regression and can be used also to fit complex non-linear problems, it can lead to

completely nonsensical predictions if applied to extrapolation domains. Image credit: Peter Ellis

(http://freerangestats.info).

While we emphasize that data-driven approaches such as RF are flexible and relatively easy to use652

because they need not go through a cumbersome procedure of defining and calibrating a valid geostatistical653

model, we should also acknowledge the limitations of data-driven approaches. Because there is no model654

one can also not inspect and interpret the calibrated model. Parameter estimation becomes essentially a655

heuristic procedure that cannot be optimized, other than through cross-validation. Finally, extrapolation656

with data-driven methods is more risky than with model-based approaches. In fact, in the case of RF,657

extrapolation is often not recommended at all — all decision-tree based methods such as RFs or Boosted658

Regression Trees can complete fail in predictions if applied in regions that have not been used for training659

(Fig. 14b).660

Are geographic covariates needed at all?661

The algorithm that is based on deriving buffer distance maps from observation points is not only computa-662

tionally intensive, it also results in a large number of maps. One can easily imagine that this approach663

would not be ready for operational use where k 1000 as the resources needed to do any analysis with such664

data would easily exceed standard budgets. But are buffer distances needed at all? Can the geographical665

location and proximity of points be included in the modeling using something less computationally666

intensive?667
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McBratney et al. (2003) have, for example, conceptualized the so-called “scorpan” model in which668

soil property is modeled as a function of:669

• (auxiliary) soil properties,670

• climate,671

• oorganisms, vegetation or fauna or human activity,672

• relief,673

• parent material,674

• age i.e. the time factor,675

• n space, spatial position,676

It appears that also s and n could be represented as a function of other environmental gradients. In677

fact, it can be easily shown that, as long as there are enough unique covariates available that explain678

the majority of physical and chemical processes (past and current) and enough remote sensing data that679

provides spectral information about the object / feature, each point on the Globe can be defined with680

an unique ‘signature’, so that there is probably no need for including spatial location in the predictive681

mapping at all.682

In other words, as long as we are able to prepare, for example, hundreds of covariates that explain683

in detail uniqueness of each location (or as long as an algorithm can not find many duplicate locations684

with unique signature), and as long as there are enough training point to describe spatial relations, there685

is probably no need to derive buffer distances to all points at all. In the example by Ramcharan et al.686

(2018), almost 400,000 points and over 300 covariates are used for training a MLA-based prediction687

system: strikingly the predicted maps show kriging-like pattern with spatial proximity to points included,688

even though no buffer distances were ever derived and used. It appears that any tree-based machine689

learning system that can ‘learn’ about the uniqueness of a geographical location will eventually be able to690

represent geographical proximity also in the predictions. What might be still useful is to select a smaller691

subset of points where hot-spots or points with high CV error appear, then derive buffer distances only to692

those points and add them to the bulk of covariates.693

Behrens et al. (2018) have recently discovered that, for example, DEM derivatives correlate derived694

at coarser scales correlate more with some targeted soil properties than the derivatives derived as fine695

scales; in this case, scale was represented through various DEM aggregation levels and filter sizes. Some696

physical and chemical processes of soil formation or vegetation distribution might not be visible at finer697

aggregation levels, but then become very visible at coarser aggregation levels. In fact, it seems that spatial698

dependencies and interactions of the covariates can be explained simply by aggregating DEM and the699

derivatives. For long time physical geographers have imagined that climate, vegetation and similar are700

non-linear function of longitude and latitude; now appears also that vice versa could be also valid.701
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Remaining methodological problems and future directions702

Even though MLA has proven to be efficient in boosting spatial prediction performance, there still remain703

several methodological problems before it can be widely applied, for example:704

• How to generate spatial simulations that accurately represents spatial autocorrelation structure using705

RF models?706

• How to produce predictions from and at various block support sizes — from point support data to707

block support data and vice versa?708

• How to deal with extrapolation problems (both in feature and geographical spaces)?709

• How to account for spatial and spatiotemporal clustering of points?710

Although Machine Learning is often very successful in spatial prediction, we should not be over-711

relaxed by its flexibility and efficiency of crunching data. Any purely data or pattern driven classifier or712

regressor is a rather mechanical approch to problem solving. It ignores all of our knowledge of processes713

and relationships that have been documented and proven to work over and over. It does not have an714

explicit (geo)statistical model as a starting point, so that no mathematical derivations are possible at all.715

Also, just adding more and more data to the system does not necessarily mean that the predictions will716

automatically become better (Zhu et al., 2012). The main difficulty ML user experience today is to explain717

how a particular algorithm has come to its conclusions (Hutson, 2018). One extreme projection of blind718

over-use of ML and A.I. is that it could leave us with less and less capacity to generate knowledge. In that719

context, what maybe could seem as a logical development direction for Machine Learning is development720

of hybrid use of data and models, i.e., an A.I. systems that not only mechanically mines data, but also721

mines models and knowledge and extends from testing accuracy improvements to testing more complex722

measures of modeling success such as model simplicity, importance of models across various domains of723

science even testing of mathematical proofs (Lake et al., 2017). Such systems would have been at the724

order of magnitude more complex than Machine Learning, but, given the exponential growth of the field725

of A.I., this might not take decades to achieve.726

One model to rule them all?727

Given that with RF multiple variables can be predicted at once, and given that all global data from some728

theme such as soil science, meteorology etc, could be put into a single harmonized and integrated database,729

one could argue that, in the near future, a single machine learning model could be fitted to explain all730

spatial and/or spatiotemporal patterns within some domain of science such as soil science, meteorology,731

biodiversity etc. This is assuming that ALL observations and measurements within that domain have been732

integrated and pre-processed / harmonized for use. Such models could potentially be used as ‘knowledge733

engines’ for various scientific fields, and could be served on-demand, i.e., they would generate predictions734

only if the predictions are required by the users.735

These data set and models would be increasingly large. In fact, they would probably require super736

computing power to update them and efficient data storage facilities to serve them, hence the current737
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state-of-the-art data science might gradually move from managing Big Data only, to managing Big Data738

and Big Models.739

CONCLUSIONS740

We have shown that random forest can be used to generate unbiased spatial predictions and model741

and map uncertainty. Through several standard textbook datasets, we have shown that the predictions742

produced using RFsp are often equally accurate (based on repeated cross-validation) than equivalent linear743

geostatistical models. The advantages of random forest vs. linear geostatistical modeling and techniques744

such as kriging, however, lies in the fact that no stationarity assumptions need to be followed, nor is there745

a need to specify transformation or anisotropy parameters (or to fit variograms at all!).746
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Figure 15. The recommended two-stage accuracy-driven framework for optimizing spatial predictions

based on RFsp (see also Eq. 18). In the first stage, minimum number of objectively sampled points are

used to get an initial estimate of the model. In the second stage, the exact number of samples and

sampling locations are allocated using the prediction error map, so that the mapping accuracy can be

brought towards the desired or target confidence intervals.

This makes RF fairly attractive for automated mapping applications, especially where the point747

sampling is representative (extrapolation minimized) and where relationship between the target variable,748
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covariates and spatial dependence structure is complex, non-linear and requires localized solutions. Some749

serious disadvantage of using RFsp, on the other hand, is sensitivity to input data quality and extrapolation750

problems (Fig. 14). The key to the success of the RFsp framework might be the training data quality —751

especially quality of spatial sampling (to minimize extrapolation problems and any type of bias in data),752

and quality of model validation (to ensure that accuracy is not effected by overfitting).753

Based on discussion above, we can recommend a two-stage framework explained in Fig. 15, as754

possibly the shortest path to generating maximum mapping accuracy using RFsp whilst saving the755

production costs. In the first stage, initial samples are used to get an estimate of the model parameters, this756

initial information is then used to optimize predictions (the second stage) so that the mapping objectives757

can be achieved with minimum additional investments. The framework in Fig. 15, however, assumes that758

there are (just) enough objectively sampled initial samples, that the RF error map is reliable, i.e., accurate,759

that robust cross-validation is used and a reliable RMSE decay function. Simple decay functions could be760

further extended to include also objective ‘cooling’ functions as used for example in Brus and Heuvelink761

(2007), although these could likely increase computational intensity. Two-stage sampling is already quite762

known in literature (Hsiao et al., 2000; Meerschman et al., 2011; Knotters and Brus, 2013), and further763

optimization and automation of two-stage sampling would possibly be quite interesting for operational764

mapping.765

Even though we have provided comprehensive guidelines on how to implement RF for various766

predictive mapping problems — from continuous to factor-type variables and from purely spatial to767

spatiotemporal problems with multiple covariates — there are also still many methodological challenges,768

such as derivation of spatial simulations, derivation of buffer distances for large point data sets, reduction769

of extrapolation problems etc, to be solved before RFsp can become fully operational for predictive770

mapping. Until then, some traditional geostatistical techniques might still remain preferable.771

ACKNOWLEDGMENTS772

We are grateful to the developers of the original random forest algorithms for releasing their code in the773

Open Source domain (Breiman, 2001), Philipp Probst for developing algorithms for fine-tuning of RF and774

implementing the Quantile Regression Forests, and the developers of the spatial analysis packages GDAL,775

rgdal, raster, sp (Pebesma, 2004; Bivand et al., 2008), and SAGA GIS (Conrad et al., 2015), on top of776

which we have built work-flows and examples of applications.777

REFERENCES778
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